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Abstract. A probabilistic study on ultrasound wave reflection and transmission from cor-
tical bone plates is proposed. The cortical bone is modeled by an anisotropic and heteroge-
neous elastic plate sandwiched between two fluids and has randomly varied elastic prop-
erties in the thickness direction. A parametric stochastic model is proposed to describe the
elastic heterogeneity in the plate. Reflection and transmission coefficients are computed
via the semi-analytical finite element (SAFE) method. The effect of material heterogeneity
on reflected and transmitted waves is investigated from a probabilistic point of view. The
parametric study highlights effects of the uncertainty of material properties on the reflec-
tion and transmission coefficients by varying the frequency, angle of incidence and bone
thickness.

Keywords: Ultrasound, cortical bone, transmission/reflection coefficients, semi-analytical
finite element method, random material properties.

1. INTRODUCTION

In recent years, the development of quantitative ultrasound methods (QUS) to
asses mechanical behaviors of bone tissue is a key issue [1–3]. It has been shown that
speed of sound (SOS) and broadband ultrasound attenuation (BUA) provided valuable
information about bone structure in clinical assessment [4]. Ultrasound attenuation in
bones is due to scattering and absorption effects, which may reflect the deterioration of
the bone structure [3–5].

For studying long bones such as femur and tibia, ultrasonic measurements using
an axial transmission technique, which has been initiated by initially by Lowet and Van
der Perre [6], have been developed. This technique consists of use a set of ultrasonic
transmitters and receivers placed on a line in contact with the skin along the bone axial
axis. The analysis of the signals received can allow to estimate velocities of different
kinds of wave propagating in the bone structure and thus to quantify some mechanical
properties of bones (such as density, rigidity and thickness) [7–11]. The attenuation of
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cortical bone may also been evaluated by analyzing the reflected wave from bone surface
[12].

In this context, the present work focuses on the study of the reflection and trans-
mission ulatrasonic waves from cortical bones plates. Basically, ultrasonic testings of long
bones may be modeled by using a coupled system which consists of a constant-thickness
plate-like or cylindrical-like solid (for representing the cortical bone) sandwiched be-
tween two fluids (for representing soft tissues and marrow). It is has been shown that
the porosity in the radial direction (which is defined in the bone’s cross-section plan) is
heterogeneous [13, 14]. As the macroscopic mechanical properties of bones strongly de-
pend on its porosity [15,16], cortical bone would naturally be considered as a functionally
graded material. Thus the model employed in this study involves an anisotropic elastic
plate sandwiched between two homogeneous fluids and having varied elastic properties
in the through-thickness direction.

The general theory to describe the reflection and transmission phenomena at in-
terfaces of anisotropic elastic media can be found in the reference books of Fedorov [17],
Musgrave [18] and Auld [19] for instance. Rokhlin et al. [20] and Lanceleur et al. [21] pro-
vided solutions of the reflection and transmission problem for anisotropic elastic plates.
Deschamps and Hosten [22] have investigates this problem for orthotropic viscoelastic
plates. However, the studies on ultrasound responses are usually limited to media whose
the material properties are perfectly known. In this situation, the models used to describe
the evaluation techniques are determinism. In the following, the deterministic model is
so-called mean model in reference to the mean values given at the material properties.
However, most of the time, only partial information is available on these material prop-
erties whose the values which are obtained via experimental measurements. Hence, the
effective macroscopic properties of the biological tissues depend on many factors (ge-
netic, environmental, physiological and pathological), at various length scales. As conse-
quence, it is useful to consider these parameters as uncertain [23, 24].

This study follows the probabilistic framework to analyze wave reflection and
transmission through anisotropic elastic plates proposed in [25]. A parametric proba-
bilistic method, which is based on the maximum entropy principle, is used to generate an
optimal probabilistic model. The semi-analytical finite element (SAFE) method [26,27] is
used to compute the reflection and transmission coefficients of anisotropic heterogeneous
solid plates. In the deterministic model from which the stochastic model is constructed,
the cortical bone plate is assumed to be homogeneous and transversely isotropic elastic.
Whereas in the stochastic model, the plate is anisotropic and heterogeneous with mate-
rial properties that vary along the thickness direction. Note that the material properties
of the fluids and the bone mass density are supposed to be deterministic while the elas-
ticity tensor of bone tissue is randomly varied in the thickness direction. A parametric
study is presented, highlighting effect of the uncertainty of elasticity properties on the
reflection and transmission coefficients by varying the frequency, angle of incidence and
bone thickness.

