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Abstract. Buckling and postbuckling behaviors of nanocomposite cylindrical shells rein-
forced by single walled carbon nanotubes (SWCNTs), surrounded by an elastic medium,
exposed to a thermal environment and subjected to uniform axial compression are inves-
tigated in this paper. Material properties of carbon nanotubes (CNTs) and isotropic matrix
are assumed to be temperature dependent, and effective properties of nanocomposite are
estimated by extended rule of mixture. The CNTs are embedded into matrix via uni-
form distribution (UD) or functionally graded (FG) distribution along the thickness direc-
tion. Governing equations are based on Donnell classical shell theory taking into account
von Karman-Donnell nonlinear terms and interaction between the shell and surround-
ing elastic medium. Three-term form of deflection and stress function are assumed to
satisfy simply supported boundary conditions and Galerkin method is applied to obtain
load-deflection relation from which buckling and postbuckling behaviors are analyzed.
Numerical examples are carried out to analyze the effects of CNT volume fraction and
distribution types, geometrical ratios, environment temperature and surrounding elastic
foundation on the buckling loads and postbuckling strength of nanocomposite cylindrical
shells.

Keywords: CNT-reinforced composite; nanocomposite cylindrical shell; nonlinear stability;
axial compression; elastic foundation.

1. INTRODUCTION

Carbon nanotubes (CNTs) have attracted huge attention in most areas of science and
engineering due to their exceptional physical and mechanical properties. Single walled
carbon nanotube (SWCNT) is a cylinder with diameter of order of 1 nm and length of
up to centimeters and formed by seamless rolling a single sheet of graphene. No previ-
ous material has displayed extraordinary mechanical, thermal and electrical properties as
CNTs. For example, the elastic modulus of SWCNT is approximately 1 TPa, the strength
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of SWCNT up to 3.5 GPa, i.e. much higher than that of high-strength steel (2 GPa), and
SWCNT has stability at tremendously high temperature up to 2800◦C in vacuum and
750◦C in air, etc [1,2]. In addition to these excellent characteristics, very high aspect ratio
makes CNTs ideal as advanced reinforcing fillers into composites. Carbon nanotube re-
inforced composite (CNTRC) is a brilliant nanocomposite having numerous applications
in most engineering areas and industries [3,4]. The CNT and CNTRC also have potential
roles and expected applications for future generation of aircraft and space vehicles [5].

Motivated by concept of functionally graded material, Shen [6] first proposed func-
tionally graded carbon nanotube reinforced composite (FG-CNTRC) properties of which
are varied along the thickness direction according to functional rules to aim optimal dis-
tribution of CNTs and obtain desired response of nanocomposite structures. Stimulated
by Shen’s proposal, subsequent works relating to static and dynamic responses of FG-
CNTRC plates and shells have been performed. Bending behavior of FG-CNTRC plates
have been addressed in works [7, 8] based on numerical methods and [9, 10] using ana-
lytical methods. Linear buckling response of FG-CNTRC plates has been investigated
in works [9] and [11] making use of analytical and semi-analytical solutions, respec-
tively. Liew and co-workers [12, 13] analyzed linear buckling of FG-CNTRC rectangu-
lar and skew plates under compressive loads by using mesh-free methods. Postbuck-
ling problem of FG-CNTRC plates under thermal loads has been treated by Shen and
Zhang [14] basing on a two-step perturbation technique, Kiani [15] utilizing Ritz method
and Tung [16] using Galerkin method. Mechanical postbuckling of FG-CNTRC plates on
elastic foundations under compression has been studied by Zhang and Liew [17] using
an element-free approach.

Buckling and postbuckling behaviors of composite cylindrical panels reinforced by
CNTs have been mentioned in some works. Nasihatgozar et al. [18] employed analytical
solutions to analyze linear buckling of FG-CNTRC cylindrical panels with piezoelectric
layers under axial compression. Linear buckling behavior of FG-CNTRC cylindrical pan-
els under axial compression and shear loads has been examined by Macias et al. [19]
basing on numerical simulation with shell finite elements. Nonlinear stability problem
of axially compressed FG-CNTRC cylindrical panels has been dealt with by Shen and
Xiang [20] employing a semi-analytical method and Liew et al. [21] using a meshless
method. Shen and Xiang [22] and Shen [23] presented studies on postbuckling of FG-
CNTRC cylindrical panels subjected to thermal load and external pressure, respectively.
Recently, Trang and Tung [24,25] considered the effects of tangential restraints of bound-
ary edges on the nonlinear stability of FG-CNTRC cylindrical panels under axial com-
pression and external pressure in thermal environments.

