Library and
Learning Resources

A comparison of various methods of assaying cyanide solutions for gold

Theodore Saunders Dunn

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Physical Sciences and Mathematics Commons
Department:

Recommended Citation

Dunn, Theodore Saunders, "A comparison of various methods of assaying cyanide solutions for gold" (1910). Bachelors Theses. 155.
https://scholarsmine.mst.edu/bachelors_theses/155

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A COMPAFISON OF VARIOUS METFODS OT ASSAYJNG CYANTDE SOTUTIONS FOR GOLD T22 ${ }^{2}$
THEODORE SAUNTERS DUNN
A THESIS FOR THE DEGREE
OF
BACFETOR OF SCIFNCE IN GFNTRAI SCIENCE MISSOURI CGHOOL OF MINES AND METATLURGY ROLLA, MIESOURI
MAY, 1910

OK. NITManso

10924

> A COMPAIISOA OF VARIOUS FTHODS OF ASSAYIHG
> CYA IDF SOLUPIOM UOR CODD.

Although there has been a great deal written on the different methods of assaying cyanide solutions and new metiods are being devised constantly there has been very little said as to the relative merits of the methods in use. An attempt has therefore been made in this paper to compare several of the methods now used.

The method of procedure was as follows:Four cyanide solutions were repared of the following strengths and richness:

Solution \#I $0.5 \% \mathrm{KCN}$. I. oz. Au. per ton.
Solution \#2 $0.5 \% \mathrm{KCN}$. . 05 oz . Au. per ton.
Solution \#3 $0.05 \% \mathrm{KClN} . \quad$ I.oz. Au. per ton.
Solution \#4 0.05% KCN. . 05 oz. Au. per ton.
The cold was weighted out and then put into the form of gold chloride and then into the cyanide solutions.

The solutions were assajed by taking five samples of each solution and then carrying the twenty assays thus taken through all the processes, comparing each mathod as to accuracy, speed and simpleness. Each process was run through several times to gain familiarity and speed before the time was taken.

The following methods wers used in the work:-
Method I - Evaporating in a lead dish.
Method 2 - Chiddey's Method.
Method 3 - Evaporating to small bulk in an evaporating dish and absorbing the remainder with lithage.

Method 4 - Evaporating to small bulk in an evaporating dish and absorbing the remainder with litharge and silica.

Method 5 - Miller's method of pracipitating with powdered copper sulphate.

Method 6 - Lindeman's Method of precipitating with ammoniacal copper nitrate.

Method 7 - Arent's method of precipitating with cement copper.

Method 8 - Del Mar's method of precipitating with aluminulm sulphide.

Method 9 - Precipitation with silver nitrate.
Method IO - Mohr's Colonametric Metod.

Mothod II - Seamon's nethod of precipitating with alurinum foil.

Of the rich solutions one assay ton was taken ard of the poor solutions toll assay tons.

The results obtained were as follows:-

Method I-

Fvaporation to drymess in lead dish. The dish was was folded up and cupelled. Solution I. 0.5% KCN. I oz. Au. par ton. Sample-Assay oz fer ton-Actual loss in oz per ton \% loss

I	.99	$.0 I$	$\mathrm{I} \%$
2	.99	.0 I	1%
3	.995	.005	$.5 \%$
4	.995	.005	$.5 \%$
5	.995	.005	$.5 \%$
Average	.993	.097	$.7 \%$

Time - Fifty minutes.

Sclution 2. $.5 \%$ KCN. . 05 ox. Au. per ton
Semple-Assay oz fer tun-Actual loss oz per tor- $\%$ loss.

I	.048	.002	4%
2	.0485	.0015	3%
3	.049	.001	2%
4	.049	.001	2%
5	.049	$\ldots .01$	2%
Average	.0487	.0013	$\ldots \ldots$

Time - One hour, thirty minutes.

Solution 3.
$.05 \%$ KCli. I oz. Aü. por ton
Sample-Assay oz per tun-Actual loss az fer fon-\% loss.

I	.99	.0 I	$\mathrm{I} \%$
2	.995	.005	$.5 \%$
3	.99	.0 I	$\mathrm{I} \%$
4	.99	.0 I	$\mathrm{I} \%$
5	.99	. .0 I	$\mathrm{I} \%$
	-.90	$-\ldots \ldots$	

Time - Fifty minutea.