After this introduction on ultrasound wave reflection and transmission through
cortical bone, the remainder of paper is organized as follows. In section 2, the elastoa-
coustic problem of an anisotropic and heterogeneous elastic plate sandwiched between
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two fluids is formulated. In section 3, a numerical solving method of the problem de-
scribed by the deterministic model is presented in order to determine the reflection and
transmission coefficients. The components of the elasticity tensor are obtained via a prob-
abilistic model which is described in section 4. In section 5, results are presented for the
configuration proposed and a discussion is led about these results. Finally, a conclusion
is drawn in section 6.

2. PROBLEM FORMULATION

2.1. Model specification
Let us consider a Cartesian reference system R(O; e1, e2, e3), where O is the origin

of the space and (e1, e2, e3) is the orthonormal basis. The studied problem is an elastic
solid layer with constant thickness h that occupies the unbounded domain Ωb in e1-axis
and sandwiched between two fluid half-spaces Ω f

1 and Ω f
2 . The system is excited by

oblique plane and harmonic wave pI propagating with an angular frequency ω at an an-
gle γ from fluid domain Ω f

1 to the solid layer Ωb as illustrated in Fig. 1. The interfaces
between the elastic layer Ωb and the fluid media Ω f

1 and Ω f
2 are assumed to be flat and de-

noted by Γb f
1 and Γb f

2 , respectively. Due to the nature of the source and to the geometrical
configuration, the elastoacoustic wave motion will be independent of x3. Consequently,
the coordinate x3 is implicit in the mathematical expressions to follow. As result, if the
coordinates of a point M are specified by (x1, x2, x3) in R, the domains Ω f

1 , Ω f
2 and Ωb

may be defined by

Ω f
1 = {M(x1, x2); x2 ≥ 0} ,

Ω f
2 = {M(x1, x2); x2 ≤ −h} ,

Ωb = {M(x1, x2);−h ≤ x2 ≤ 0} .

(1)

Γbf
2 nbf

2

e1

transmitted wave (pT )

γ

Γbf
1

h

O
nbf
1

Solid layer (Ωb)

Fluid 1 (Ωf
1)

incident wave (pI) reflected wave (pR)

Fluid 2 (Ωf
2)

e2

Fig. 1. Schematic representation of an elastic plate surrounded by to fluids
and excited by an oblique plane wave in the (O; e1, e2) plane
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In what follows, we note respectively ∇, ∇· and ∇2 the gradient, divergence and
Laplacian operators in two-dimensional space (2D). The time derivative is denoted by
a dot superimposed. The operators ∂i and ∂2

i denote respectively the first and second
order partial derivatives with respect to xi. The boldface symbols are used to designate
the matrices, the fields of vectors and tensors in two-dimensional and three-dimensional
spaces.

2.2. Acoustic field equations of the fluids
In the context of linearized elasticity theory, and neglecting the body forces, the

wave equation in the domain Ω f
α (α = 1, 2) reads

1
c2

α

p̈α −∇2 pα = 0, ∀M ∈ Ω f
α (α = 1, 2), (2)

where the celerity and pressure in the fluid are denoted by cα and pα, respectively. The
velocity vector vα(M, t) is related to the pressure field pα(M, t) by the Euler equation

ραv̇α +∇pα = 0, ∀M ∈ Ω f
α (α = 1, 2), (3)

where v̇α = ü(α) and u(α) denotes the displacement vector in the fluid. The mass density
is denoted by ρα.

2.3. Governing equations of the elastic solid layer
Neglecting the body forces, the dynamic equation of motion in the elastic solid

layer Ωb s given by

ρü−∇ · σ = 0, ∀M ∈ Ωb, (4)

which may be written in the vectorial form

ρü− LTs = 0, ∀M ∈ Ωb, (5)

in which ρ is denote the mass density of the solid, u = (u1, u2)T is the displacement
vector in which the superscript “T” denotes the transpose operator, the vector s contains
the components of the stress tensor σ and is denoted by s = (σ11, σ22, σ12)

T. The operator
L is defined by

L = L1∂1+L2∂2, L1 =

1 0
0 0
0 1

 , L2 =

0 0
0 1
1 0

 . (6)

By using the notation of Voigt, the Hooke law reads: s = ce where e is a vector containing
the strain components which are given by e = (ε11, ε22, 2ε12)

T = Lu, and c is the matrix
containing the components of the anisotropic elasticity tensor with the Voigt notation

c =

c11 c12 c16
c12 c22 c26
c16 c26 c66

 . (7)
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It is assumed that solid layer Ωb is homogenous according to the e1-axis, but heteroge-
neous in the e2-axis. Consequently, the physical properties of the solid only depend on
x2, i.e. c = c(x2).

