

Scholars' Mine

Bachelors Theses

Student Theses and Dissertations

1916

Flotation applied to silicate sludge

Yaro Klepel

Greene Erskine

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses

Part of the Mining Engineering Commons, and the Physical Sciences and Mathematics Commons

Department: Mining and Nuclear Engineering

Recommended Citation

Klepel, Yaro and Erskine, Greene, "Flotation applied to silicate sludge" (1916). *Bachelors Theses*. 400. https://scholarsmine.mst.edu/bachelors_theses/400

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

FLOTATION APPLIED TO SILICATE SLUDGE.

 \mathbf{BY}

YARO KLEPEL

AND

GREENE ERSKINE

A

THESIS

submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfillment of the work required for the

Degree of

BACHELOR OF SCIENCE IN MINE ENGINEERING

AND

BACHELOR OF SCIENCE IN GENERAL SCIENCE

Rolla, Mo.

1916.

Approved by - - - - Professor of Metallurgy.

TABLE OF CONTENTS.

Introduction	page 2	;
Abstract of Patents 2	- 9)
Method of Procedure 10	- 1	.1
Data 1	٤ -	20
Conglusion	20	

FLOTATION APPLIED TO SILICATE SLUDGE.

Within the past few years great success has been made of the flotation of sulfids, and to a certain extent of carbonates.

Since sulfids are easily recovered by flotation it seems practicable that silicates could be made to float by first sulfidizing them, and then subjecting them to ordinary flotation treatment.

This problem involves the treatment of a silicate sludge obtained from the Joplin district, the sludge will easily pass through a 250 mesh screen. At the present time this sludge is being sent to the tailings pond.

The experimental work of this thesis was done along the line of present flotation patents abstracted from the U.S. patent office bulletins, the abstracts will follow.

Abstracts of Flotation Patents.

807501 Process of Concentrating Ores. Alfred Schwarz.

New York, N. Y. assignor to Schwarz Ore Treating Co.

Pheonix, Arizona.

- 1 The method of treating ores which consists in subjecting a non-sulfid ore to the action of a soluble sulfid to convert the mineral into a sulfid, then treating the mass with a hydrocarbon and finally separating the hydrocarbon with the entrapped metallic constituents of the ore from the tailings.
- 2 Same as (1) but subjecting ore to action of an alkaline sulfid.
- 3 Same as (1) but subjecting ore to action of an aqueous solution of potassium or sodium sulfid.
- 4 Same as (1) but treat resulting metallic sulfid with a melted hydrocarbon solid at normal temperatures.
- 5 Same as (4) but treat with compound of melted paraffin and resin.

807505 Process of Concentrating Ores. Alfred Schwarz. New York, N. Y. assignor to Schwarz Ore Treating Co. Phoenix, Ariz., A Corporation of Arizons.

1 The process of concentrating ores consisting of mixing the ore with an adhesive agent composed of

- a hydrocarbon and sulfur, separating said agent with the entrapped values from the tailings, and recovering the values from the adhesive agent.
- 2 Same as (1) but ore is mixed out of contact with water with the adhesive agent and sulfur.
- 3 Same as (1) but hydrocarbon is solid at normal temperatures.
- 4 Same as (1) but adhesive agent is a resinous hydrocarbon and sulfur.
- 5 Same as (1) but adhesive agent is composed of a resinous and non-resinous hydrocarbon and sulfur.
- 6 Same as (1) but adhesive agent is composed of resin, paraffin and sulfur.
- 7 Same as (1) but adhesive agent is composed of resin and sulfur.
 - 8 Same as (1) but washing the mixture with water.
 - 9 Same as (8(but water is heated.

1140866 R. F. Bacon. U. S. Pat. Office Bull., May 25/15

1 The method of effecting the separation of oxidized ores from associated gangue, which consists in subjecting the mixture in a finely divided condition, to the action of a soluble sulfid, thereby

effecting a conversion of the oxidized ore into sulfids, and then converting the H S present into constituents innocuous to flotation, and finally subjecting the mixture to flotation.

- 2 Subject to action of a soluble sulfid, thereby effecting a conversion of the oxidized ore into sulfids, the converting the H S present into constituents innocuous to flotation, and making the solution faintly acid, finally subjecting mixture to flotation.
- 3 Same as (2) making solution faintly acid by admission of sulfur dioxid.