Solutior 4.
$.05 \%$ KCN. . 05 oz. Au. per ton
Sample-Assay oz per ton-Actual loss oz per ton- \% loss

I	. 049	. 001	2\%
2	. 049	. 00 I	2\%
3	. 0485	. 0015	3%
4	10405	. 0015	3%
6	. 045	. 00 I	2\%
Averape	. 0488	. 0012	2.4%

Time - One hour, thirty minutes.
Buttons all cupelled well and rapidly but in the case of a poor solution the time of evaporation was greatly lengthened and so caused the time of operation to become somewhat long.

Method 2.

Chiddey's Method.
Solution I.
$.5 \%$ Kull. I oz. Au. per ton
Sample-Assay oz per ton-Actual loss oz per ton- \% loss

I	. 985	. 015	I. 5 \%
2	. 99	. 01	1%
3	. 985	. 015	1.5 \%
4	. 99	. 01	I \%
5	. 985	. 015	I. 5%
Average	. 987	. 013	I. 3 \%

Time - Fifty-five minutes.

$$
\begin{array}{ll}
& \text { Solution } 2 . \\
.5 \% \mathrm{KCN} . & .0502 . \text { Au. per ton }
\end{array}
$$

Sample-Assay oz per ton-Actual loss-in oz yer ton- loss

I	.049	$.00 I$	2%
2	.047	.003	6%
3	.048	.002	4%
4	.048	.002	4%
5	. .048	. .002	4%
Average	.048	.002	$-\ldots$.
			4%

Time - One hour, ten minutes.

Solution 3.
$.05 \% \mathrm{KCN} . \quad$ I oz. Au. per ton.
Sample- Assay oz per tor-Actual Joss in oz per tor- loss

I	.86	.14	I 4
2	.87	. I 3	$\mathrm{I} 3 \%$
3	.88	. I 2	$\mathrm{I} 2 \%$
4	.85	. I 5	$\mathrm{I} \% \%$
5	.86	. I 4	I 4
	$-\ldots$	I 3.6	$\mathrm{I} 3.6 \%$

Time Fifty-five minutes.

These restilts were obtained with a weak solution which was not brought up to strength as recommended. When the solution wes brousht up to about $.5 \% \mathrm{KCN}$. by
sading, some fresh KC . the results obtained were much better and were as follows:f

Sample-Assay oz per ton-Actual loss ir oz per ton- \% loss

I	. 98	. 02	2%
2	. 99	. OI	I \%
3	.99	. 01	I\%
4	. 98	. 02	2%
5	. 99	. 01	I ${ }^{\circ}$
Averate	vi. 6	I. 4	I. 48

Time - Fifty-five rirutes.
Thus showing that it is necestary in usire this
rathod to brire up the strengeth of e weak solution.
Solution 4.
$.05 \%$ KCN. . 05 or. Au. per ton
Sample-Assay oz per ton-Actual loss ir oz per tor- $\%$ loss

I	.048	.002	4%
2	.049	.001	2%
3	.048	.002	4%
4	.048	.002	4%
5	.049	. .001	2%
Average	.0484	.0016	$\cdots .2 \%$

Time - One hour, ten minutes.
The results were as a whole good but sone showed zinc when being cupelled. This mis uncountedly due to too
muich haste in removire the samples from the hot plate. Method 3 .

Evaporate to small bulk, absorb with litharge, fuse and cupel.

> Solution I.
> $.5 \% \mathrm{KCN} . \quad$ I، oz. Au. per ton
$\begin{array}{cccc}\text { Sample-Assay oz per ton-Actual loss oz pertorn- of loss } \\ \frac{\mathrm{I}}{\mathrm{I}} & .995 & .005 & .5 \%\end{array}$

2	.995	.005	$.5 \%$
3	.995	.005	$.5 \%$
4	.995	.005	$.5 \%$
5	.99	.01	. $.1 \%$

Average . 994
. 006
$.6 \%$
Time-Two hours.

> Solution 2.
> .5, KCN. $\quad .05$ oz. Au. per ton.