Stability problem of closed shells such as FG-CNTRC circular cylindrical and conical
shells has been addressed in some works. Based on a higher order shear deformation
theory and a singular perturbation technique, buckling and postbuckling behaviors of
FG-CNTRC cylindrical shells subjected to axial compression, external pressure and com-
bined load have been investigated by Shen [26,27] and Shen and Xiang [28], respectively.
By using a similar approach, Shen [29, 30] conducted results of postbuckling analysis for
FG-CNTRC cylindrical shells subjected to torsional and thermal loadings, respectively.
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Based on Ritz energy approach, Ansari et al. [31] presented an analytical study on post-
buckling behavior of FG-CNTRC cylindrical shells under axial compression and pressure
loads. Ninh [32] used Galerkin method to investigate the postbuckling of FG-CNTRC
cylindrical shells under torsional loading in thermal environment. Three-term solution
of deflection and piezoelectric layers are taken into consideration in these works [31, 32].
Linear buckling of FG-CNTRC conical shells under external pressure and thermal load-
ing has been considered in works of Kiani and collaborators [33,34] making use of a semi-
analytical approach. Mehri et al. [35] utilized harmonic differential quadrature method to
solve buckling and vibration problems of FG-CNTRC truncated conical shells subjected
to external pressure and axial compression simultaneously. Basing on a numerical ap-
proach with generalized differential quadrature method, Ansari and Torabi [36] studied
the buckling and vibration of FG-CNTRC conical shells under axial compression.

Cylindrical shells are widely used in practical applications and appearance of carbon
nanotubes augmented the potential applications of nanocomposite structures, especially
nanocomposite cylindrical shells reinforced single-walled carbon nanotubes. Specifically,
nanocomposite cylindrical shells are used in energy storage, mechanical systems and
pressure pipes. Furthermore, nanocomposite cylindrical shells are expected to have po-
tential applications in aerospace engineering [5]. The present study aims to investigate
the buckling and postbuckling behaviors of cylindrical shells reinforced by single walled
carbon nanotube (SWCNT), exposed to a thermal environment, surrounded by an elastic
medium and mechanically loaded by uniform axial compression. Material properties are
assumed to be temperature dependent, and effective properties of CNTRC are estimated
through a micromechanical model based on the extended rule of mixture. CNTs are em-
bedded into matrix phase through uniform distribution (UD) or functionally graded (FG)
distribution. Basic equations are based on the classical shell theory incorporating von
Karman-Donnell nonlinearity and foundation interaction according to Pasternak model.
Three-term solution of deflection is assumed to satisfy simply supported boundary con-
ditions and Galerkin method is applied to obtain nonlinear load-deflection relation from
which buckling loads and postbuckling load-deflection curves are determined. Numer-
ical examples are carried out to examine the effects of CNT volume fraction and dis-
tribution types, thermal environments, geometrical parameters and surrounding elastic
medium on the nonlinear stability of axially loaded CNTRC cylindrical shells. The nov-
elty of the present study results from an analytical approach with three-term solution
of deflection and taking into account shell-surrounding elastic foundation interaction in
analysis.

2. CNT-REINFORCED COMPOSITE CYLINDRICAL SHELL SURROUNDED BY
AN ELASTIC MEDIUM

Consider a nanocomposite cylindrical shell reinforced by SWCNTs, surrounded by
an elastic medium modelled as a two-parameter elastic foundation and defined in a coor-
dinate system xyz origin of which is located on the middle surface at an end, x and y are
in axial and circumferential directions, respectively, and z is perpendicular to the middle
surface as shown in Fig. 1. The length, radius and thickness of the cylindrical shell are
denoted by L, R and h, respectively.
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directions, respectively, and  is perpendicular to the middle surface as shown in Fig. 1. The length, 

radius and thickness of the cylindrical shell are denoted by ,  and , respectively.  

 

Fig. 1 Configuration and coordinate system of a cylindrical shell surrounded by an elastic medium.  

