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Abstract. The dynamic response to variable magnitude moving distributed masses of
simply supported non-uniform Bernoulli–Euler beam resting on Pasternak elastic foun-
dation is investigated in this paper. The problem is governed by fourth order partial dif-
ferential equation with variable and singular coefficients. The main objective of this work
is to obtain closed form solution to this class of dynamical problem. In order to obtain
the solution, a technique based on the method of Galerkin with the series representation
of Heaviside function is first used to reduce the equation to second order ordinary dif-
ferential equations with variable coefficients. Thereafter the transformed equations are
simplified using (i) The Laplace transformation technique in conjunction with convolu-
tion theory to obtain the solution for moving force problem and (ii) finite element analysis
in conjunction with Newmark method to solve the analytically unsolvable moving mass
problem because of the harmonic nature of the moving load. The finite element method
is first used to solve the moving force problem and the solution is compared with the
analytical solution of the moving force problem in order to validate the accuracy of the
finite element method in solving the analytically unsolvable moving mass problem. The
numerical solution using the finite element method is shown to compare favorably with
the analytical solution of the moving force problem. The displacement response for mov-
ing distributed force and moving distributed mass models for the dynamical problem are
calculated for various time t and presented in plotted curves.

Keywords: moving mass; finite element; Newmark method; Pasternak elastic foundation;
Galerkin’s method; resonance.

1. INTRODUCTION

Force vibration of elastic bodies (stretched string, spring mass system, rods, etc.)
have been extensively studied by several authors [1–11]. The vibrations may be due to
(i) a force (load) which is a function of the space coordinates only or (ii) a force which
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varies in both space and time. Such forces can either be of constant magnitude or vari-
able magnitude. The present work concerns the effects of a force of variable magnitude
moving at constant speed on an elastic body. In particular, the elastic body under consid-
eration is the beam. It should, however, be mentioned from the onset, that such an elastic
body (long and thin or stubby) is normally considered as a one-dimensional body [9–11]
whose physical properties (stiffness, mass, length) are described with reference to a sin-
gle dimension, the position along the elastic axis. Consequently, the partial differential
equation describing the motion of such an elastic body is made up of only two indepen-
dent variables, distance along the axis and time. Limiting the discussions to that of a
moving force on a finite beam, Timoshenko [2], Inglis [12] and Muscolino [13] considered
the problem of transverse oscillations of a beam subjected to a harmonic force moving
with a uniform velocity. They assumed that the beam is simply supported. An analysis
of the effect of such a moving force on the beam is given. Recently, Steele [14] investigated
the effect of this moving force on beams to a unit force moving at a uniform velocity. The
effect of this moving force on beams with and without an elastic foundation are analyzed.

Some of the previous works involving non-uniform beams include that of Wu [15]
studied the dynamic responses of multi-span non-uniform beams under moving loads
using the transfer matrix method. Dogush [16] also studied dynamic behavior of multi-
span non-uniform beams traversed by a moving load at constant and variable velocities
using both modal analysis and direct methods. Ahmadian et al. [17] investigated the
analysis of a variable cross-section beam subjected to a moving concentrated force and
mass using finite element method. However, the above research works on both uniform
and non-uniform beams are impactful, but moving loads have been idealized as moving
concentrated loads which act at certain points on the structure and along a single line in
space. That is, the moving load is modelled as a lumped load. In practice, it is known
that loads are actually distributed over a small segment or over the entire length of the
structural member as they traverse the structure. Such moving loads are termed uniform
distributed loads. Concentrated forces are mere mathematical idealization, which cannot
be found in the real world, where surface forces act over an area and body forces act
within volume. We also remark at this juncture, that only long thin uniform beam (called
Euler’s beam) resting on one parametric foundation or bi-parametric foundation that is
not harmonic in nature were considered.

Thus, the present investigation is concerned with the vibration under variable mag-
nitude moving distributed masses of non-uniform Bernoulli–Euler beam resting on Paster-
nak elastic foundation. The vital aspects of inertia terms are considered. Specifically, the
elastic properties of the beam such as the flexural rigidity and the mass per unit length
of the beam are assumed not constant. That is, the beam is of non-uniform cross-section
and mass contains negligible damping.