Sample-Assay oz fer ton-Actual loss ir oz per tor- \% loss

I	.049	$.00 I$	2%
2	.049	.001	2%
3	.049	.001	2%
4	.048	.002	4%
5	.049	. $.00 I$	2%
Avcrage	.0488	.0012	$-\ldots .$.

Time - Two hours, thirty minutes.

Solution 3.
$.05 \%$ KCN. I oz. Au. per ton
Sample-Assay oz per ton- Actual loss in oz per tor- Of loss

I	.99	.01	$\mathrm{I} \%$
2	.99	.01	$\mathrm{I} \%$
3	.99	.01	$\mathrm{I} \%$
4	.99	.01	$\mathrm{I} \%$
5	.095	.. .005	$.5 \%$
Averace	.991	.09	. $.9 \%$

Tine - Two hours.
Solution 4.
$.05 \%$ KCN. . 05 oz . Au. per ton.
Sample-Assay oz, yer ton-Acturl loss in oz par ton- \% loss

I	.049	.001	2%
2	.048	.002	4%
3	.048	.002	4%
4	.048	.002	4%
5	.048	.. .002	4%
Average	.0482	.0018	$-\ldots$.

Time - Two hours, thirty minutes.
The results obtained by this method were excellent but the method is very long. The time necessary to mix charges and to fuse causing a big incrsase in the time necessary.

Mothod 4.
Evaporate to small bulk, absorb with litharge and silica, fuse and cupel.

Solution I.
. 5% KCN. I oz. Au. per ton.
Sample-Assay oz per ton-Actuel loss in oz per ton- \% loss

I	. 99	. OI	I\%
2	. 995	. 005	. 5%
3	. 995	. 005	. 5%
4	. 99	. 01	I\%
5	. 99	. 01	I \%.
Average	992	. 008	. 8%

Time - Two hours.

Solution 2.
$.5 \% \mathrm{KCN} . \quad .05$ oz. Au. per ton.
Sample-Assay oz per ton-Actual loss in oz per ton- \% loss

I	.048	.002	4%
2	.048	.002	4%
3	.049	$.00 I$	2%
4	.049	$.00 I$	2%
5	.048	.002	4%
Average	.0484	.0016	3.2%

Time - Two hours, thirty minutes.

Solution 3.
.05 名 KCN. I oz. Au. per tom. Sample-Assay oz. per tor-Actial loss in oz wor ton-\%loss.

I	.995	.005	$.5 \%$
2	.995	.00	$.5 \%$
3	.99	.0 I	$\mathrm{I} \%$
4	.99	.0 I	$\mathrm{I} \%$
5	.99	. $.0 I$	I
Averace	.992	.008	\ldots

Time; Two hours.
Solution 4.
$.05 \% \mathrm{KCN} .05 \mathrm{oz}$. Au. per ion.
Sample-Assay oz per ton- Actual loss in oz per ton- \%loss

I	.048	.002	4%
2	.048	.002	4%
3	.048	.002	4%
4	.048	.002	4%
5	.049	. .001	2%
Averace	.0482	.0018	$-\ldots .6$

Time - Two hours, thirty minutes.
No difference could he noterd hetwen this netnod and Metiod 3. The results werc equally as rood and are open to the sane objection - tow long to run.

Method 5-Miller's Method. Solution I. $0.5 \% \mathrm{KCN}$. I oz.Au. per ton. Sarmple-Assay oz.per ton-Actual loss in oz. per ton- \% loss.

I	.992	.008	$.8 \%$
2	.992	.008	$.8 \%$
3	.99	.01	$\mathrm{I} \%$
4	.992	.008	$.8 \%$
5	. .992	. .008	$.8 \%$
	Average	.9912	.0084

Time - Two hours, thirty minutes.

> Solution 2.
> $0.5 \% \mathrm{KCN} . \quad .05 \mathrm{Qz}$. Au. per ton.

Sample-Assay 0z. per ton-Actual loss in oz.per ton- C loss.

