Design of a concrete-steel highway bridge for Dry Fork Crossing, Salem Road, Phelps County, Mo.

Edward V. Damotte

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Civil Engineering Commons
Department: Civil, Architectural and Environmental Engineering

Recommended Citation

Damotte, Edward V., "Design of a concrete-steel highway bridge for Dry Fork Crossing, Salem Road, Phelps County, Mo." (1916). Bachelors Theses. 112.
https://scholarsmine.mst.edu/bachelors_theses/112

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

$$
7369
$$

DESIGN OF A CONORETAMSPEQG HIGHMAY BRIDGE
 for
 Dry Fork Orossing-Salem Road

Phelps Co. MO.
By
EdFard V.Damotte
A

THESIS

Submitted to the faculty of the

SCHOOL OF MINES AND MEPALLORGY OF PHE UNIVERSITY OF MISSOURI
in partial fulfillment of the work required for the

DEGREG OF

Rolla Mo.
1916.

18509

Design Of A Concrete Steel Highway Bridge For Dry Fork Crossing - Salem Road

Data
Clear Roadway = 16 feet.
5 Spans, clear 100 feet.
Live load, 16 Ton Road Engine, $2 / 3$ weight on one axel or $12 j \mathrm{lbs}$. per sift. of surface. Dead load, Concrete as hereafter determined plus 8 inches of gravel.
${ }^{f}=16000$ lbs per sain. $f_{c}=j 00$ lbs per sain. $\mathrm{n}=15$ -. 002

The above symbols are in general use.

Procedure

The load conveyed to the floor slab from each large wheel equals 10700 lbs . and from each small wheels 5330 lbs. The weight of the slab: per sift. assuming 8 inches thickness Which is safe equals 100 lbs. per sqft. The weight of gravel 8 inches in thickness equals 67 los.

(2)

Total weight per sqft.equals 166 lbs. say 170 lbs.

Considering a strip 1 foot wide as a beam between two supports floor slab between longitudinal T girders, seo Plats 6 等ypa 4 for dimensions,

$$
\begin{gathered}
M=\frac{1 \times 12 \times 53 j 0}{4}+\frac{170 \times 8 \times 8 \times 12}{8} \\
=80520 \mathrm{in} .1 \mathrm{ss} .
\end{gathered}
$$

Solving for stael area useing the approximate formulae derived in Turneaure and Marer, Art. 54 , formulae 3^{\prime}.

$$
\begin{aligned}
& A_{S}=\frac{80520}{16000 \times 778 \times 8} \\
& A_{s}=.72 \text { sqin. steel. }
\end{aligned}
$$

Cantilevere projections of floor slabs.

The cantilevers are 42 inches in lengths as shown in Plate 6 Type 4. But the load can only act out a distance of 20 inches. The moment then becomes.
$M_{L . L} * M_{D . L}$.
$=\frac{5000 \times 20}{1}+\frac{400 \times 20}{1}$
$=108000 \mathrm{in} .1 \mathrm{bs}$.

$$
A_{s}=-\frac{108000}{16000 \times 7 / 8 \times-9}
$$

$$
A_{s}=.96 . \text { sin. steel. }
$$

For the lateral slab reinforcement $3-5 / 8^{\text {n }}$ round rods will be used.

Longitudinal T Beams.

The Total dead load equals 3000 lbs. per foot.

The moment then equals;

$$
\begin{aligned}
& M_{D_{0} L_{*}}=-\frac{W^{2}}{8} \\
& M_{D_{0} L_{0}}=-\frac{3000 \times 20 \times 20 \times 12}{8} \\
& M_{D_{0} L_{0}}=1800000 \text { in. lbs. }
\end{aligned}
$$

Live load equals 125 lbs . per sift. Total load then equals 40000 lbs. or 20000 lbs. over one bean.

$$
\begin{aligned}
W_{L_{*} L_{*}} & =-20000 \times 20 \times 12 \\
M_{U_{*} L_{*}} & =600000 \text { in. lbs. } \\
W_{D_{*} L_{*}}+M_{L_{*} L_{*}} & =2400000 \text { in. } 1 \mathrm{bs}
\end{aligned}
$$

Useing a 32 in. bean with d equals 28 inches and solving for the arsa of steel.

$$
\begin{aligned}
& A_{s}=-\frac{M}{f} \frac{M}{j d} . \\
& A_{s}=-16000 \times 2400000 \\
& A_{s}=5-35 \text { sqin. steel. }
\end{aligned}
$$

Tor T beam reinforcement $8-7 / 8^{\prime \prime}$ square rods will be used.

> Estimate Gost

Ooncrete --*- 17.8 cuyds. $\$.7 .00=\$ 89.00$
Stael $\times-m-m-22281 b s .0 .045=\frac{100.00}{189.00}$

Super Structare j Spans - -mmom-m-memen $=$ \$ 946.90

Piers And Abutments

4 Piers $17^{\prime} \times 15^{\prime} \times 2^{\prime}$ are to be used.

2 Abutments $1^{\prime \prime} \times 1^{\prime \prime} \times 2^{1}$ are to be used.

```
Gonerete --m-111.2 cuyds. $ 5,00 = $ 556.00
```


Hing Falls

The wing walls are considered as a vertical slab fixed at both ends. Desiging each foot as a beam fixed at both ends.

Thoformulae:-

$$
M=1 / 18 \mathrm{~m}^{3} \text { as derived }
$$

by Turneau and Marier page 372 , was used.

The detail pf the placing of the rods is shown in the detail Drawings, Plate 8.

(6)

The slab is 9 inches thick and has a footing of 18 inches. 1-1/2" round rod is placed vertically each foot in the wall to prevent unsightly horizontal eracks. The horizontal reinforcement extends into the abutment. 18 inches as shown.

Estimate

Total Cost
Superstructure $--\$ \$ 96.00$
Piers and Abutments $\$ 556.00$
Concrete and Steel in place $=\$ 1918.00$

Note:-
The above estimate does not include excavating and filling.

A study was made of 3 different types of reinforced concrete. The investigation was conducted in the same manger as the above:

(7)

Useing the same data and investigating with a: 25 faot span. The follesting results mere obtained.

Type 1.PIate 3.
Guyds. Conerete $=32$, $3.00=\$ 160.00$ Steel in lbs. $\quad 2422.4$. $045=-\frac{\$ 109.00}{269.00}$ Total 4 spans $=\$ 1076.00$

Type 2. Plate 4.

Cuyds. Conorete 24.2 万. $00=\$ 121.00$
Stesl in 1bs. 4664 . $045=\frac{\$ 211.00}{\$.332 .00}$.
Total 4 spans $=\$ 1428.00$

Type 3. Plate 5.

Cuyds. Conerete 20 (5i00 $=\$ 100.00$
Steel in lbs 5678 . $045=0.255 .50$.
Tptal 4 spans $=\$ 1422.00$

It will be noted that Type 1 Plate 3 is the more econemical. A further iquestigation useing a 20 fopt
gives the follping results.

(8)

Type. $/$. Plate 6.

Juyds. ooncrete - -17.8 (3.00 $=\$ 89.00$
Steel in los. $2228.04 j=\frac{\$ 100.00}{\$ 189.00}$
Total $\overline{2}$ spans $=\$ 946.00$

The additional cost of the extra pier equals
18.5 cuyds. concrets $5.00=\$ 2.50$.

Adding this to the total cost of the super structure gives $\$ 1038.75$ whiah is lower than Type 1. Plate 3.

The following designs and drauings are based
apon the above figures.