In this study, SWCNTs are reinforced into isotropic polymer matrix by uniform distribution 
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and extended rule of mixture is applied to determine effective Young moduli and shear modulus of 
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Fig. 1. Configuration and coordinate system of a cylindrical shell surrounded
by an elastic medium

In this study, SWCNTs are reinforced into isotropic polymer matrix by uniform dis-
tribution (UD) or four functionally graded (FG) distributions named as FG-V, FG-Λ, FG-
O and FG-X types and extended rule of mixture is applied to determine effective Young
moduli and shear modulus of the CNTRC shell as [6]

E11 = η1VCNTECNT
11 + VmEm ,

η2

E22
=

VCNT

ECNT
22

+
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Em ,

η3

G12
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VCNT

GCNT
12

+
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(1)

where ECNT
11 , ECNT

22 and GCNT
12 are the Young moduli and shear modulus, respectively, of

the CNT, whereas Em and Gm are Young and shear moduli, respectively, of the isotropic
matrix. Coefficients ηj (j = 1, 2, 3), called the CNT efficiency parameters, are introduced
into Eqs. (1) to consider the size-dependent material properties, whereas VCNT and Vm
are the volume fractions of CNTs and matrix, respectively, and their relation is VCNT +
Vm = 1.

The volume fraction VCNT for five types of CNT distribution is assumed as
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where

V∗CNT =
wCNT

wCNT + (ρCNT/ρm) (1− wCNT)
, (3)

in which wCNT is the mass fraction of CNTs in the CNTRC shell, ρCNT and ρm are the den-
sities of the CNTs and matrix, respectively. Poisson ratio depending weakly on position
and temperature can be determined by

ν12 = V∗CNTνCNT
12 + Vmνm , (4)

where νCNT
12 and νm are Poisson ratios of the CNT and matrix, respectively. The coeffi-

cients of thermal expansion of the CNTRC in the longitudinal and transverse directions
have the form as [6, 14]

α11 = VCNTαCNT
11 + Vmαm ,

α22 =
(

1 + νCNT
12

)
VCNTαCNT

22 + (1 + νm)Vmαm − ν12α11 ,
(5)

where αCNT
11 , αCNT

22 and αm are thermal expansion coefficients, respectively, of the CNT and
isotropic matrix and, evidently, α11 and α22 are also graded in the thickness direction.

3. FORMULATIONS

Based on the classical shell theory (CST), strain components are expressed as

εx = εx0 + zχx , εy = εy0 + zχy , γxy = γxy0 + 2zχxy , (6)

where strains of middle surface εx0, εy0, γxy0 and curvature changes χx, χy, χxy are re-
lated to displacements of middle surface u, v, w in coordinate directions x, y, z, respec-
tively, as follows εx0

εy0
γxy0

 =

 u,x + w2
,x/2

v,y − w/R + w2
,y/2

u,y + v,x + w,xw,y

 ,

 χx
χy
χxy

 =

 −w,xx
−w,yy
−w,xy

 , (7)

where subscript prime indicates partial derivative and von Karman-Donnell nonlinear
terms are retained.

Next, stress-strain relations of CNTRC shell are expressed as σx
σy
σxy

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 εx
εy

γxy

−
 α11

α22
0

∆T

 , (8)

where

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q66 = G12 , (9)

and ∆T is uniform temperature rise from thermal stress free initial state.
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Based on the CST, force and moment resultants are expressed as

(Nx, Mx)=(e11, e12) εx0+ν21 (e11, e12) εy0+(e12, e13) χx+ν21 (e12, e13) χy−(e11T, e12T)∆T,(
Ny, My

)
=ν12 (e21, e22) εx0+(e21, e22) εy0+ν12 (e22, e23) χx+(e22, e23) χy−(e21T, e22T)∆T,(

Nxy, Mxy
)
= (e31, e32) γxy0 + 2 (e32, e33) χxy ,

(10)
where

(e11, e12, e13) =

h/2∫
−h/2

Q11
(
1, z, z2)dz,

(e21, e22, e23) =

h/2∫
−h/2

Q22
(
1, z, z2)dz, (e31, e32, e33) =

h/2∫
−h/2

Q66
(
1, z, z2)dz,

(e11T, e12T) =

h/2∫
−h/2

Q11 (α11 + ν21α22) (1, z)dz, (e21T, e22T) =

h/2∫
−h/2

Q22 (ν12α11 + α22) (1, z)dz.

