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Abstract. In this paper, Extended Finite Element method (XFEM) is used to model the
embedded coated inclusion composite. The coated inclusion with finite thickness is as-
sociated with two level-set functions, which describe its inside and outside interfaces. A
simple integration rule is employed for numerical quadrature in elements cut by two in-
terfaces. Accuracy and efficiency of the proposed approach are demonstrated through 3D
numerical examples and applied to homogenization of such materials.
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1. INTRODUCTION

In composite engineering problems, thin coatings are often placed between a ma-
trix and an inclusion and show the important role in the effective behavior of a matrix-
inclusion composites [1, 2]. A large number of models of this type based on the frame-
work of micromechanics have been developed in recent years. Some theoretical and ex-
perimental models are studied for inclusions with spherical and cylindrical shapes [3–5]
and for ellipsoidal coated inclusion [6–9]. These studies are limited in the case of sim-
ple inclusion shapes. Numerical techniques allow overcoming these issues but efficient
strategies must be developed to avoid important computational costs, especially in the
case of complex three-dimensional (3D) models. Most of numerical approaches are based
on finite element method [10–13]. It requires sophisticated 3D mesh softwares, and
large computational times related to the meshing operation. Another way is to use
the Fast Fourier Transform method (FFT) without meshing to calculate effective proper-
ties [14,15]. However, a good convergence is only reached with large iterations in the case
of high contrast of matrix-inclusion properties. More recently, XFEM method has been
proposed for modelling and computing the overall properties of embedded coated inclu-
sion composite. A major advantage is to describe the interfaces implicitly through a level
set function, with an enriched approximation of the finite element scheme to add differ-
ent jumps at the interfaces. While Benvenuti [16] simulates the coating as an inclusion
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with an equivalent eigenstrain within XFEM scheme. The studies of Julien, Benvenuti,
Zhu, Gu [17–20] treat also the thin coatings as imperfect interfaces. This paper proposes
simple way to model the coated inclusion with help of two level-set functions, which
describe two interfaces bounding the coating. Additional degrees of freedom (d.o.f.) are
introduced for nodes whose support is cut by more than one interface. The layout of this
paper is as follows.

First, the proposed approach is presented in section 2. In the next section, the
effective conductivity of matrix composite with spherical or arbitrary coated inclusions
is numerically investigated. Some conclusions is finally pointed out in the last section.

2. XFEM/LEVEL-SET FOR MODELLING OF COATED INCLUSION COMPOSITES

Modeling a domain containing interfaces with the finite Element Method (FEM)
requires a mesh conforming with all internal surfaces. This operation may take large
computational time for complex three-dimensional geometries. In contrast, the XFEM
overcomes these issues by enriching the finite element approximation with additional
functions to model interfaces independently of the background mesh.

Consider a domain Ω ⊂ RD (D being the dimension of the domain) which is par-
titioned into finite elements. The XFEM displacement approximation takes the form [21]

Th (x) = ∑
i∈S

Ni (x)Ti +
nint

∑
k

∑
j∈S ek

Nj (x)ψk
(

φk(x)
)

ak
j . (1)

In the above equation, Th is temperature field; ak
j are nodal unknowns. nint is num-

ber of interfaces of coated inclusions. In this paper, we assume nint = 2, corresponding to
inside interface Γ1 and outside interface Γ2 of coated inclusion (see Fig. 1). The proposed
method can be used for modelling of multi-coated inclusion, i.e nint > 2. The nodal set
S ek is defined as

S ek =
{

j|j ∈ S , ωj ∩ Γk 6= 0
}

, (2)

where S ⊂N∗ (N∗) being the set of positive natural numbers) be a set of N nodes indices
in the mesh; ωi = supp(ni) being the support of the nodal shape function Ni, which
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Figure 1: Nodal unknowns at node for an element cut by both inside and
outside interfaces of coated inclusions..

is number of interfaces of coated inclusions. In this paper, we assume nint =

2, corresponding to inside interface Γ1 and outside interface Γ2 of coated

inclusion (see figure 1). The proposed method can be used for modelling of

multi-coated inclusion, i.e nint > 2. The nodal set Sek is defined as

Sek =
{
j|j ∈ S, ωj ∩ Γk 6= 0

}
, (2)

where S ⊂ N∗ (N∗) being the set of positive natural numbers) be a set of

N nodes indices in the mesh; ωi = supp(ni) being the support of the nodal

shape function Ni, which consists of the union of all elements connected

to the node ni. ψk(φk (x)) is an enrichment function constructed via the

level-set function φk of inclusion k with interface Γk:

ψk(φk (x)) =
∑

i

∣∣φk
i

∣∣Ni (x)−
∣∣∣∣∣
∑

i

φk
iNi (x)

∣∣∣∣∣ . (3)

The general level-set function φk takes the form

Γk =
{
x ∈ Rd | φk(x) = 0

}
. (4)

We can opt to choose the signed distance function for φk(x), which is given

in [22]. For a spherical coated inclusion, φk(x) is expressed by

φk (x) = min
{∥∥x− xk

c,i

∥∥− rki
}
, i = 1, 2, ..., nc; (5)
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consists of the union of all elements connected to the node ni. ψk(φk (x)) is an enrichment
function constructed via the level-set function φk of inclusion k with interface Γk

ψk(φk (x)) = ∑
i

∣∣∣φk
i

∣∣∣Ni (x)−
∣∣∣∣∣∑i

φk
i Ni (x)

∣∣∣∣∣ . (3)

The general level-set function φk takes the form

Γk =
{

x ∈ Rd | φk(x) = 0
}

. (4)

We can opt to choose the signed distance function for φk(x), which is given in [21]. For a
spherical coated inclusion, φk(x) is expressed by

φk (x) = min
{∥∥∥x− xk

c,i

∥∥∥− rk
i

}
, i = 1, 2, . . . , nc (5)

with k = 1, 2; φ1 (x), φ2 (x) being level-set function which describe inside and outside
interfaces of coated inclusions, respectively. x1

c,i, x2
c,i are centers of inside interface and

outside interface of coated inclusion i. r1
i , r2

i are inside and outside radii of coated inclu-
sion i. We can model arbitrary inclusion shapes using level-set function defined in [20].
With helps of function φk (x), we can easily to divide the domain Ω into 3 subdomains
Ω =

⋃
(Ωi, Ωm, Ωt) in which Ωi, Ωm, Ωt are defined as (see Fig. 2)





Ωi =
{

x ∈ Ω
∣∣φ1(x) < 0, φ2(x) < 0

}

Ωt =
{

x ∈ Ω
∣∣φ1(x) > 0, φ2(x) < 0

}

Ωm =
{

x ∈ Ω
∣∣φ1(x) > 0, φ2(x) > 0

} (6)
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Figure 2: Level-set functions of a) Γ1 and b) γ2 of circular coated inclusion.
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Ωi = {x ∈ Ω |φ1(x) < 0, φ2(x) < 0}
Ωt = {x ∈ Ω |φ1(x) > 0, φ2(x) < 0}

Ωm = {x ∈ Ω |φ1(x) > 0, φ2(x) > 0}
. (6)

The enriched approximation (1) adds one (or two) additional d.o.fs for

node to describe one (or two) discontinuities presented in a single element, as

depicted schematically in the figure 1. This technique induces the difficulty

on the numerical integration over an element cut by both inside and outside

interfaces. This difficulty relates to the numerical integration on the domain

Ωt as illustrated in the figure 3. To overcome this issue, we propose a simple

integration rule. The idea is to decompose the integration in domain Ω into

subdomains Ωi using a Gauss quadrature rule.
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The enriched approximation (1) adds one (or two) additional d.o.fs for node to
describe one (or two) discontinuities presented in a single element, as depicted schemat-
ically in Fig. 1. This technique induces the difficulty on the numerical integration over an
element cut by both inside and outside interfaces. This difficulty relates to the numerical
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Figure 3: A tetrahedral element cut by both inside and outside interfaces
and partitioning of the element domain into subdomains Ωi, Ωt and Ωm.

f (x) =





fi (x) if x ∈ Ωi

ft (x) if x ∈ Ωt

fm (x) if x ∈ Ωm

. (7)

where the function fi (x), ft (x) and fm (x) are associated with the inclusions,

interfacial domain and matrix materials, respectively. We can decompose this

integration into

∫

Ω

f (x)dΩ =

∫

Ωt

ft (x) dΩ +

∫

Ωm

fm (x)dΩ +

∫

Ωi

fi (x)dΩ. (8)

To overcome numerical difficulties related to the integration of ft (x) over the

domain Ωt, we use a simple superposition technique as follows:

∫

Ωt

ft(x) dΩ =

∫

Ω

ft(x) dΩ−
∫

Ωm

ft (x)dΩ +

∫

Ωi

ft (x)dΩ, (9)

where ft : Ω ⊂ Rd → R is extended over the domain Ω.