I	. 049	. 001	2\%
2	. 049	.00I	2%
3	. 048	. 002	4%
4	. 048	. 002	4%
5	.048	. 002	4%
Average	. 0484	. 0016	3.2

Solution 3.
. 05% KCN. I 0z. Au. per ton
Sample-Assay oz.per ton-Actual lossin oz.per ton- \% loss.

I	.99	$.0 I$	$\mathrm{I} \%$
2	.99	$.0 I$	$\mathrm{I} \%$
3	.992	.008	$.8 \%$
4	.99	$.0 I$	$\mathrm{I} \%$
5	.992	. .008	$.8 \%$
	Average	.9908	.009

Time - Two hours, thirty minutes.

Solution 4.

$$
0.05 \% \text { KCN. } \quad 0.05 \mathrm{oz} . \text { Au. per ton. }
$$

Sample-Assay 0z.per ton-Actual loss in oz.per ton- $\%$ loss.

I	. 048	. 002	4%
2	. 049	. 001	2\%
3	. 048	. 002	4%
4	. 048	. 002	4\%
5	. 048	. 002	4%
Average	. 0482	. 0018	3.6

Time - Two hours, fifty minutes!
The results obtained from this method were fairly accurate but the . $05 \% \mathrm{KCN}$. solution had to be brought
up to at least. 025% KGN. before the lusox would precipitate the values from it. Also the tine for assaying was quite long.

Method 6 - Lindeman's Method.
Solution I.
$0.5 \% \mathrm{KCN}$. I oz. Au. per ton.
Sarple-Assay oz.per ton-Actual loss in oz.per ton- \% loss.

I	. 98	. 02	2%
2	. 982	. 018	I. $\%$
3	. 988	. 018	1. 8%
4	. 984	.016	1.6\%
5	. 982	.098	I. 8%
Average	. 982	. 018	I. 8 \%

Time - Two hours, fifty-five mirutes:
Solution 2.

$$
0.5 \% \mathrm{KCN} . \quad 0.05 \mathrm{oz} . \text { Au. per ton. }
$$

Sample-Assay oz.per ton-Actual loss in oz.per tor $\%$ loss

I	.048	.002	4%
2	.047	.003	6%
3	.047	.003	6%
4	.047	.003	6%
5	.047	.003	6%
Average		.0472	.00.

Time - Thre: hours, fifteten mirutes.

Solution 3.
0.05 K KON . I oz. Au. per ton.

Sample-Assay, oz.per ton-Actual loss ir oz.per ton- -l loss.

I	.98	.02	2%
2	.98	.02	2%
3	.978	.022	2.2%
4	.978	.22	2.2%
5	.98	. .02	2%
Average	.9792	.0208	2.08%

Time - Two hours, fifty-five minutes.
Solution 4. $0.05 \% \mathrm{KCN} . \quad 0.05 \mathrm{oz}$. Au. per ton.
Sample-Assay oz.per ton-Actual loss in oz per ton- loss

I	.044	.006	$I 2 \%$
2	.045	.005	$I 0 \%$
3	.046	.004	8%
4	.047	.003	6%
5	.046	.004	8%
	$\ldots .0$	$\ldots .0$	

Time - Threr hours, fifteen minutes.
The atbrage resultis from this method were lower than
the average from other methods and the time necessary was very long. The buttons all cupelled well and there
was no trouble from copper but for some reason all results obtained were low.

Method 7 - Arent's Method.
Solution I.
0.5% KCN. I oz. Au. per ton.
Sample-Assay oz.per ton-Actual loss in oz', per ton-\% loss.

I	.984	.016	$\mathrm{I} .6 \%$
2	.984	.016	$\mathrm{I} .6 \%$
3	.986	.014	$\mathrm{I} .4 \%$
4	.982	.018	$\mathrm{I} .8 \%$
5	.984	. .016	$\mathrm{I} .6 \%$
Average	.984	.016	$\mathrm{I} .6 \%$

Time - Two hours, fifty minutes.
Solution 2.
$0.5 \% \mathrm{KCN}$. 0.05 oz . Au. per ton.
Sample-Assay oz.per tontActual loss in oz.per ton $\%$ loss.

I	.048	.002	4%
2	.049	.001	2%
3	.048	.002	4%
4	.098	.002	4%
5	.048	.002	4%
Average	.0482	.0018	3.6%
Time - Three hours, ten mirutes.			