2.4. Boundary conditions
The continuity conditions of the normal velocity and of the traction at the interfaces

require

∇pα · nb f
α = −ραü(α) · nb f

α ,

σnb f
α = −pαnb f

α ,
∀M ∈ Γb f

α (α = 1, 2), (8)

where nb f
α is the outer unit normal vector of Ωb at the interfaces Γb f

α . Seeing that nb f
1 =

−nb f
2 = (0, 1)T, Eqs. (8) may be written as follows

∂2 pα = −ραü(α)
2 ,

t = (0,−pα)
T,

∀M ∈ Γb f
α (α = 1, 2), (9)

in which t = (σ12, σ22)T = LT
2 s.

3. DETERMINISTIC MODEL SOLUTION

3.1. Incident, reflected and transmitted waves in the fluids
Due to the homogeneity of the system along e1-axis, we look for the plane wave

solution in the fluids (see Eq. (2)) in the form

pα(M, t) = p̂α(x2) exp(i(k1x1 −ωt)), ∀M ∈ Ω f
α (α = 1, 2). (10)

By substituting Eq. (10) into Eqs. (2) and (9) leads to the following equation

∂2
2 p̂α +

(
ω2

c2
α

− k2
1

)
p̂α = 0, ∀M ∈ Ω f

α (α = 1, 2). (11)

The incident wave pI gives a reflected wave pR in the midium Ω f
1 and a transmitted

wave pT in the fluid Ω f
2 . The solutions in Ω f

1 is a superposition of the incident and
reflected wave fields of which the amplitudes are denoted by PI and PR, respectively

p̂1 = PI exp(ik(1)2 x2) + PR exp(−ik(1)2 x2), (12)

where i2 = −1, k2
1 + (k(1)2 )2 = (ω/c1)

2 = k2
0. The wavenumbers with respect to e1 and e2

are respectively given by: k1 = k0 sin γ and k(1)2 = −k0 cos γ.
Likewise, the solution of transmitted wave field is given by

p̂2 = PT exp(ik(2)2 (x2 + h)), where k(2)2 = −
√
(ω/c2)2 − k2

1. (13)
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3.2. Displacement vector in the solid layer
The plane wave solution in the solid (see Eq. (5)) is giving in the following form

u(M, t) = û(x2) exp[i(k1x1 −ωt)], ∀M ∈ Ωb, (14)

where û = (û1, û2)T. The equation of motion (5) can be written as a system of partial
differential equations on the displacement û with respect only to x2(

−ω2A1 + k2
1A2

)
û− ik1AT

3 ∂2û− ∂2t = 0, ∀x2 ∈ [−h, 0], (15)

in which t = (ik1A3 + A4∂2)û, and the two-by-two matrices Ai (i = 1, . . . , 4) are defined
by

A1 = ρId, A2 = LT
1 cL1, A3 = LT

2 cL1, A4 = LT
2 cL2, (16)

where Id is the two-by-two identity matrix. By using the general solutions given by
Eqs. (12) and (13), the boundary conditions (9) may be expressed as

û2(0) =
(PI − PR)

β1
, û2(−h) =

PT

β2
, (17)

t(0) = −(0, PI + PR)
T, t(−h) = −(0, PT)

T, (18)

where the constants β1 and β2 are given by

β1 =
ik(1)2
ρ1ω2 , β2 =

ik(2)2
ρ2ω2 . (19)

By eliminating PR and PT in Eqs. (17) and (18), one may deduce the impedance conditions
as follows

t(0) = F0 − P1û(0), t(−h) = P2û(−h), (20)

where

F0 =

(
0
−2PI

)
, P1 =

[
0 0
0 −β1

]
, P2 =

[
0 0
0 −β2

]
. (21)

The weak formulation of the problem defined from Eq. (15) may be derived us-
ing standard procedure [28]. Let Cad be the admissible function space constituted by all
sufficient smooth complex-valued functions x2 ∈ ] − h, 0[ → δu(x2) ∈ C× C, where C

denotes the set of complex numbers. The conjugate transpose of δu is denoted δu∗. By
multiplying the equation (15) with the test function δu∗ ∈ Cad and integrating by parts,
we obtain∫ 0