2. THEORY AND FORMULATION OF THE PROBLEM

In this study, the problem of a non-uniform Bernoulli–Euler beam and carrying a
mass M is investigated. The beam’s properties such as moment of inertia I and the mass
per unit length µ of the beam remained changing along the span length L. The transverse
displacement V(x, t) of the beam travelling at a uniform velocity as shown in Fig. 1 is
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Fig. 1. Geometry of a variable moving masses of non-uniform Bernoulli–Euler beam
resting on Pasternak foundation

given as

∂2

∂x2

[
EI(x)

∂2V(x, t)
∂x2

]
+µ(x)

∂2V(x, t)
∂t2 −N0

∂2V(x, t)
∂x2 +K0V(x, t)−G0

∂2V(x, t)
∂x2 = P(x, t), (1)

where t is the time coordinate, µ(x) is the variable mass per unit length of the beam, EI(x)
is the variable flexural stiffness, x is the spatial coordinate, K0 is the foundation stiffness,
G0 is the shear modulus, N0 is the axial force and P(x, t) is the uniform distributed load
acting on the beam. In this problem, the distributed load moving on the beam under con-
sideration has mass commensurable with the mass of the beam. Consequently, the load
inertia is not negligible but significantly affects the behaviour of the dynamical system.
Thus, the distributed load P(x, t) takes the form

P(x, t) = cos(ωt)
j

∑
i=1

MigH [x− f (t)]
[

1− 1
g

d2V(x, t)
dt2

]
,

d2

dt2 =
∂2

∂t2 + 2
d f (t)

dt
∂2

∂x∂t
+

(
d f (t)

dt

)2 ∂2

∂x2 +
d2 f (t)

dt2
∂

∂x
,

(2)

where g denotes the acceleration due to gravity,
d2

dt2 is a convective acceleration opera-

tor,
∂2

∂t2 is the support beam’s acceleration at the point of contact with the moving mass,

d f (t)
dt

∂2

∂x∂t
is the well-known Coriolis acceleration,

(
d f (t)

dt

)2 ∂2

∂x2 is the centripetal accel-

eration of the moving mass and
d2 f (t)

dt2
∂

∂x
is the acceleration component in the vertical

direction when the moving load is not constant.
In the same vein, for constant velocity c the direction/distance travelled by the load

on the beam at any given instance of the time t is given as

f (t) = cit, (3)

where x0 represent the point of application of force P(x, t) at any instant time t = 0.
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Moreover, the moving load is assumed to be of mass, M and time t is assumed to be
limited to that interval of time within which the mass M is on the beam. i.e.

0 ≤ f (t) ≤ L, (4)

and H [x− f (t)] is the Heaviside function, which is a typical engineering function made
to measure engineering application involving function that are either “on” or “off” and
it is defined as

H(x) =
{1, x > ct.

0, x ≤ ct.
H [x− f (t)] =

{
1, x ≥ f (t).

0, x < f (t).
(5)

As an example, let the variable moment of inertia I and the mass per unit length of
the beam be defined, respectively, as [18]

I(x) = I0

(
1 + sin

πx
L

)3

, µ(x) = µ0

(
1 + sin

πx
L

)
, (6)

where I0 and µ0 are constant moment of inertia and constant mass per unit length of the
corresponding uniform beam respectively. To this end, substituting Eqs. (2), (3) and (6)
into (1), after some simplification and rearrangement yields

EI0

4

(
10− 6 cos

2πx
L

+ 15 sin
πx
L
− sin

3πx
L

)
∂4V(x, t)

∂x4 +
6πEI0

4L

(
5 cos

πx
L

+ 4 sin
2πx

L

− cos
3πx

L

)
∂3V(x, t)

∂x3 +
3π2EI0

4L2

(
3 sin

3πx
L

+ 8 cos
2πx

L
− 5 sin

πx
L

)
∂2V(x, t)

∂x2

+ µ0

(
1 + sin

πx
L

)
∂2V(x, t)

∂t2 − N0
∂2V(x, t)

∂x2 + K0V(x, t)− G0
∂2V(x, t)

∂x2

+ cos(ωt)
j

∑
i=1

Mi H(x− cit)
[

∂2V(x, t)
∂t2 + 2ci

∂2V(x, t)
∂x∂t

+ c2
i

∂2V(x, t)
∂x2

]
=

j

∑
i=1

Mig cos ωtH(x− cit).

(7)

The boundary conditions of the above problem are assumed to be arbitrary, that is,
it can take any form of the classical boundary conditions. The initial conditions however
without any loss of generality is given by

V(x, 0) =
∂V(x, 0)

∂t
= 0. (8)

Eq. (7) forms the fundamental equation of the dynamic problem.