-I7-

Solution 3.
0.05% KCN. I oz. Au. per ton.
Sample-Assay oz.per ton-Actual loss ir oz.per ton-\% loss

I	. 984	. 016	I. 6%
2	. 98	. 02	2%
3	. 982	. 018	I. 8%
4	. 982	. 018	I. 8 \%
5	. 982	. 018	I. 8%
Average	. 982	. 018	I. 8%

Time - Two hours, fifty minutes.
Solution 4.
$0.05 \% \mathrm{KCN}$. . 05 oz . Au. per ton.
Sample-Assay 0z.per ton-Actual loss in oz.per ton- \% loss.

I	. 48	. 002	4 \%
2	. 48	. 002	4\%
3	. 48	. 002	4%
4	. 48	. 002	4\%
5	. 49	. 00 I	2%
Average	. 482	. 0018	3.8%

Time - Three hours, ten minutes.
The resulte obtained hy this method vere low and the methods were very lons. The cupellation was food and no trouble of exy kind experienced.

Method 8 - Del Mar's Method. Solution I.

$$
0.5 \% \text { KCN. I oz. Au. per ton. }
$$

Sample-Assay oz.per ton-Actual loss ir oz.per ton- $-\%$ loss

I	.996	.004	0.4%
2	.998	.002	0.2%
3	.996	.004	0.4%
4	.996	.004	0.4%
5	.996	. .004	0.4%
	$-\ldots .$.	.0036	0.36%

Time - Two hours, ten minutes.
Solution 2.
0.5% KCN. $\quad 0.05 \mathrm{oz}$. Au. per ton.
Sample-Assay oz.per ton-Actual loss in oz.per ton- ton.

Solution 3.

$$
0.05 \text {. I oz. Au. per ton. }
$$

sample-Assay oz. per ton-Actual loss in oz.per ton- loss

I	. 996	. 004	0.4\%
2	. 996	. 004	0.4%
3	. 996	. 004	0.4\%
4	. 996	. 004	0.4%
5	. 998	. 002	0.2\%
Average	. 9964	00^{36}	0.3\% \%

Solution 4.

$$
0.05 \% \text { KCr } \quad 0.05 \mathrm{oz} . \text { Au. per ton. }
$$

cample-Assay oz.fer ton-Actual loss ir oz.per ton- loss

I	.048	.002	4
2	.048	.002	4%
3	.048	.002	4%
4	.049	.001	2%
5	.049	.001	2%
	$\ldots-\ldots$.	.0016	3.2%

Time - Two hours, ten minutes.
The results of this method were accurate and no trouble was experienced during the manipulation. The time necessary to filter and fuse added materially to the length of the assay.

The aluminum sulphide was prepared by fusing PSS with aluminum foil in the muffle of the assay furnace and took but a short time.

Method 9 - Precifitation with silver nitrate. Solution I.

$$
0.5 \% \text { KCN. I oz. Au. per ton. }
$$

Sample-Assay oz.per ton-Actual loss in oz.per ton- $\%$ loss

I	.996	.004	0.6%
2	.994	.006	0.4%
3	.994	.006	0.4%
4	.994	.006	0.4%
5	. .994	.006	0.4%
	\ldots	.0056	0.56%

Time - Two hrs, firty minutes.
Solution 2.
0.5 名 KCN. 0.05 oz . Au. per ton.

Sample-Assay oz.per ton-Actual loss in oz.per ton- $\%$ losa.

I	.048	.002	4%
2	.048	.002	4%
3	.048	.002	4%
4	.048	.002	4%
5	.049	-.001	2%
Average	.0482	$\ldots . .$.	$\ldots \ldots$

Time - Two hours, thirty minutes.

Sample-Assay oz.per ton-Actual loss ir oz.per ton-\% loss.

J	. 048	. 002	4\%
2	. 048	. 002	4%
3	. 048	. 002	4%
4	. 047	. 003	6\%
5	. 048	. 002	4%
Average	. 0478	. 0022	4.4

Time - Two hours, thirty minutes.
The results from this method were good but the method is entirely too long. The time necessary to filter being exceptionly long, especially in the case of rich solutions.