1159142 H. B. Howland. U. S. Pat. Office Bull., Nov. 1, 1915.

- 1 The method of treating metalliferous materials which consists in bringing the metallic constituents into solution and sulfidizing the metallic constituents by means of calcium sulfid and feric sulfate.
- 2 Method of treating copper-bearing ores which consists in bringing the copper into solution and precipitating copper as copper sulfid by means of calcium sulfid and feric sulfate.
- 3 Method of sulfidizing metal which consists in bringing together a soltuion of the metal to be

1140865 R. F. Bacon. U. S. Pat. Office Bull.,
May 25, 1915.

- I The method of effecting separation of sulfid minerals from associated gangue, which consists in subjecting the mixture, in a finely divided condition to the flotation action of colloidal sulfur; substancially as described.
- 2 The method of effecting the separation of sulfid minerals from associated gangue, which consists in subjecting the mixture, in a finely divided condition, to the flotation action of colloidal sulfur the flotation solution being faintly acid.
- 3 Method which consists in subjecting the mixture in a finely divided condition, to the flotation action of colloidal sulfur, the flotation solution being produced by reaction there in between a soluble sulfid and sulfur dioxid.
- 4 Method which consists in subjecting mixture, in a finely divided condition, to the flotation
 action of colloidal sulfur, the flotation solution
 being produced by reaction therein between a
 soluble sulfid and sulfur dioxid, the sulfur dioxid
 being admitted in such excess as to make the solution
 of colloidal sulfur faintly acid.

1098668 Henry B. Hovland. U. S. Pat. Office Bull., June 2, 1914.

Art of Treating Metalliferous Materials.

- 1 The process which consists in reacting on a substantially dry metalliferous material with a substantially dry gaseous sulfidizing agent at ordinary temperature.
 - 2 Same as above - absence of exterior heat.
- 3 The process which consists in reacting on a copper containing material with a sulfidizing agent in the dry at ordinary temperature.
 - 4 Reaction on dry materials with H S gas.
- 5 Reating on substantially dry metalliferous materials with H S gas in absence of exterior artificial heat.

1094760 Terry. U. S. Pat. Office Bull., Apr. 28, 1914.

l A process which consists in the subjection of metalliferous particles of ore existing as carbonates, oxides, chlorides and sulfates, to the action of a hydrogen sulfid gas, then subjecting the resulting product to partial vacuum, then to agitation in the presence of an oil, film, forming substance and recovering the oil coated particles by flotation.

- 2 A process for preparing non-sulfid ores for flotation methods of concentration which consists in the subjection of metalliferous particles in ore pulp, to the action of hydrogen sulfid gas, subject to vacuum treat as above.
- A process for the recovery of metalliferous constituents of ores, which consists in reducing the ores to a pulp, adding a soluble metallic salt and precipitating as a sulfid by H S to act as nuclei for the formation of sulfid granules and coagulations then subjecting the resulting product to partial vacuum, subject this pulp to flotation.

10022085 James M. Hyde. U. S. Pat. Office Bull.,
April 2, 1912.

- 1 The process of concentrating ore pulps comprising a separation treatment which consists in adding to the pulp a material which preferentially coats the valuable particles of the ore.
- 2 Addition to pulp of an acid precipitant adapted to react upon the ore, allowing a time interval to elapse prior to subjecting the pulp to a separation treatment, then subjecting the pulp

to a separation treatment comprising the steps of adding a material which will preferentially coat the valuable particles of the ore and separating said coated particles as a concentrate by flotation.

970002 Henry Wentworth. U. S. Pat. office Bull., Sept. 13, 1910.

I The process of separating the ingredients of comminuted material, which consists in associating with the material a substance chemically reactive upon particles thereof, thereby producing upon the particles affected by the reactive substance superficial coatings of a compound different from the original substance of the particles in respect to film-tension of a liquid, and thereupon separating the differentiated particles by film-tension of said liquid.

PROCEDURE.

DRY SULFIDIZING WITH H S.

Experiment A consists of sulfidizing the dry ore with H S. The gas was generated in an H S 2 2 generator and allowed to pass over the ore. The ore turned black immediately.

On subjecting the ore to flotation treatment the percentage of the concentrates fell below the percentage of the original ore. This experiment was repeated several times with no satisfactory results.

SULFIDIZING THE WET PULP WITH H S GAS.

Experiments B - D and others shown on the data sheets consist of treating the wet pulp with H S. The results obtained were similar to 2 those obtained by dry sulfidizing, but the percentage of zinc in the concentrates were about 1 percent better than the original ore.

SULFIDIZING WITH Na S 2 x.