−h
δu∗

(
−ω2A1 + k2

1A2 − ik1AT
3 ∂2

)
û dx2 +

∫ 0

−h
∂2(δu∗)t dx2 − [δu∗t]0−h = 0 (22)

The last term in Eq. (22) may be calculated by using the boundary conditions (20). Thus
the weak formulation of the problem is: Find u(x2) ∈ Cad such that∫ 0

−h
δu∗

(
−ω2A1 + k2

1A2 − ik1AT
3 ∂2

)
û dx2 +

∫ 0

−h
∂2(δu∗) (ik1A3 + A4∂2) û dx2

+ δu∗(0)P1û(0) + δu∗(−h)P2û(−h) = δu∗F0, (23)
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for all δu∗ ∈ Cad. In order to solve the problem (see Eq. (23)) by using the FEM, we dis-
cretize the domain [−h, 0] into a mesh which contains nel elements Ωe : [−h, 0] =

⋃
e(e =

1, . . . , nel). Using the Galerkin method, the two functions u and δu in each element e are
approximated using the same interpolation function

û(x2) = NeUe, δu(x2) = NeδUe, ∀x2 ∈ Ωe, (24)

where Ne is the interpolation function, Ue and δUe are respectively the vectors of nodal
solutions of u and δu in Ωe. Substituting Eq. (24) into Eq. (23) and assembling the ele-
mentary matrices, we obtain the following system of linear equations

(K + KΓ)U = F, (25)

where U is the global nodal displacement vector, K is the global “stiffness matrix” of the
solid, KΓ represents the coupling operator between the fluid and the solid, and F is the
force vector

K = −ω2K1 + k2
1K2 + ik1K3 + K4, (26)

KΓ = Diag
{

0,−ρ2ω2

β2
, 0, . . . , 0,−ρ1ω2

β1

}
, (27)

F = {0, . . . , 0,−2PI}T , (28)

and

K1 =
⋃
e

∫
Ωe

NT
e A1Nedx2, K2 =

⋃
e

∫
Ωe

NT
e A2Nedx2,

K3 =
⋃
e

∫
Ωe

2
[
N
′T
e A3Ne

]
a

dx2, K4 =
⋃
e

∫
Ωe

N
′T
e A4N′edx2,

(29)

where the notation [?]a denotes the antisymmetric part of [?] and ?′ the derivative with
respect to x2. In this study, Gauss quadrature rule has been used for computing the
integrations over the elements.

3.3. Reflection and transmission coefficients
Generally, the reflection and transmission coefficients are defined as the ratio be-

tween the amplitudes of the reflected and transmitted waves to the amplitude of the
incident wave, respectively. These coefficients may be computed by using (see Eqs. (17)
and (18))

R =

∣∣∣∣PR

PI

∣∣∣∣ = ∣∣∣∣1− β1û2(0)
PI

∣∣∣∣ , T =

∣∣∣∣PT

PI

∣∣∣∣ = ∣∣∣∣β2û2(−h)
PI

∣∣∣∣ , (30)

in which û2(0) and û2(−h) are obtained by solving Eq. (25).

4. STOCHASTIC MODEL SOLUTION

4.1. Probabilistic model of uncertainties for the elasticity tensor
This section provides a brief description of the probabilistic model of random elas-

tic matrix. We only sketch out the main features of the model in the context of this study.
This model is proposed by Soize [29] for the construction of the random elastic tensor in
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order to describe the random heterogeneity in the solid layer along the e2 direction. The
maximum entropy principle [30, 31] and the random matrix theory [32] are used in three
dimension to describe the model. Although, the random elasticity tensor (n× n) has been
generated in three dimensions (n = 6) with a high value of the spatial correlation lengths
in the e1 and e3 directions, only heterogeneous six components, which correspond to the
ones defined in the plane (e1, e2), are extracted to be used for the simulations. Indeed,
the solid layer is assumed to be invariant in the e3-direction and homogeneous in the
e1-direction.