2.1. Solution procedure
Eq. (7) is a non-homogeneous partial differential equation with variable coefficients.

Evidently, the method of separation of variables is inapplicable as a difficulty arises in
getting separate equations whose functions are function of a single variable. Thus, we re-
sort to a modification of the approximate method best suited for solving diverse problem
in dynamics of structures generally referred to as Galerkin’s Method. Therefore, we use
the Galerkin’s method described in Oni and Awodola [19, 20] to reduce the fourth order
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partial differential equation to a sequence of second order ordinary differential equation.
Thus, yield a solution of the form

V(x, t) =
n

∑
m=1

Ym(t)Um(x), (9)

where Um(x) is chosen as a suitable kernel of the Galerkin’s method in (9) such that the
boundary conditions given are satisfied. It is remarked at this juncture that the beam
under consideration is assumed to have general boundary conditions at the edges x = 0
and x = L, therefore, we choose an appropriate selection of function for beam problem
i.e beam shapes. Thus, the mth normal mode of vibration of the beam

Um(x) = sin
λmx

L
+ Am cos

λmx
L

+ Bm sinh
λmx

L
+ Cm cosh

λmx
L

, (10)

is chosen such that the boundary conditions are satisfied. The kernel is chosen as

Uk(x) = sin
λkx

L
+ Ak cos

λkx
L

+ Bk sinh
λkx

L
+ Ck cosh

λkx
L

, (11)

where in (10) and (11), λm and λk are the mode frequency. Am, Bm, Cm, Ak, Bk and Ck
are constants which are obtained by substituting (6) and (7) into appropriate boundary
condition. Therefore, substituting Eqs. (9) into (7), yields

n

∑
m=1

[(
1 + sin

πx
L

)
Um(x)Ÿm(t) +

EI0

4µ0

(
10− 6 cos

2πx
L

+ 15 sin
πx
L
− sin

3πx
L

)
U
′′
m(x)Ym(t)

+
6πEI0

4µ0L

(
5 cos

πx
L

+ 4 sin
2πx

L
− cos

3πx
L

)
U
′′′
m (x)Ym(t)

3π2EI0

4µL2

(
3 sin

3πx
L

+ 8 cos
2πx

L

− 5 sin
πx
L

)
U
′′
m(x)Ym(t)−

N0

µ
U
′′
m(x)Ym(t) +

K0

µ
Um(x)Ym(t)−

G0

µ
U
′′
m(x)Ym(t)

+
j

∑
i=1

Mi cos ωt
[
H(x− cit)Um(x)Ÿm(t) + 2ci H(x− cit)U

′
m(x)Ẏm(t)

+ c2
i H(x− cit)U

′′
m(x)

]
−

j

∑
i=1

Mig cos ωtH(x− cit)
]
= 0.

(12)

In order to determine an expression for Ym(t), we shall consider a mass M travelling
with uniform velocity c along the x-coordinate. The solution for any arbitrary umber
of moving masses can be obtained by superposition of the individual solution since the
governing equation is linear. Therefore, for the single mass M1, it is required that the
expression on the left hand side of Eq. (12) is orthogonal to the function Uk(x). Thus,
using Eqs. (10) and (11) in (12), yields

I∗0 Ÿm(t) + I∗1 Ym(t) +
cos ωt

µ0
M
[

I∗2 Ÿm(t) + 2cI∗3 Ẏm(t) + c2 I∗4 Ym(t)
]
=

g cos ωt
µ0

MI0
5 , (13)
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where

I∗0 =
n

∑
m=1

∫ L

0

(
1 + sin

πx
L

)
Um(x)Uk(x)dx, I∗1 = I1A + I1B + I1C − I1D + I1E − IF, (14)

I1A =
EI0

4µ0

n

∑
m=1

∫ L

0

(
10− 6 cos

2πx
L

+ 15 sin
πx
L
− sin

3πx
L

)
Uiv

m (x)Uk(x)dx, (15)

I1B =
6πEI0

4µ0L

n

∑
m=1

∫ L

0

(
5 cos

πx
L

+ 4 sin
2πx

L
− cos

3πx
L

)
U
′′′
m(x)Uk(x)dx, (16)

I1C =
3π2EI0

4µ0L2

n

∑
m=1

∫ L

0

(
3 sin

3πx
L

+ 8 cos
2πx

L
− 5 sin

πx
L

)
U
′′
mUk(x)dx, (17)

I1D =
N
µ0

n

∑
m=1

∫ L

0
U
′′
mUk(x)dx, I1E =

K0

µ0

n

∑
m=1

∫ L

0
UmUk(x)dx, I1F =

G0

µ0

n

∑
m=1

∫ L

0
U
′′
mUk(x)dx,

(18)

I∗2 =
n

∑
m=1

∫ L

0
H(x− ct)UmUk(x)dx, I∗3 =

n

∑
m=1

∫ L

0
H(x− ct)U

′
mUk(x)dx, (19)

I∗4 =
n

∑
m=1

∫ L

0
H(x− ct)U

′′
mUk(x)dx, I0

5 =
∫ L

0
H(x− ct)Uk(x)dx. (20)

Using the property of Heaviside function, it can be expressed in series form given by
[13] i.e.