By introducing the above formula into Eq. (8), the integration of f(x)

over the tetrahedral domain is expressed as:

∫

Ω

f (x) dΩ =

∫

Ω

ft(x) dΩ +

∫

Ωi

(fi (x)− ft(x)) dΩ +

∫

Ωm

(fm (x)− ft(x)) dΩ.

(10)
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integration on the domain Ωt as illustrated in Fig. 3. To overcome this issue, we propose
a simple integration rule. The idea is to decompose the integration in domain Ω into
subdomains Ωi using a Gauss quadrature rule.
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fi (x) , if x ∈ Ωi
ft (x) , if x ∈ Ωt
fm (x) , if x ∈ Ωm

(7)

where the function fi (x), ft (x) and fm (x) are associated with the inclusions, interfacial
domain and matrix materials, respectively. We can decompose this integration into

∫

Ω

f (x)dΩ =
∫

Ωt

ft (x) dΩ +
∫

Ωm

fm (x)dΩ +
∫

Ωi

fi (x)dΩ. (8)

To overcome numerical difficulties related to the integration of ft (x) over the domain Ωt,
we use a simple superposition technique as follows

∫

Ωt

ft(x) dΩ =
∫

Ω

ft(x) dΩ−
∫

Ωm

ft (x)dΩ +
∫

Ωi

ft (x)dΩ, (9)

where ft : Ω ⊂ Rd → R is extended over the domain Ω.
By introducing the above formula into Eq. (8), the integration of f (x) over the

tetrahedral domain is expressed as
∫

Ω

f (x) dΩ =
∫

Ω

ft(x) dΩ +
∫

Ωi

( fi (x)− ft(x)) dΩ +
∫

Ωm

( fm (x)− ft(x)) dΩ. (10)

All integrations of right-hand Eq. (10) can be easily calculated, as Ωm(Ωi) are com-
posed of only a few tetrahedra. Then it only requires: (i) constructing intersections be-
tween the element Ωe and the linear approximations of level-set functions φk; (ii) parti-
tioning the domains Ωm(Ωi) into tetrahedra. The intersection points xp are given by

xp = xi + ξ(xj − xi), ξ = − φk
i

φk
j − φk

i
, (11)
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Figure 4: Three possibilities for subdivision of subdomains Ωi into tetrahedra.

All integrations of right-hand Eq.(10) can be easily calculated, as Ωm(Ωi)

are composed of only a few tetrahedra. Then it only requires: (i) constructing

intersections between the element Ωe and the linear approximations of level-

set functions φk; (ii) partitioning the domains Ωm(Ωi) into tetrahedra. The

intersection points xp are given by:

xp = xi + ξ(xj − xi), ξ = − φk
i

φk
j − φk

i

, (11)

where xj are two edge points of an element, φk
i and φk

j are values of the

level-set function of interface Γk at the points xi, and xj. Once the domains

Ωm(Ωi) are constructed, the subdivision of Ωm(Ωi) into tetrahedra is easily

obtained as illustrated in the figure 4. The gray tetrahedra belong to domains

Ωm(Ωi).

3. NUMERICAL EXAMPLES FOR EFFECTIVE CONDUCTIVITY

The field equations of thermo-static problem are given by:

∇ · q(x)− r(x) = 0 in Ω, (12)

q(x) = −C(x)∇T (x). (13)

Above, q(x) denotes the heat flux, r(x) is a heat source term and c(x)

the conductivity tensor. C(x) is local conductivity and given by:
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where xj are two edge points of an element, φk
i and φk

j are values of the level-set function
of interface Γk at the points xi, and xj. Once the domains Ωm(Ωi) are constructed, the
subdivision of Ωm(Ωi) into tetrahedra is easily obtained as illustrated in Fig. 4. The gray
tetrahedra belong to domains Ωm(Ωi).