We denote by C(x2) ∈ M+
n (R) the random elastic matrix at x2 and by c(x2) ∈

M+
n (R) its mean value, respectively, and for which the following relationship is satisfied

E{C(x2)} = c(x2), where E{?} designates the mathematical expectation, M+
n (R) the set

of all the (n× n) real symmetric positive-definite matrices and R the set of real numbers.
The matrix c(x2) can be decomposed into a product of a unique upper triangular real
matrix L(x2) with strictly positive diagonal entries and its transpose

c(x2) = LT(x2)L(x2). (31)

The random matrix C(x2) is parameterized by its mean value c(x2), the dispersion level
δ and the correlation length λ in the e2-direction, which is denoted by C(x2; c, δ, λ) and
may be decomposed into the following form

C(x2; c, δ, λ) = LT(x2)G(x2; c, δ, λ)L(x2), (32)

where G(x2; c, δ, λ), called the stochastic germ matrix, is a homogeneous and normal-
ized non-Gaussian positive-definite matrix-valued second-order random field with val-
ues in M+

n (R). The dispersion parameter δ, which is a scalar, controls the dispersion
of the random matrix G(x2; c, δ, λ) and must satisfy the following inequality 0 < δ <√
(n + 1)/(n + 5), which allows the mean-square convergence condition for the germ

matrix to be hold [33]. It is proved that the dispersion parameter δ is related to a param-
eter δC which evaluates the dispersion of the random matrix C(x2) by the relation given
by

δC(x2) =
δ√

n + 1

{
1 +
{Tra(c(x2))}2

Tra([c(x2)]2)

}1/2

. (33)

The correlation length λ, which is a scalar, is a measure of the distance up to which one
has spatial memory of the spatial variations in the material properties.

4.2. Stochastic solver
4.2.1. Reflection and transmission coefficients

The Monte Carlo simulation is used for the reliability analysis. For a given param-
eter set c, h, δ and λ, we begin with the discretization of the 1D domain [−h, 0] by using
quadratic Lagrangian elements. The global x2-coordinates of the Gauss points in all el-
ements are denoted by xk

2 for k = 1, . . . , ngp, where ngp is the total number of the Gauss
points in the mesh.
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Let nr be the total number of realizations, we may construct the set of the indepen-
dent realizations φj, for j = 1, . . . , nr, defined by

S =

{{
C(xk

2, φ1)
}

k=1,...,npg
, . . . ,

{
C(xk

2, φnr)
}

k=1,...,npg

}
(34)

in which
{

C(xk
2, φj)

}
k=1,...,npg

are npg samples at points xk
2 of one realization of random

matrices field C(x2; c, δ, λ) as described in Section 4.1 (see [29] and [34]).
For each statistical independent realization φj, nr statistical independent realiza-

tions of the random reflection and transmission coefficients, R(φj) and T(φj) respectively,
may be calculated following the SAFE procedure presented in Section 3.

4.2.2. Convergence analysis
Convergence analysis with respect to the number of realizations nr may be per-

formed by studying the convergence of statistical estimates of the second-order moments
of R and T, respectively denoted by mR,2 = E

{
R2} and mT,2 = E

{
T2}. The statistical es-

timates ConvR(nr) and ConvT(nr) of the second-order moments of R and T respectively
are defined by

ConvR(nr) =

(
1
nr

nr

∑
j=1

R2(φj)

)1/2

, ConvT(nr) =

(
1
nr

nr

∑
j=1

T2(φj)

)1/2

. (35)

4.2.3. Confidence regions
The confidence regions of both random variables R and T is carried out in using

a procedure based on the quantile method. The confidence region of T is limited by a
lower envelope and an upper envelope, denoted by t− and t+, respectively

P(t− < T ≤ t+) = Pc, (36)

where P(A) denotes the probability measure of an event A.
Let FT be the cumulative distribution function of T defined by FT(t) = P(T ≤ t).

The p-th quantile (p ∈ ]0, 1[) of FT is defined by

ζ(p) = inf {t : FT(t) ≥ p} . (37)

The lower and upper envelopes t− and t+ are defined by

t− = ζ

(
1− Pc

2

)
, t+ = ζ

(
1 + Pc

2

)
. (38)

Let t̃1 < . . . < t̃n be the order statistics associated with T(φ1), . . . , T(φnr), we have the
following estimations

t− ' t̃j− , j− = fix[nr(1− Pc)/2], (39)

t+ ' t̃j+ , j+ = fix[nr(1 + Pc)/2], (40)

in which fix(z) denotes the integer part of the real number z.