(11)
Based on the CST, nonlinear equilibrium equations for a cylindrical shell surrounded

by an elastic medium are

Nx,x + Nxy,y = 0,
Nxy,x + Ny,y = 0,

Mx,xx + 2Mxy,xy + My,yy + Nxw,xx + 2Nxyw,xy + Nyw,yy + Ny/R− q f = 0,
(12)

where q f is interactive pressure resulting from surrounding elastic medium and repre-
sented by Pasternak model as

q f = k1w− k2∆w, (13)

in which k1 is Winkler foundation modulus, k2 is stiffness of shear layer in Pasternak
model and ∆ = ∂2/∂x2 + ∂2/∂y2 is Laplace operator.

From Eqs. (7) and (10), equilibrium equation of CNTRC cylindrical shell is rewritten
in the form as

a11w,xxxx + a21w,yyyy + a31w,xxyy + a41 f,xxyy − f,yyw,xx + 2 f,xyw,xy

− f,xxw,yy −
f,xx

R
+ k1w− k2

(
w,xx + w,yy

)
= 0,

(14)

where f (x, y) is a stress function defined as

Nx = f,yy , Ny = f,xx , Nxy = − f,xy , (15)

and coefficients a11, a21, a31, a41 are given as in the work [16].
Subsequently, strain compatibility equation of a cylindrical shell has the form as

εx0,yy + εy0,xx − γxy0,xy = w2
,xy − w,xxw,yy − w,xx/R. (16)
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By virtue of Eqs. (7), (10) and (15), the strain compatibility equation of a geometri-
cally perfect CNTRC cylindrical shell is written in the form

a12 f,xxxx+a22 f,xxyy+a32 f,yyyy+a42w,xxxx+a52w,xxyy+a62w,yyyy−w2
,xy+w,xxw,yy+

w,xx

R
= 0,
(17)

where coefficients ai2 (i = 1÷ 6) have been defined in the works [24, 25].
The present study considers simply supported CNTRC cylindrical shells with freely

movable edges and the associated boundary conditions are expressed as

w = 0, Mx = 0, Nxy = 0, Nx = Nx0 at x = 0, L (18)

where Nx0 = −Ph is prebuckling force resultant in which P is axial pressure uniformly
compressed on two boundary surfaces of cylindrical shell.

To satisfy approximately boundary conditions (18), the following solutions of deflec-
tion and stress function are assumed [31, 37–39]

w (x, y) = W0 + W1 sin βmx sin δny + W2 sin2 βmx, (19)

f (x, y) = A1 cos 2βmx + A2 cos 2δny + A3 sin βmx sin δny

+ A4 sin 3βmx sin δny− σ0yh
x2

2
+ Nx0

y2

2
,

(20)

where βm = mπ/L, δn = n/R with m, n are numbers of half wave and full wave in
axial and circumferential directions, respectively, W0, W1 and W2 are unknown ampli-
tudes corresponding to prebuckling, linear buckling and nonlinear buckling states of the
deflection, respectively. In addition, in Eq. (20), σ0y is average stress in circumferential
direction and Ai (i = 1÷ 4) are coefficients to be determined.

Next, introduction of solutions (19) and (20) into the compatibility equation (17)
gives the following results

A1 =
1

32a12β2
m

(
δ2

nW2
1 + 16a42β2

mW2 −
4
R

W2

)
, A2 =

β2
mW2

1
32a32δ2

n
,

A3 =
W1

a12β4
m + a22β2

mδ2
n + a32δ4

n

(
β2

m
R
− a42β4

m − a52β2
mδ2

n − a62δ4
n − β2

mδ2
nW2

)
,

A4 =
β2

mδ2
nW1W2

81a12β4
m + 9a22β2

mδ2
n + a32δ4

n
.

(21)

Now, solutions (19) and (20) are substituted into equilibrium equation (14), then ap-
plying Galerkin method on whole region of the shell (0 ≤ x ≤ L, 0 ≤ y ≤ 2πR) to the
resulting equilibrium equation yields the following expressions

σ0y
h
R
+ k1

(
W0 +

W2

2

)
= 0, (22a)

a13 − a23W2 + a33W2
1 + a43W2

2 + Nx0β2
m − σ0yhδ2

n = 0, (22b)

k1W0 + a14W2 − a24W2
1 + a34W2

1 W2 + β2
mNx0W2 + σ0y

h
R

= 0, (22c)
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where coefficients aj3 (j = 1÷ 4) and ak4 (k = 1÷ 3) are displayed in Eq. (A1) of Appen-
dix A.

