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1. Introduction 

Basing on the theory of one-dimensional wave, authors have studied the prob
lem of longitudinal shock of solid object onto the elastic bar placed on the visco
elastic foundation with constant resistance of a part of the bar side face. 

The purpose of this paper is to determine stress state of the bar. The diagram 
of the problem is 
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2. Formulation of the problem 
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2.1. The equation of motion of the part of the side face of the bar with 
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constant resistance is determined as 

a2u -- a2 (a2U- Kl) 
at2 ax2 with t > 0; (2.1) 

The general solution ofEq.(2.1) bounded on the zone la is 

U1(x,t) = 'PI(at- x) + ~K1x2 - K1atx. (2.2a) 

The general solution of Eq.(2.1) on the zones.lb, lc is 

{2.2b) 

The general solution of Eq.(2.1) on the different zones is 

U1(x,t) = 'PI(at- x) + I/J1(at + x) + ~K1(L1- x) 2. {2.2c) 

2.2. The equation of motion of the other part of the bar is 

Therefore we have 

Initial condition: 

At t = 0 

U1 =O; au1 = o; 
ax 

U2 =O; 
au2 
-=0· ax , 

Boundary condition: 

L1 
with L 1 < x ::; L; t ~ - · 

a 

au1 =O 
at 

with 0 :s; x ::; L1. 

au2 
with L1 ::; x ::; L. -=0 at 

At the shocked end of the bar x = 0 

At X= Ll 
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{2.3) 

{2.4) 

{2.5a) 

(2.5b) 

{2.6a) 

{2.6b) 



At x=L 
au2 = -K2u2 _ "au2 
ax at , (2.6c) 

where K 2 and ). are elastic and viscid coefficients respectiveiy. They are considered 
>S constants. 

3. Determination of the wave functions of the bar 
L 

3.1. Considering wave functions in a limite~ duration 0 :S t :S - 1 

. a 

According to [3] the force of the cap on the shocked head of the bar is 

where 

(3.1a) 

Basing on (2.6a) and (2.2a) the wave function <p~(at- x) on the domain 1a 
is determined as 

\O~(at- x) = ;FPo(t- ~)- KI(at- x). (3.2) 

According to the condition at the boundary of the zones 1a and 1b with t = Ll/ a 
the function U1(x,t) is a continuous function on the regions 1b, 2a and <p~(at-x) 
has the form (3.2). 

From condition (2.6b) we have 

1/J~a(at + L!) = 1/J~(at + L!); 'P~a(at- Ll) = <p~(at- Ll). (3.3) 

With the limited duration 0 :S t :S £ 1 the wave function 1/J~ (at+ Ll) = 0, we have 
a 

1/!2a(at + Ll) = 0, so that 1/J;a(at + x) = 0. 

Basing on (3.2) we have <p;(at- x) of the bar in the zonez I, II: 

(3.4) 

On the zones 1a, 1b, 2a and 3 we have 1/J~ (at+ x) = 0, 1/J~(at + x) = 0. 

According to (2.6c) we have 

, ( ) K2 ( ) 1 -a,\ , ( K2 ( ) 1/12 Z + 1 + a.\ 1/12 Z = 1 + a,\ <p2 Z - 2£) - 1 + a,\ \02 Z - 2£ , (3.5) 
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with Z = at + L. 

The general solution of Eq.(3.5),is 

-K2 z. -K.!Z-•L) f ..fiL p-aX · .. K 2 ] 
tP2(Z) =He >+•" +e >+•" . e>+•• rl (0~1 (r)- \Ou(r) dr. (3.6) 

1 +a>.. , 1+a>. . . . 

Basing on the continuous characteristics of function U2 (x, t) at the timet = L 
L .. a 

and x = L, we have: tP2 (L, -;;) = 0 and H = Ho = 0, where Ho is integral constant 

of H in the limited duration L < t < L + L! · So that 
a- - a 

Z-2L 

...!iL(Z-2£) j ..liLr [1- a>. 1 K2 ] tP2(Z) = e->+·• e~+•> 
1 

+a>. \Ou(r)-
1 

+a>. \Ou(r) dr. (3.6a) 
0 

The wave function 'tj!HZ) at the bar end with L :::; t:::; L + L 1 is 
a a 

Z-2L 

'tj!l (Z) = _ K2 e ,!;;, (Z-2L) 
2 1 +a>. J ...!£:Lr [1- a>. 1 K2 ] er+•> \Ou(r)- \Ou(r) dr 

1+a>. 1+a>. 
0 

1- a>. 1 K2 
+ 1 +a>. \Ou(Z- 2L)- 1 +a>. \Ou(Z- 2L). 