We prepared a 5 percent solution of sodium polysulfid by passing hydrogen sulfid gas into a

5 percent solution of sodium hydroxide. We treated the ore with various amounts of this solution and noted what amount gave the best extraction. We then treated the following ore with the above amount using various oils.

The best results were obtained under the above conditions. We tried several experiments by adding sulfuric acid to the sodium polysulfid solution but the extraction decreased.

TREATING THE ORE BY MEANS OF COLLOIDAL SULPHUR.

We prepared an H S solution, placed it in 2 the flotation machine with the ore, and added various amounts of acid to precipitate the sulphur. This was done in order to try to coat the zinc silicate particles with colloidal sulphur and then float them.

lac hine	Нос	ver T	'ype.		M	issour	i S	School of Mines and M	letallu	rgy			OPEI	RATING D	ATA.
Experin	enter	Klepe	l-Erskine.			FL		TATION LABORATO	RY.			Time :	30m		
	Sil	icate	Sludge.						***************************************	********		Amt.	H_O	- 32 00c	c
ORE	***************************************).18% Zn.			***************************************						1	~	8 00 gms	
			OIL	DEAC	ENTO	EDOTI	ш	1			DEG	STLTS	of	machine	1700 RP
Test No	No.	Amt.	Kind.	REAG!				REMARKS.	Wt.	Per Ct.		Per Ct.	Wt	. Per Ct.	Per Ct. Ext.
		drops		sol.	Ì	İ			gms.	Zn.			 		
٨.	7	7	Flotation	H ₂ S		good		Dry sulfidizing with	26	8.6					3.04
-21-								5							
й В.	7		Flotation	H ₂ S		good		Sulfidizing of pulp with HoS	42	10.08					5.7
	7	5	727 a t a t d our						26	8.25					
D•	15	2	Flotation Pine	H23		good		Dry sulfidizing with		63.0					2.9
	26	5	# 1 Creosot	Na ₂ S _x	900	Fair		Sulfidizing with	69	7.5					7.05
E.		***************************************						Na. S z.			••••••				•••••••••••••••••
F.	26	7	10reosote 1	Ia ₂ S _x	900	Fair		Neutralized excess	26	6.99					2.47
				<u> </u>				alkali with H2SO4							

Machine	Но	o v er	Type.		Mi	issou	ri Sc	ool of Mines and Meta	allu	rgy		(OPERAT	TING D	ATA.
Experin	nente	Klepe	l-Eeskine.			\mathbf{F}	LOTA	TION LABORATORY			-	Tim	e 30 I	Min.	
												Amt	• н_о	- 320	00 cc
ORE									· 				~		gras.
									•••••				ed of	mach	. 1700RP
Test No	No.		OIL Kind.	REAG		FRO' Kind		REMARKS.	Wt.	Per Ct.		ULTS Per Ct.	Wt.	Per Ct.	Per Ct. Ext
	l	drops	i								1			201 00	CC CC. LIA
	25		Flotation.	Sol. H ₂ S sol.	i İ					Zn. 10.25					12.00
G.	24	1	Pure Pine		5										
-13-	25					···						······································			
ī			Flotation	H2S	300	·			15	12.14					7.6
н.	24	2	Fuel			***************************************			•••••					······································	
	.25	5	Flotation	H ₂ S	200				59	9.18					7.3
I.	24	2	Fuel	HNO ₃	1				•••••						
	25	5	Flotation	HgS	100				41	9.38					5.2
J.	.24	2	Fuel	HNO ₃	5	•••••••••••									
	1	5	Tar	# ₂ s	1500			4	9	11.57					7.7
K.				HNO	1 1										

Iachine	Но	OYer	Type.		M	issouri S	chool of Mines and	Metallu	rgy		OPERA	TING D	ATA.
xperin	enter	Klepe:	l-Erskine.	<u>-</u>		FLO	TATION LABORATO	ORY.		Tir	ne 30	Min.	
-	S	ilice	te Sludge.					-ye		ì		3200	CC
ORE	A	seay !	9.18%Zn.			N4				Amt	ore	800 g	ps.
			OIL	REAGI	ENTS	FROTH				Speed.	.of. ma	ch. 1	700 RPM
est No	No.	Amt.	Kind.	Kind			REMARKS.	Wt.		t. Per Ct.	Wt.	Per Ct.	Per Ct. Ext
		drops		Sol.	CO			gma.	Zn				
	1	5	Tar	H ₂ S	300		1 gm. rosin added	32	12.19				5.3
L.				HNO ₃	-1 0 0								
-14-	23	5	Crude Wood	Na ₂ S	60		Na ₂ S _x 5% solution	11	L1.12				1.6
¥.				A									
	56	6	Creosote	Na _o S _x	20								
N.	22		Pine spec.	2									
	53	4	Eucalyptus										
	24	5	Pure Pine					69.	10.71				10.1
				We-S				44					6.4
0.	.23	<i>'</i>	Crude Wood	#1002.~X	-80				10.76				U+T