For circular cylindrical shell, the following circumferential closed condition must be
satisfied

2πR∫
0

L∫
0

∂v
∂y

dxdy =

2πR∫
0

L∫
0

(
ε0y +

w
R
− 1

2
w2

,y

)
dxdy = 0. (23)

From Eqs. (7), (10) and (15), v,y is expressed in terms of partial derivatives of w and
f . Then placing the solutions (19), (20) into the v,y and substitution of the obtained result
into Eq. (23) yield the following relation

σ0yh = − ν12e21

e11
Nx0 +

(
e21T − ν12

e21

e11
e11T

)
∆T

+ (1− ν12ν21) e21

[
1
R

(
W0 +

W2

2

)
− δ2

n
8

W2
1

]
.

(24)

Introduction of Nx0 = −Ph and σ0yh from Eq. (24) into Eqs. (22) give the following
system of equations

f11 (2W̄0 + W̄2)− f21W̄2
1 + f31P + f41∆T = 0, (25)

f12 − f22W̄0 − f32W̄2 + f42W̄2
1 + f52W̄2

2 − f62P− f72∆T = 0, (26)

f13W̄0 + f23W̄2 − f33W̄2
1 + f43W̄2

1 W̄2 − ( f53W̄ − f63) P + f73∆T = 0, (27)
where the details of coefficients fi1 (i = 1÷ 4), f j2 (j = 1÷ 7) and fk3 (k = 1÷ 7) can be
found in Eq. (A2) of Appendix A in which

(ā11, ā21, ā31, ē13, ē23, ē33) =
1
h3 (a11, a21, a31, e13, e23, e33) , (ā12, ā22, ā32) = (a12, a22, a32) h,

(ā41, ā42, ā52, ā62, ē11, ē21, ē31, W̄0, W̄1, W̄2) =
1
h
(a41, a42, a52, a62, e11, e21, e31, W0, W1, W2) ,

(ē12, ē22, ē32) =
1
h2 (e12, e22, e32) ,

Rh = R/h, LR = L/R, (K1, K2) =
(
k1R2, k2

) R2

Em
0 h3 , (28)

with Em
0 is value of Em calculated at room temperature (T0 = 300 K).

It is deduced from Eqs. (25) and (26) that

W̄0 = f14W̄2 + f24W̄2
2 + f34P + f44∆T − f54 ,

W̄2
1 = f15W̄2 + f25W̄2

2 + f35P + f45∆T − f55 ,
(29)

where detailed definitions of coefficients fi4, fi5 (i = 1÷ 5) are given in Eq. (B1) of Ap-
pendix B.

Introduction of Eqs. (29) into Eq. (27) leads to the following relation

P =
1

f16 + f26W̄2

[
f36 + f46W̄2 + f56W̄2

2 + f66W̄3
2 − ( f76 + f86W̄2)∆T

]
, (30)
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where coefficients f j6 (j = 1÷ 8) are displayed in Eq. (B3) of Appendix B.
From Eq. (30), by setting W̄2 = 0, buckling loads of axially-loaded CNTRC cylindri-

cal shells Pb are obtained as

Pb =
1
f16

( f36 − f76∆T) . (31)

Critical buckling compression load Pcr is the smallest value among buckling loads Pb
with respect to m, n numbers representing buckling mode.

It is evident from Eq. (19) that maximum deflection of the cylindrical shell is

Wmax = W0 + W1 + W2. (32)

It is deduced from Eqs. (29) and (32) that non-dimensional maximum deflection of
the CNTRC cylindrical shells are expressed as

W̄max = Wmax/h = ( f14 + 1) W̄2 + f24W̄2
2 + f34P + f44∆T − f54

+
(

f15W̄2 + f25W̄2
2 + f35P + f45∆T − f55

)1/2
.

(33)

The postbuckling equilibrium paths, i.e. axial compression load – non-dimensional
maximum deflection curves, of the CNTRC cylindrical shells are traced from Eqs. (30)
and (33).