3. NUMERICAL EXAMPLES FOR EFFECTIVE CONDUCTIVITY

The field equations of thermo-static problem are given by

∇ · q(x)− r(x) = 0 in Ω, (12)

q(x) = −C(x)∇T(x). (13)

Above, q(x) denotes the heat flux, r(x) is a heat source term and c(x) the conduc-
tivity tensor. C(x) is local conductivity and given by

C (x) =





Ci (x) , if x ∈ Ωi
Ct (x) , if x ∈ Ωt
Cm (x) , if x ∈ Ωm

(14)

Using XFEM/Level-set procedure, one finds the discrete system of linear ordinary
equations

KD = Q, D=
{

T a
}T, (15)

where D are nodal unknowns, K and Q are the global stiffness matrix and external flux,
respectively. More precisely, the matrix K and vector Q are defined by

K =
∫

Ω

BTC(x)BdΩ, Q=
∫

Ω
NTrdΩ, (16)

where B and N are the matrices of shape function derivatives and shape functions asso-
ciated with the approximation scheme 1.

As the first example, we consider a spherical coated inclusion of inside radius r1
and exterior radius r2, embedded in a cubic box of L× L× L dimension (see Fig. 5(a)).
The effective conductivity of composite ce f f is computed by using proposed approach. A
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convergence analysis is carried out, using different meshes with increasing nodal densi-
ties associated with a characteristic element size h. This spherical composite is submitted
to a homogeneous temperature gradient field

T = T̄ = −e0x, (17)

on its boundary with e0 being a constant vector. The effective conductivity is given by
the following relationship

〈q (x)〉Ω = −ce f f∇〈T (x)〉Ω , (18)

where 〈•〉 denotes the volume average on Ω of an object. We note that with the boundary
condition (17), we have 〈T (x)〉Ω = −e0. Once we have temperature field, the left-hand-
side of Eq. (18) can be computed as follows

〈q (x)〉Ω =
1
V

∫

Ω
C (x)∇T (x) dΩ, (19)

where V is volume of domain Ω.
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Figure 5: a) A spherical coated inclusion embedded in a cubic box; b) Con-
vergence of the effective conductivity versus the total number of d.o.f.

〈q(x)〉Ω =
1

V

∫

Ω

C(x)∇T(x)dΩ; (19)

where V is volume of domain Ω.

To test our numerical procedure, we compare the XFEM solution and

the FEM one with fine mesh. The cubic domain is meshed with tetrahedra

for both FEM and XFEM method. While the FEM method use a mesh

conforming with spherical interface, the XFEM method use a regular mesh

to define implicitly spherical inclusion. Numerical parameters is taken as

follow: Cm = 1 W.m−1.K−1, Ct = 10 W.m−1.K−1, Ci = 100 W.m−1.K−1,

r1 = 0.3L, r2 = 0.33L. The effective conductivity of spherical composite is

plotted in figure 5.a. An excellent agreement between the XFEM solution

and the FEM one is obtained.

We now change the radius of sphere to investigate effects of inclusion

volume fraction Vi on the effective conductivity. By using full our computer

resource, the result of XFEM, FEM and FFT [15] are shown in the figure 6.

The XFEM method seem to give better result then FFT method as compared

as FEM method.

In the second example, we consider a random spherical coated composite
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Fig. 5. a) A spherical coated inclusion embedded in a cubic box; b) Convergence
of the effective conductivity versus the total number of d.o.f.

To test our numerical procedure, we compare the XFEM solution and the FEM one
with fine mesh. The cubic domain is meshed with tetrahedra for both FEM and XFEM
method. While the FEM method use a mesh conforming with spherical interface, the
XFEM method use a regular mesh to define implicitly spherical inclusion. Numerical
parameters are taken as follows: Cm = 1 Wm−1K−1, Ct = 10 Wm−1K−1, Ci = 100
Wm−1K−1, r1 = 0.3L, r2 = 0.33L. The effective conductivity of spherical composite is
plotted in Fig. 5(b). An excellent agreement between the XFEM solution and the FEM
one is obtained.
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We now change the radius of sphere to investigate effects of inclusion volume frac-
tion Vi on the effective conductivity. By using full our computer resource, the result of
XFEM, FEM and FFT [15] are shown in Fig. 6. The XFEM method seem to give better
result then FFT method as compared as FEM method.
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Figure 6: Effect of inclusion volume fraction on the effective conductivity.
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In the second example, we consider a random spherical coated composite as de-
picted in Fig. 7. The composite contain 40 random inclusions with minimal and maximal
exterior radii rmax