88 A. Abdoulatuf, V.-H. Nguyen, C. Desceliers, S. Naili

5. RESULTS AND DISCUSSION

5.1. Validation
5.1.1. Numerical parameters
Parameters for the mean model. In this model, the solid and the fluid layers represent
bone and soft tissues (soft tissue and marrow), respectively. The bone phantom has a
constant thickness h and is submerged in water. The mechanical properties of the fluid
(ρ1 = ρ2 and c1 = c2) and the bone are shown in Tab. 1, which are taken from the mechan-
ical test results obtained by [35]. Note that the other components of the elasticity matrix
are given by: c22 = c33, c12 = c13 = c21 = c31, c23 = c32 and c55 = c66.

Table 1. Mechanical parameters for the mean model

Fluid material properties Solid material properties
ρ1 = ρ2 c1 = c2 ρ c11 c22 c12 c66 c16 = c26

(kg.m−3) (m.s−1) (kg.m−3) (GPa) (GPa) (GPa) (GPa) (GPa)
1000 1500 1722 23.05 15.10 8.71 4.7 0

Parameters for the uncertain elasticity model. the dispersion δ and one correlation length
λ need to be introduced to control the statistical fluctuations of the elasticity field in the
e2-direction. A fixed correlation length λ = 0.1 mm will be used, which may be seen as
a center-to-center distance between osteons in cortical bone (see [36–38]). Three different
values of the dispersion δ = 0.1, 0.2 and 0.3 will be investigated. The coefficient δC which
evaluates the dispersion of the random field C is defined by Eq. (33).

5.1.2. Stochastic convergence analysis
The stochastic convergence analysis with respect to number of realizations nr is

carried out in studying the convergence of the estimated second-order moment. This
convergence lead to determine the minimal number of realizations by the Monte Carlo
solver to calculate in order to do the statistics on the interest quantities given by R nd T.
We consider a 1mm-thickness solid layer meshed by 200 quadratic elements which allows
us to satisfy the requirement that at least 5 elements per correlation length (λ = 0.1 mm)
are needed. Fig. 2 shows the graphs of functions nr → ConvR(nr) and nr → ConvT(nr)
in the case of normal incidence (γ = 0◦) for different dispersion (δ = 0.1, δ = 0.2 and
δ = 0.3). Convergence is reached for nr ≥ 200, nr ≥ 400 and nr ≥ 600 for the three cases,
respectively.

Fig. 3(a) shows an illustration of a realization of the spatial variation of the compo-
nents of the random field C(x2) with respect to x2 when δ = 0.3. The probability density
function may also be seen in Fig. 3b in which the random elasticity matrix components
C(x2) on the interface Γb f

1 are computed and presented. These functions are obtained on
the boundary Γb f

1 when δ = 0.3. One may verify that the mean values of the C’s compo-
nents are equal to the values given for the mean model. In particular, the mean of c16 and
c26 are equal to zero (transversely isotropic model).
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Fig. 2. (Color online) Stochastic convergence analysis for the case γ = 0◦ and f = 1 MHz. Graphs
of functions nr → ConvR(nr) and nr → ConvT(nr). The solid and dashed lines are respectively
associated with the functions ConvR(nr) and ConvT(nr). (a) δ = 0.1; (b) δ = 0.2; (c) δ = 0.3
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Fig. 3. (Color online) (a): x2-profiles of Cij components when δ = 0.3. (b): Probability density

functions of the components of the random elastic tensor on boundaries Γb f
1 when δ = 0.3

5.2. Effects of the level fluctuation of elasticity tensor
In this section, we investigate the effects of the dispersion parameter δ which al-

lows to control the statistical fluctuation level of bone elasticity. Fig. 4 illustrates the
confidence regions of both reflection and transmission coefficients for a probability level
Pc = 0.95. The mean values of these coefficients are represented by a thick line (black line,
color online) while the ones obtained with the deterministic model are represented by a
dashed line (red line, color online). As illustrated in Fig. 4, the increase of the dispersion
parameter has a direct influence on the expanse of the confidence regions. One may also
note that the upper envelope and lower envelope of the reflection coefficient are almost
symmetric with respect to the mean value while those of transmission coefficient are not
symmetrical.
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Fig. 4. (Color online) Confidence region (colored in gray domain) associated with a probability
level Pc = 0.95 and mean values (thick and black line) of reflection and transmission coefficients
with respect to the dispersion coefficient δ of random elasticity tensor. The coefficients R and
T obtained with the deterministic model are plotted with the thin lines (red line). (a) reflection
coefficient R; (b) transmission coefficient T. These results are obtained with f = 2 MHz and
h = 1 mm