4. RESULTS AND DISCUSSION

This section presents numerical examples for buckling and postbuckling analysis of
CNTRC cylindrical shell made of Poly (methyl methacrylate), referred to as PMMA, as
matrix material and reinforced by (10, 10) SWCNTs. The temperature dependent prop-
erties of the PMMA are Em = (3.52− 0.0034T) GPa, αm = 45 (1 + 0.0005∆T)× 10−6 K−1,
νm = 0.34 in which T = T0 + ∆T and T0 = 300 K (room temperature). The temperature
dependent properties of the (10, 10) SWCNTs are given at discrete values of temperature
in works [14, 19, 30] and as continuous functions of temperature in the work [23] and are
omitted here for sake of brevity. The CNT efficiency parameters ηj (j = 1÷ 3) are esti-
mated by matching the Young moduli E11, E22 and shear modulus G12 of the CNTRC de-
termined from the extended rule of mixture to those from the molecular dynamics (MD)
simulations and given in the works [14,23,30,39,40] as (η1, η2, η3) = (0.137, 1.022, 0.715)
for case of V∗CNT = 0.12, (η1, η2, η3) = (0.142, 1.626, 1.138) for case of V∗CNT = 0.17 and
(η1, η2, η3) = (0.141, 1.585, 1.109) for case of V∗CNT = 0.28.

4.1. Verification
To verify the proposed approach, the nonlinear buckling response of thin CNTRC

cylindrical shells without surrounding elastic medium and subjected to uniform axial
compression is considered. Critical buckling forces of thin CNTRC cylindrical shells with
simply supported and movable boundary edges are given in Tab. 1 in comparison with
results of Shen [26] using the higher order shear deformation shell theory and asymp-
totic solutions. Specifically, in the work [26], deflection, stress function and rotations are
expressed in terms of regular and boundary layer solutions expanded into a small pertur-
bation parameter. Then, with an initial buckling mode assumed, a singular perturbation
technique is employed to determine the buckling loads and postbuckling equilibrium
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paths. Although the method used in the work [26] has good accuracy, its mathematical
cumbersomeness is considerable. It is evident that an excellent agreement is obtained in
this comparison.

Table 1. Comparisons of critical buckling forces Fcr = 2πRhPcr (in kN) of thin CNTRC cylindrical
shells under axial compression [R/h = 100, h = 1 mm, T = 300 K, (K1, K2) = (0, 0)]

L/R Source
V∗CNT = 0.12 V∗CNT = 0.17 V∗CNT = 0.28

UD FG-X UD FG-X UD FG-X

1 Shen [26] 18.75 21.81 30.43 35.53 37.77 47.18
Present 18.84a 21.76 30.54 35.44 38.02 47.40√

3 Shen [26] 19.35 22.06 31.11 37.06 39.60 46.52
Present 19.48b 22.01 31.28b 36.99 39.95 46.81√

5 Shen [26] 18.72 21.37 30.57 35.14 37.31 45.99
Present 18.78c 21.30 30.66 35.04 37.49 46.21

a(m, n) = (1, 7) for L/R = 1; b (m, n) = (2, 7), otherwise (m, n) = (1, 6) for L/R =
√

3;
c(m, n) = (2, 7) for L/R =

√
5.

In what follows, the buckling and postbuckling behaviors of CNTRC cylindrical
shells will be analyzed in tabular and graphical forms, respectively. For sake of brief
expression, CNTRC cylindrical shells are assumed to be without foundation interaction
and placed at room temperature (T = 300 K) unless otherwise specified.

4.2. Buckling analysis
The effects of CNT volume fraction V∗CNT, CNT distribution types and thermal envi-

ronments (T = 300 K, 400 K, 500 K ) on the critical buckling loads of CNTRC cylindrical
shells under axial compression are shown in Tab. 2. It is evident that FG-O and FG-X
types of CNT distribution give the lowest and highest critical loads of CNTRC cylindri-
cal shells, respectively. The critical loads of UD shells are slightly higher than those of the
FG-V shells and, similarly, the critical loads of FG-Λ shells are slightly higher than those
of the FG-O shells. In addition, the critical buckling loads of CNTRC shells are consid-
erably enhanced and difference between critical loads with different distribution types is
bigger as CNT volume fraction is increased. Furthermore, the critical buckling compres-
sion loads of CNTRC shells are decreased when environment temperature is elevated.