Machine	Hoc	Ver T	ype.		Mi	issouri S	School of Mines and Mo	etallu	rgy		OPER.	ATING I	DATA.
Experin	nente	Klepe	l-Erskine.			FLO'	TATION LABORATOR	RY.		Tir	ne 30	Min.	
			te Sludge.							Amt	. н о	3200	CC
ORE			<u></u>							Amt.	ore	800	gms.
	A£	вау 9	.18% Zn.							Speed	if n	ach, l	700RPM
		-	OIL	REAG	ENTS	FROTH	REMARKS.			RESULTS			
Test No	No.	Amt.	Kind.	Kind	Amt.	Kind Amt.	REMARKS.	Wt.	Per Ct.	Wt. Per Ct.	Wt.	Per Ct	Per Ct. Ext.
		drops		sol.	co			gms.	Zn.				-
	25	5	Flotation	na ₂ S _x	40			14	11.27				2.1
P.													
	24	5	Pure Pine										
-15-	7	2	Flotation	Na ₂ S	15		Janney Mach. 200gmore	14	10.71				8.2
Q.	15	5	Pine								 		
	15	1	Pine		,								
R.	7	2	Flotation	Na ₂ S	15		Janney Mach. 200gmore	7	11.02				4.2
	56	3	Creosote					-					
S.	15	1	Pine	Na ₂ S	15			9	10.92				5.3
	25	4	Flotation	Na ₂ S	-15		Janney Mach. 200 Gms.	5	9.59				2.6
T.	15	1	Pine				Ore						

		Туре.		M			ool of Mines and l		rgy		()PERA	ATING D)ATA		
ıter#	Clope:	l-Erskine.			F	'LOTA'	TION LABORATO	ORY.			T1m	ne 30	win-			
11;	Loate	Sludge.									Amt.	н	3200	CC		
	* *************************************						**** **********************************	••••••			Amt. Ore \$00 gms.					
.682	Ly 9.	18\$ zn.									Speed of mach. 1700 RPh					
		OIL					REMARKS				ULTS					
io.	Amt.	Kind.	Kind	Amt.	Kind	Amt.		Wt.	Per Ct.	Wt.	Per Ct.		Per Ct.	Per Ct. Ex		
			sol.	0.0		-		gma.	Zn.							
21.	5	Wood Turp.	NagS	, 15		-		7	10.97		_		,	4.2		
15	5	Rosin Oil			,					••••••			·			
26	5	Creosote	Na ₂ S	* 60				21.	11.58				-	3.3		
3	1	Eucalyptus		-		-		,				ļ				
37	3	China Wood				·							<u></u>			
.5	2	Pine			,					·····						
37	3	China Wood	Na _S S					12.	10.76					3.2		
L 5	3	Pine	~ A													
33333333333333333333333333333333333333	5 d	11icate 88ay 9 0. Amt. drops 1 5 5 5 6 5 7 3	OIL O. Amt. Kind. drops 5 Sopp	OIL REAGON Amt. Kind. Kind. drops sol. 1 5 Wood Turp. NagS 5 5 Rosin Oil 6 5 Creosote NagS 7 3 China Wood 7 3 China Wood 7 3 China Wood 8 5 2 Pine 7 3 China Wood 8 5 2 x	OIL REAGENTS O. Amt. Kind. Kind Amt. drops sol. co 1 5 Wood Turp. Na ₂ S 15 5 Rosin Oil 6 5 Creosote Na ₂ S 60 1 Eucalyptus 7 3 China Wood 5 2 Pine 7 3 China Wood 7 5 China Wood 7 5 China Wood 7 5 China Wood 8 5 2 x	OIL REAGENTS FROM Kind Amt. Kind o. Amt. Kind. Kind Amt. Kind drops Sol. Co. 1 5 Wood Turp. NagS 15 5 Rosin Oil 6 5 Creosote NagS 60 3 1 Eucalyptus 7 3 China Wood 5 2 Pine 7 3 China Wood OIL REAGENTS FROTH O. Amt. Kind. Kind Amt. Kind Amt. drops sol. oc so					Amt. Amt.	Amt. H C	Amt. H 0 3200			