5.3. Effects of incident wave characteristics
Angle of incidence. The confidence regions associated with a probability level Pc for ran-
dom fields R and T are calculated with respect to the angle of incidence. Figs. 5 and 6
represent confidence regions associated with a probability level Pc = 0.95 of random
fields γ −→ {R(γ)} and γ→ {T(γ)}.
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Fig. 5. Confidence regions of the reflection and transmission coefficients when f = 250 kHz.
The dotted line represents the deterministic solutions of R and T

The upper and lower bounds are constructed using Eqs. (39) and (40). Two similar
solid lines represent the functions γ → {r−(γ)} and γ → {r+(γ)} (γ → {t−(γ)} and
γ → {t+(γ)}, respectively) delimiting the confidence region of the reflection coefficient
(transmission coefficient, respectively) obtained with the stochastic model when δ = 0.1
(black region), δ = 0.2 (dark gray region) and δ = 0.3 (light gray region). The dotted
line represents the function γ → {R(γ)} (γ → {T(γ)} respectively) obtained with the
deterministic model. It is observed that the expanse of the confidence interval is not
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Fig. 6. Confidence regions of the reflection and transmission coefficients when f = 1 MHz.
The dotted line represents the deterministic solutions of R and T

constant over all incidence angles γ increases with the dispersion δ. We may notice that
the difference between the mean values of reflection and transmission coefficients (figure
is not shown here) and the ones obtained by the mean model is not significant.

In Figs. 7, the probability density functions of the reflection and transmission co-
efficients are presented for f = 1 MHz when δ = 0.1. For each frequency and each
coefficient of reflection and transmission, the probability density function is plotted for
four incidence angles γ = 0◦, 30◦, 45◦ and 60◦. The findings show that the dispersion
and the asymmetry degree of the probability density functions increase with f for all
incidence angles.
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Fig. 7. (Color online) Probability density function for four incidence angles given by
θ = 0o, 30o, 45o and 60o when δ = 0.1. (a) reflection coefficient R; (b) transmission coefficient T

Frequency. Fig. 8 shows the confidence regions of the reflection and transmission coeffi-
cients versus frequency for the incidence angle γ = 0◦ and γ = 30◦ when δ = 0.1. The
gray colored area presents the confidence regions while the reflection and transmission
coefficients obtained via the deterministic model are plotted in dashed line. As illustrated
in Fig. 8, the expanse of the confidence region increases with frequency. We may also
notice that some peaks may be observed on the envelops characterizing the confidence
regions of both coefficients of reflection and transmission. Indeed, these peaks are due
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Fig. 8. Confidence regions of reflection and transmission coefficients with respect to frequency
when δ = 0.1 and h = 1 mm. The confidence regions are colored in grey while the reflection and
transmission coefficients obtained via the deterministic model are plotted in thick solid line. (a)
and (c) reflection coefficients R when γ = 0◦ and γ = 30◦, respectively; (b) and (d) transmission
coefficients T when γ = 0◦ and γ = 30◦, respectively

to the shear modes that may exist when the material properties become fully anisotropic.
Note that similar remark have been observe in the studying of thick random plate by
Nguyen et al [25]. For an inclined angle of incidence γ = 30◦, the widths of confidence
regions of both R and T becomes important, which means that the heterogeneity in the
thickness’s direction may leads to significant misunderstanding of the acoustic response.

6. CONCLUSION

A probabilistic study has been performed to investigate the ultrasonic response of
cortical bone plates. It has been shown that both reflection and transmission coefficients
are very sensitive to the dispersion parameter which represents the random fluctuation
level of elastic properties in the plate, even when the bone’s thickness is small (h = 1mm).
It has been shown frequency and the angle of incidence have a significant influence on
the quantities of interest. The effects of random properties may become much much more
important in higher frequencies. The parametric studies also shown that the confidence
regions may be less large or larger depending on the angle of incidence, which can be
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useful to develop a strategy in the experimental method of measurement of the reflec-
tion and transmission coefficients in order to minimize the errors due to heterogeneity.
All these results have great importance on the identification of material properties by
solving an inverse problem which will be presented in forthcoming publications. Fur-
thermore, stochastic modeling of reflection and transmission phenomena at interfaces of
another kinds of media such as poroelastic or second gradient materials [39, 40] will also
be investigated.
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