The wave function 'tj!; (at + x) on the zones II and III in the bar is 

'tj!Hat + x) =. 
at+x-2L 

K2 e-,!~1 (at+x-2L) 

1 +a>. J ...!£:Lr [1- a>. 1 K2 ] e~+•> \On(r)- \OII(r) dr 
l+a>. l+a>. 

0 

1 - a>. [ 1 K2 ] + 1 +a.\ \OIJ(at +X- 2L)- 1 +a.\ \OII(at + x- 2L) , (3.7) 

where 

\O~r(r) = E~aPo(r)-Klr = E~a [e-nr(Clcosw1r+C2sinw1r)+ ~a:~~]-K1 r 
1 

\Ou(r) = j (0~1 (r)dr = 
0 
-nr 

=EF e( 2 2)[(Clwl-C2n)sinwlr-(CJn+C2w1)cosw1rJ 
a w 1 + n 

K 1 2 Ca2 K 1r C1n+C2w1 --r+ +=-::'=---:--..___::_---::-,. 
2 EFa(wr + n2) EFa(wr + n2) 
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According to condition (3.3) the wave function .Pi (at+ x) on the zones 4, 5 and 9 
in the bar also has the form (3.7). 

L 2L 
3.2. Considering wave functions in a limited duration .....!. ::; t ::; - with 

a a 
L1 

L=Ll + T 
From [3] impact-pressing force of the cap on the shocked head of the bar with 

this limited time has the form 

(3.1b) 

where 

According to conditions (2.6b) and (2.2b) the wave function 'Pi(at- x) on 
the zones 1c, 2b, 4, 5 and 6 in the bar is 

(3.8) 

Basing on (2.6b) the wave function <p~(at- x) on the zones III, N, V and VI 
also has the form (3.8). 

From condition (2.6c) we have 

1 ( ) K2 ( ) 1 -a>. 1 ( ) K2 ( ) tP2 z + >. V'2 z = >. 'P2 z - 2L - >. \02 z - 2L . 
1+a 1+a 1+a 

The general solution of this equation is 

(3.6b) 
(Z:..2L) 

f ..!£:Lr [ 1 - a>. 1 K2 ] 
e•+•> >. <p 1y(r)- 'Piv(r) dr, 

1 +a 1 +a>. 

where H1 is integral constant, which is determined from continuous characteristic 
. L+L1 · 

of the functiOn U2 (t, x) at x = L; t = · 
a 
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Basing on conditions {3.6a) and {3.6b) we have 

So that 

The wave function 'lj;2 (at + x) on zones IV, V, VI and VII in the bar is 

at+x-2L 

J kfx[1-a>. K2 ] e~+• >. 'P~v(r)- >. 'Prv(r) dr. l+a 1+a 

So, the wave function 'lf;;(at + x) on the zones IV, V, VI and VII in the bar is 

where 

with 

'lj;~(at + x) = 
1 

!:>. { n 1 e-,~~> (at+x) + e-,~~x (at+x-2L). 

at+x-2L 

J e 1~~> r [ 
1

- a\~v(r)- K2 'Prv(r)] dr 1 
l+a>. 1+a>. J 

L, 

1- a>. 1 K2 
+ >. 'Prv(at + x- 2L)- >. 'Prv(at + x- 2L), 

1 +a 1 +a (3.9) 
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From condition (3.3) on zones 6, 7, 8, 10, 11 and 13 in the bar the wave function 
,Pi( at+ x) also has form (3.9). If the shock of a solid object to bar is still not 

finished yet in section 0 < t < 
2

L , the study of the problem in the next sections 
a " 

is similar to the above section. 

4. Determination of stress status of the bar 

We have in zone la 

a= E[ -'P~(at- x) + K 1 (x- at)], (4.1) 

in zones 1b, 2a, 2b and 3 

a= E[- 'P~(at- x) + Kr(L1 - x)], (4.2) 

in the remained zones 

a= E[- 'P~(at- x) + .P~(at + x)- Kr(Lr- x)]. (4.3) 

The stress on the zones in the bar without resistance has the form 

a= E[- 'P~(at- x) + .P~(at + x)]. (4.4) 

From conditions (4.1) and (3.2) we have the stress on zone 1a in the bar: 

a=- ~Po (t- ;) · 
Basing on (4.2) and (3.2) the stress on zones lb and 2a in the bar has the form 

a=- ~Pr (t- ;) + EK1(at- L 1). 