Tab. 3 assesses the effects of geometrical ratios L/R, R/h and elastic media on the
critical buckling loads of CNTRC cylindrical shells under axial compression. There is
no a definite trend of critical loads versus length-to-radius L/R ratio and, with different
numbers of half wave m, critical loads of CNTRC cylindrical shells with L/R = 1 and
L/R = 2 are the same. Otherwise, the critical buckling loads of CNTRC cylindrical shells
are rapidly dropped when radius-to-thickness R/h ratio is increased. Moreover, sur-
rounding elastic foundations have beneficial effects on the buckling resistance capability
of CNTRC cylindrical shells.
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Table 2. Effects of CNT volume fraction and distribution types on critical loads Pcr (in MPa) of
CNTRC cylindrical shells [R/h = 100, L/R = 1, (m, n) = (1, 7), (K1, K2) = (0, 0)]

V∗CNT T (K) UD FG-X FG-O FG-Λ FG-V

0.12 300 29.98 34.64 25.60 25.63 29.51
400 26.88 31.38 22.63 22.80 26.17
500 23.82 28.18 19.68 20.01 22.86

0.17 300 48.61 56.41 41.91 42.26 48.36
400 43.46 50.88 36.99 37.50 42.80
500 38.36 45.46 32.08 32.78 37.26

0.28 300 60.51 75.45 50.40 53.71 59.10
400 54.59 68.63 44.75 47. 97 52.65
500 48.79 61.98 39.14 42.31 46.25

Table 3. Effects of geometrical ratios and elastic media on the critical buckling loads Pcr (in MPa)
of FG-X CNTRC cylindrical shells under axial compression (V∗CNT = 0.17, T = 300 K)

L/R (K1, K2)
R/h

60 80 100 150

1 (0, 0) 104.95 (1, 6) 73.36 (1, 6) 56.41 (1, 7) 36.86 (1, 8)
(100, 0) 111.92 (1, 6) 77.30 (1, 6) 58.92 (1, 7) 37.98 (1, 8)
(100, 5) 126.57 (1, 5) 86.38 (1, 6) 66.38 (1, 7) 42.14 (1, 8)

1.5 (0, 0) 92.31 (1, 5) 70.28 (1, 6) 56.74 (1, 6) 38.66 (2, 9)
(100, 0) 108.05 (1, 5) 79.13 (1, 6) 62.42 (1, 6) 39.28 (2, 9)
(100, 5) 131.29 (1, 5) 94.63 (1, 5) 70.46 (2, 7) 42.17 (2, 8)

2 (0, 0) 104.95 (2, 6) 73.36 (2, 6) 56.41 (2, 7) 36.86 (2, 8)
(100, 0) 111.92 (2, 6) 77.30 (2, 6) 58.92 (2, 7) 37.98 (2, 8)
(100, 5) 126.57 (2, 5) 86.38 (2, 6) 66.38 (2, 7) 42.14 (2, 8)

It is noted that variation trend of critical buckling loads versus different values of
V∗CNT, T and L/R is similar to that in the work [26] in which only UD and FG-X shells are
considered.

4.3. Postbuckling analysis
In what follows, the postbuckling behavior of axially-loaded CNTRC cylindrical

shells is graphically analyzed. Fig. 2 shows the effects of five different types of CNT
distribution on the postbuckling of CNTRC cylindrical shells under axial compression.
As can be seen, the FG-X and FG-O types give the strongest and weakest postbuckling
strengths of CNTRC cylindrical shells, respectively. The FG-V shell has quite high load
carrying capacity in small region of deflection (about Wmax/h ≤ 1 in this example) but
experience a relatively severe snap-through response. The UD shell has quite high and
stable postbuckling equilibrium path, although buckling load and initial postbuckling
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strength of this shell are lower than those of the FG-V shell. It is recognized that snap-
through phenomenon, intensity of which is measured by difference between bifurcation
point and the lowest point on load-deflection path, of CNTRC circular cylindrical shell is
more severe than that of CNTRC cylindrical panels [24] under axial compression. Sub-
sequently, the effects of CNT volume fraction V∗CNT (= 0.12 and 0.17) and thermal envi-
ronments ∆T (= 0 and 100 K) on the postbuckling behavior of FG-X CNTRC cylindrical
shells subjected to axial compression are analyzed in Fig. 3.
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Obviously, load-deflection curves of CNTRC cylindrical shells are significantly in-
creased as CNT volume fraction is increased. Under axial compression loading condition,
volume percentage of CNT has sensitive effects on the buckling load and postbuckling
load carrying capacity of CNTRC shells. In contrast, the postbuckling curves of axially-
loaded CNTRC shells become lower, especially in small region of deflection, due to in-
crease in environment temperature. Fig. 3 also indicates that intensity of snap-through
response and detrimental influence of elevated temperature both become more severe at
higher value of CNT volume percentage (i.e. CNT-richer shells).