2 = 0.3250L and rmin
2 = 0.0859L; L being the dimension of cubic. The

interior radii are taken as r1 = 0.85r2. The minimum distance between coated inclu-
sions is 0.0398L. The total volume fraction of inclusions, coating domain and matrix are
Vi = 0.2228, Vt = 0.1331 and Vm = 0.6441, respectively. The purpose of this example is to
compute the effective conductivity associated with the homogenized material. The ma-
terial parameters are taken the same as previous example. The convergence analysis of
results is shown in Fig. 8. A good agreement between FEM and XFEM is observed. These
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Fig. 8. Convergence of the effective conductivity versus the total number of d.o.f.

results are obtained with help a super computer of 400GB RAM and 32 cores of LMT
lab Cachan University - France. For using the full computational power of the machine,
we code the program in MATLAB with parallel technique to take advantage of multicore
and multiprocessor computers.

We can notice that the FEM method converges faster than proposed method but it
is not easy to obtain the conforming mesh of FEM with complex microstructure. The com-
putational cost using XFEM on Matlab is higher than FEM when the conforming mesh of
FEM is provided. The computational time of FEM contain two parts: time to create the
conforming mesh in Ansys software and time to run code on Matlab platform. This is
illustrated by a recent statement of Ted Blacker, manager of simulation sciences at Sandia
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sions ; b) Convergence of the effective conductivity versus the total number
of d.o.f.

mesh in Ansys software and time to run code on Matlab platform. This

is illustrated by a recent statement of Ted Blacker, manager of simulation

sciences at Sandia National Laboratories, who reports in [23] that common

industrial experience attributes 80% of the overall analysis time to the trans-

fer of a complex geometric model into an analysis suitable discretization and

only 20% to finite element analysis itself. More complex geometric model

requires more time to create the conforming mesh. Furthermore, in case of

r1 < 0.85r2 in the second example, while XFEM gives good results with

regular mesh, Ansys can not create the conforming mesh for finite element

analysis because of too thin interfacial domain.

In the third example, we create a random overlapped coated inclusion

(figure 9.a) by changing only radius of some inclusions in the second test.

The minimal and maximal exterior radii are given by rmax
2 =0.3250L and

rmin
2 =0.13L. The proposed method works well while FFT can not treat

overlapped domain of spheres and it is very difficult to create conforming

FEM mesh for this case. The effective conductivity versus the total number

of d.o.f. is graphically presented in the figure 9.b.
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National Laboratories, who reports in [22] that common industrial experience attributes
80% of the overall analysis time to the transfer of a complex geometric model into an
analysis suitable discretization and only 20% to finite element analysis itself. More com-
plex geometric model requires more time to create the conforming mesh. Furthermore,
in case of r1 < 0.85r2 in the second example, while XFEM gives good results with regular
mesh, Ansys can not create the conforming mesh for finite element analysis because of
too thin interfacial domain. In the third example, we create a random overlapped coated
inclusion (Fig. 9(a)) by changing only radius of some inclusions in the second test. The
minimal and maximal exterior radii are given by rmax

2 = 0.3250L and rmin
2 = 0.13L. The

proposed method works well while FFT can not treat overlapped domain of spheres and
it is very difficult to create conforming FEM mesh for this case. The effective conductivity
versus the total number of d.o.f. is graphically presented in Fig. 9(b).

4. CONCLUSION

We have shown in this paper a XFEM/level-set procedure which is suitable for the
numerical computation of the effective thermal conductivities of coated composites. The
proposed method that use multiple level-set functions to describe interfaces of coated
inclusions and additional d.o.f. are introduced. The numerical examples show a excellent
agreement between the proposed scheme and the FEM one. The proposed method can
be extended to the case of multi-coated inclusions.

ACKNOWLEDGEMENT

This research is funded by Vietnam National Foundation for Science and Technol-
ogy Development (NAFOSTED) under grant number 107.02-2014.08.

REFERENCES

[1] K. Suganuma, T. Okamoto, M. Koizljmi, and M. Shimada. Effect of interlayers in ceramic-
metal joints with thermal expansion mismatches. Journal of the American Ceramic Society, 67,
(12), (1984), pp. 256–257. doi:10.1111/j.1151-2916.1984.tb19688.x.
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