According to the formula (4.4) and (3.4) we have the stress on zone I in the bar 

a=- ~Po (t- ~) + EKr(at- Lr). 

Basing on (4.4), (3.4) and· (3.7) the stress on zone II in the bar has form 

E{ 1 n ( x) K ( ) Kz _2£L(at+x-2L) a = - -ro t- - + 1 at- X -,. e l+a> • 
EF " a 1 +a,\ 

at+x-2L 

f e,~.;, r [1- a>. 'Pri(r)- Kz 'PII(rl] dr+ 
1 +a,\ 1 +a,\ 

0 

1- a>. 1 Kz } + 
1 

). 'Pu(at + x- 2L)- ). 'PII(at + x- 2L) . 
+a 1+a 
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From (3.8) and (4.2) the stress on zones 1c, 2b and 3 in the bar is 

( X) pi t--
a= F a +EK1Li. 

According to (3.7), (3.8) and (4.3) thestress on zones 4 and 5 in the bar has the 
form 

a= E{- ;Fpi (t- ~) - K2e-K.(at+x-2L). 

at+x-2L . 

f K r [ 1 - a). 1 ( ) K2 ( l] 
e • 1 +a>. 'PII T - 1 +a>. 'PII T dr 

0 

1- a>. 1 K2 } + >. 'Pu(at + x- 2L)- >. 'Pu(at + x- 2L) +K1x . 
1+a 1+a 

From (3.7), (3.8) and (4.4) the stress on zone III in the bar is 

{ 
1 ( X) K2 _2f:L(at+x-2L) a = E - -Pi t- - + K1L1 - e •+•• · 

EF a 1 +a>. 
at+x-2L 

f e ,:;:;_, r [ 1- a>. rpif(r) - K2 'Pu(r)] dr 
1+a>. 1+a>. 

0 

1- a>. 1 K2 } + >.rpu(at+x-2L)- >.'Pu(at+x-2L). 
1+a 1+a 

Basing on (4.4), (3.9) and (3.8) the stress on zones IV, V, VI in the bar will be 

a= E{. - -1-Pr (t- ::_) + K1L1- K2 {H1e-,:;:;., (at+x) + e-,:;:~. (at+x- 2L) 
EF a 1 +a>. 

at+x-2L . 

+ f e,:;::;xr-[ 1 -a>.'P~v(r)- K 2 'Piv(r)]dr} 
1 +a>. 1 +a>. 

1- a>. 1 - K2 } + >.'Prv(at+x-2L)- >.'Prv(at+x-2L). 
1+a l+a 

From (4.3), (3.9) and (3.8) the stress on zone 6 in the bar has the form: 

a= E{- _1_pl (t- ::_)- K2 {Hie-,:;:;_, (at+x) + e-,:;:~. (at+x-2L). 
EF a 1 +a>. 

at+x-2L 

f 2!:Lr[1- a>. 1 K2 ] } ei+•• 'PJv(r)- <prv(r) dr 
1 +a>. 1 +a>. 

1- a>. 1 K2 } + >.'P1v(at+x-2L)- >.'Prv(at+x-2L)+Kx. 
1+a 1+a 
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By the same way we can determine the stress on the remaining zones in the bar. 

5. Conclusion 

Using the well known wave method the authors study the problem of longitu
dinal shock of solid objeCt on the elastic bar placed on the visco-elastic foundation 
with constant resistance of a part of the bar side face .• The purpose of this pa11er 
is to determine stress state of the bar. 

Mechanically, boundary restrains in this problem are wider than some prob
lems studied in [1-3]. 

Technically, this model is similar to the problem of piling in a non-homoge
neous foundation. 

The research is partly supported by the council for Natural Sciences of Viet
nam. 
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VA CH~ CUA V~T RAN VAO THANH flAN HOI TVA TREN 

NEN flAN NHOT MQT PHAN M~T BEN CHJU LVC cAN KHONG DOI 

Tren CCI s& ly thuye't song mqt chiliu v&i nghi~m Da Hl.m be cac tac gia da xet 
bai toan va ch¥Ucda v~t r~n vao thanh dan hl>i qua d~m giam cMn tuye'n tinh, 
m{)t phlin cda thanh chiu Iv-c can khOng d6i va dau kia cda thanh chiu Iv-c can dan 
nh&t. 

N<}i dung chfnh !a tlm cac ham song 'P'(at- x) va .P'(at + x) va xac dinh 
tr'!-ng thai {rng suitt cda thanh trong thOi gian va chi!-ffi. 
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