Machine	Hoc	Yer T	ype.		M	issou	ri Sch	ool of Mines and	l Metallu	rgy			PER	ATING D	ATA.		
Experin	nenter	Klepe	l-Reskine			F	LOTA!	TION LABORAT	rory.			Ti	me :	30 Min.			
-		Silica	te Sludge.				· »		·····			Amt: H 0 3200 cc					
ORE	A	звау 🤅	0.18% zn.	***************************************		······································			······································					_	ms•		
	<u></u>		 OIL	REAG	ENTS	FROT	······································	D. T. A. T. T.	<u> </u>		RES	STEPPED	.of l	machl	700 RPM		
rest No	No.	Amt.	Kind.	Kind		l	1	REMARKS.	Wt.	Per Ct.		Per Ct.	Wt.	Per Ct.	Per Ct. Ex		
	,	drops		 Sol.	00.				gms.	_zn_							
	6	5	Flotation	Na_S_	60				10.	10.92					1.5		
Z.	55		Cresilic sc	~ -		··							**********				
-17-	39	6	Menhaden	Na_S	60				8						.9		
100.	15	6	Pine														
	22	4	Pine spec.		<u> </u>			av									
	53	4	Eucalyppua														
	42	10		Na_S								-					
101	60	5	Menhaden	2					32.	10.76					4.7		
	15	5	Pine		.						·····	·	•••••		***************************************		
	16	5	Refined Tar		-									***************************************			

Machine	Hoc	Ver 1	lype.		M	issoui	ri S	chool of Mines and Mo	etallu	rgy			OPER	ATING I	DATA.
Experim	enter	Klape	l-Krskine.			F	LO.	TATION LABORATOR	RY.			Tim	• 30	Min.	
-	Sil	icate	Sludge.					**************************************			···	Amt.	н о	3200	G G
ORE			<u> </u>										2		ns
-	ABE	1a.y9.	18\$ zn.		***************************************					*****		1	i	_	1700 RPM
<u> </u>			OIL	REAG	ENTS	FROT	Ή	DEMARKA			RES	ULTS	<u> </u>	maoii.	17/00 101 111
rest No	No.	Amt.	Kind.		Amt.		Amt.	REMARKS.	Wt.	Per Ct.		Per Ct.	Wt.	Per Ct	Per Ct. Ext
		drop		Sol.	8C -				.gmg.	z n					
102.			Oleic acid.	Na ₂ S	.6 0				8.	9.90		-			1.1
-18		•••••••													
წ 102s	. 28	2	Crude Tar					102 2 drops No. 28 oil	6	10.15					.9
1 02 b	16	5	Tar					102 a 2 dropa No. 160	11 24	13.88					8.3
103		12	Oleic acid	Na ₂ S	60					7.96					1.04
		1	RefinedTar	Na_S	100				18	5.71		-		····	2.24
104.	ļ	12	Oleic acid	<u> </u>]			<u> </u>	<u> </u>			 		

		over 1			IVI .)			ool of Mines and		rgy	1	<u> </u>	<u></u>	ATING D	<u></u>
xperim	enter	Klepe	el-Erskine	<u></u>		— .	LOTA:	TION LABORAT	.YAO.					0 Min.	
- .	\$	5111c	ata Sludge						***************************************			Amt.	00		
ORE		mr			, m	······································				*****	. <u></u>	Amt.	Ore	800 (gns.
-	A	18 ay . \$	9.18% zn.		m							Speed	of	mach	1700 RPM
ogt No			OIL	REAGI				REMARKS.			RES	SULTS			
est No	No.	Amt.	Kind.		Amt.	Kind	Amt.		Wt	Per Ct.	Wt.	Per Ct.	Wt.	Per Ct	t. Per Ct. Ex
		drops	<u>†</u>	sol.		1			gms.	zn.					•
108.	5.	35	Fels Naphtha.						8.	9.08					1.58
							-								
-19-	ļ		Fels									-			
109.	,	30	Naphtha.	Na ₂ S	40 x		-		23.	7.96					3.9
			Fels							-		-		·	
110.		20	Naphtha.	Na ₂ S _x	20				11.	10.61					2.5
					-						***************************************				
111.		80		Na ₂ S _x	x 20				5.	7.55				-	.81
														***************************************	***************************************

CONCLUSION:

Taking into consideration that our work was carried out on a small scale, and since the concentrates obtained showed an increase of 3 to 4 percent zinc, it seems as the by some special means it would be possible to float silicates.