Again, the simultaneous effects of CNT distribution and thermal environments on
the postbuckling behavior of CNTRC cylindrical shells are considered in Fig. 4. It is real-
ized that FG-V shell is more sensitive to change of environment temperature. Specifically,
decrease in axial load-deflection curves due to high temperature is more pronounced
for FG-V type of CNT distribution. Next, the effects of radius-to-thickness R/h ratio
on the postbuckling behavior of FG-CNTRC cylindrical shells surrounded by Winkler
elastic foundation and loaded by axial compression are examined in Fig. 5. It is clear
that load-deflection equilibrium paths are rapidly reduced when R/h ratio is increased.
Furthermore, number of full wave n in circumferential direction is increased as CNTRC
cylindrical shell becomes thinner.
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Finally, the effects of surrounding
elastic foundations on the postbuckling
behavior of FG-CNTRC cylindrical shells
subjected to axial compression are given
in Fig. 6. It is evident that surrounding
elastic foundations have beneficial influ-
ences on the nonlinear stability of axially-
loaded CNTRC cylindrical shells. More
specifically, although severity of snap-
through response is not milder, both buck-
ling load and postbuckling equilibrium
path are pronouncedly enhanced due to
the embrace of elastic foundations, espe-
cially Pasternak type foundations.

5. CONCLUDING REMARKS

Based on an analytical approach with three-term solution of deflection and Galerkin
method, nonlinear buckling and postbuckling behaviors of simply supported thin CN-
TRC circular cylindrical shells surrounded by elastic media and subjected to uniform
axial compression have been presented. The results show that CNT volume fraction has
very sensitive effects on the buckling load, postbuckling strength and snap-through re-
sponse of CNTRC cylindrical shells. FG-X type shells have the best postbuckling be-
havior in general, and FG-V type shells have relatively high equilibrium paths in small
region of postbuckling response in particular. The study also indicates that elevated tem-
perature has deteriorative effects on buckling resistance and postbuckling load carrying
capabilities of CNTRC cylindrical shells, and these effects are more pronounced in small
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region of deflection. As a final remark, although intensity of snap-through instability
is not reduced, surrounding elastic foundations, especially Pasternak type foundations,
have significant and beneficial influences on buckling resistance and postbuckling re-
sponse of axially-loaded CNTRC cylindrical shells.
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APPENDIX A

The coefficients aj3 (j = 1÷ 4) and ak4 (k = 1÷ 3) in Eqs. (22b) and (22c) are
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(A1)

The details of coefficients fi1 (i = 1÷ 4), f j2 (j = 1÷ 7) and fk3 (k = 1÷ 7) in the
Eqs. (25)–(27) are defined as follows
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m4π4

R4
hL4

R
+ ā21
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− ā42

m4π4

R4
hL4

R
− ā52
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ā12m4π4 + ā22m2n2π2L2
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APPENDIX B

The coefficients fi4, fi5 (i = 1÷ 5) in the Eqs. (29) are defined as

( f14, f24, f34, f44, f54)=
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(2 f11 f32− f11 f22,−2 f11 f52, 2 f11 f62− f31 f22, 2 f11 f72− f41 f22, 2 f11 f12) ,

(B1)
in which

f64 = f65 = 2 f11 f42 − f21 f22 , (B2)
The coefficients f j6 (j = 1÷ 8) in the Eq. (30) are defined as

f16 = f33 f35 − f13 f34 − f63 , f26 = f53 − f43 f35 , f36 = f33 f55 − f13 f54 ,
f46 = f13 f14 + f23 − f33 f15 − f43 f55 , f56 = f13 f24 − f33 f25 + f43 f15 ,
f66 = f43 f25 , f76 = f33 f45 − f13 f44 − f73 , f86 = − f43 f45.

(B3)


	1. INTRODUCTION
	2. CNT-REINFORCED COMPOSITE CYLINDRICAL SHELL SURROUNDED BY AN ELASTIC MEDIUM
	3. FORMULATIONS
	4. RESULTS AND DISCUSSION
	4.1. Verification
	4.2. Buckling analysis
	4.3. Postbuckling analysis

	5. CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX A
	APPENDIX B