Mothod IO - Mohr's Colorometric Mothod. The results obtained from this method were so unreliable that after repeated trials it was evident that in the hands of an unexperianced operator the method was useless.

Method II - Seamon's Method. With Seamon's method no satisfactory results could be obtained. The precipitate formed rapidly but could not be washod from the aluminum foil and after repeated attempts with no different results the method was abandoned.

Conclusions:-
In choosing a method of assaying two vital qualitios must necessarily be taken into consideration, those of accuracy and speed. These two qualities would of course be affected by the person using the method, though if correctly performed the accuracy of the assay would be less affected than the speed, which would vary according to the person making the assay and the conveniences for rapid work he had at his deposal. But in all assays accuracy is the important thing, so the results of my work will first be compared as to accuracy and then as to speed of performance.

The average results of the assays run by each method are:-

Method-Sol.I-\% loss-Sol.2-\% loss-Sol.3-\% loss-Sol. $4-\%$ loss. I $\quad .993 \quad 0.7 \% ~ .0487 \quad 2.6 \% ~ .991 \quad 0.9 \% ~ .0488 \quad 2.4 \%$
$2.987 \mathrm{I} .3 \% \quad .048 \quad 4 \% \quad .986$ I. 4%. $0484 \quad 3.2 \%$
$3.994 \quad 0.6 \%$. $0488 \quad 2.4 \%$. 99 I 0.9%. $0482 \quad 3.6 \%$

4 . $992 \quad 0.8 \% \quad .0484 \quad 3.2 \% \quad .992 \quad 0.8 \%$. $0482 \quad 3.6 \%$
$5.99120 .84 \% .0484 \quad 3.2 \% \quad .99080 .92 \% .0482 \quad 3.6 \%$

6 . 982 I. 8%. 0472 5.6\% . 9792 2.08 \% . 04568.8%
$7.984 \mathrm{I} .6 \%$. $0482 \quad 3.6 \%$. 982 I. 8%. $0482 \quad 3.6 \%$
$8.99640 .36 \% .04823 .6 \%$. $99640.36 \% .04843 .2 \%$
$9.99440 .56 \% .0482 \quad 3.6 \% \quad .9908 \quad 0.92 \% .04784 .4 \%$

10

II

With the exception of one or two these results check fairly closely and the variation is probably due to the manipulation by the assayer and those giving the higher percentage of loss would probably give better results in the hands of a more experienced person.

In the matter of time necessary for the pperation the methods variod widely, some of them taking so long as to be impracticable when many assays are to be made or quick results are required, as will be seen by the following table:-

Mothod. I	Hrs. 0	$\begin{gathered} \text { Min. } \\ 50 \end{gathered}$	Hrs. I	Min. 30	Hrs. 0	Min. 50	Hrs. I	$\begin{aligned} & \text { Min. } \\ & 30 \end{aligned}$
2	0	55	I	10	0	55	I	10
3	2	00	2	30	2	00	2	30
4	2	00	2	30	2	00	2	30
5	2	30	2	50	2	30	2	50
6	2	55	3	I5	2	55	3	15
7	2	50	3	10	2	50	3	10
8	2	10	2	10	2	10	2	10
9	2	50	2	30	2	50	2	30
10	-	--	-	--	-	--	-	--
II	-	--	-	--	-	--	-	--

Dy this table it will be seen that in a case where the time factor must always be taken into consideration only two methods give the requisite speed,Chiddey's and that of ovaporating in a lead dish, and in the case of a poor solution Chiddey's is the more rapid, although it did not give quite so good results for me as did the evaporation in the lead dish.

When taking into account both speed and accuriby these two methods seem far ahead of the others, but it is altogether likely that in the case of making a number of assays each day a person using one of the others methods would as he became more and more proficient in the method cut down the time required to quite an extent.

So, judiging from the results obtained during the work I would say that it is largely a matter of individual taste and the amount of time available as to which method would be used.

BIBTIOGPAPHY

TODGE - A Toxtbook of Ausaying -
Transuctions Arericen Institute of Minine Eneirecers.
Engineoring and Mining Tournal.
Moxioun Mining Jturnal.