H(x−ct)=
1
4
+

1
π

∞

∑
n=0

sin(2n+1)πx cos(2n+1)πct
2n+1

− 1
π

∞

∑
n=0

cos(2n+1)πx sin(2n+1)πct
2n+1

.

(21)
Thus, in view of (14)–(20) and (21), it can be shown that

Ÿm(t) +
I∗1 (m, k)
I∗0 (m, k)

Ym(t) +
ε0 cos ωt
I∗0 (m, k)

{[
Lψ1A(m, k) +

L
π

∞

∑
n=0

cos(2n + 1)πct
2n + 1

I∗5 (m, k)

− L
π

∞

∑
n=0

sin(2n + 1)πct
2n + 1

× I∗6 (m, k)
]

Ÿm(t)+2c
[

Lψ2A(m, k)+
L
π

∞

∑
n=0

cos(2n+1)πct
2n+1

I∗7 (m, k)

− L
π

∞

∑
n=0

sin(2n + 1)πct
2n + 1

I∗8 (m, k)
]

Ẏm(t) + c2

[
Lψ3A(m, k) +

L
π

∞

∑
n=0

cos(2n + 1)πct
2n + 1

I∗9 (m, k)

− L
π

∞

∑
n=0

sin(2n + 1)πct
2n + 1

I∗10(m, k)
]

Ym(t)

]}
=

MgL cos ωt
µλk I∗0 (m, k)

×
[
− cos λkx + Ak sin λkx

+ Bk cosh λkx + Ck sinh λkx + cos
λkct

L
− Ak sin

λkct
L
− Bk cosh

λkct
L
− Ck sinh

λkct
L

]
,
(22)
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where

ε0 =
M
µL

. (23)

Eqs. (22) is now the fundamental equation governing the dynamic problem. This
coupled non-homogeneous second order ordinary differential equation holds for all vari-
ants of classical boundary conditions. It follows that two special cases of Eq. (22) arise,
namely, the moving force and moving mass problems.

2.2. Non-uniform Bernoulli–Euler beam traversed by moving distributed force for
simply supported end condition
In this section, an approximate model of the differential equation describing the re-

sponse of the elastic structure is obtained by neglecting inertia terms. i.e. Γ0 = 0 and we
shall limit our example on simply supported end condition. In this case, the displacement
and the bending moment vanish. Thus

Vm(0, t) = 0 = Vm(L, t),
∂2Vm(0, t)

∂x2 = 0 =
∂2Vm(L, t)

∂x2 , (24)

and hence for normal modes

Um(0) = 0 = Um(L),
∂2Um(0)

∂x2 = 0 =
∂2Um(L)

∂x2 , (25)

which implies that

Uk(0) = 0 = Uk(L),
∂2Uk(0)

∂x2 = 0 =
∂2Uk(L)

∂x2 . (26)

Applying (25) and (26) on (10), we have

Am = Ak = Bm = Bk = Cm = Ck = 0, λm = mπ, λk = kπ, (27)

as the mode frequencies, and

Um(x) = sin
mπx

L
, Uk(x) = sin

kπx
L

, (28)

as the mode functions. Using (24)–(28) in (22), yields

Ÿm(t) + ω2
f Ym(t) = Pk cos ωt

[
cos θkt + Rk

]
, (29)

where

ω2
f =

I∗1 (m, k)
I∗0 (m, k)

, Pk =
MgL

µkπ I∗0 (m, k)
, θk =

kπc
L

, Rk = −(−1)k, (30)

I∗0 (m, k) =


−4mkL

π[1− (m + k)2][1− (m− k)2]
, m 6= k

L
2
− 4m2L

π(1− 4m2)
, m ≡ k

I∗1 (m, k) = I1A − I1B − I1C + I1D + I1E + I1F,

(31)
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I1A =


m4π4EI0

4µ0L4

[ −60mkL
π[1− (m + k)2][1− (m− k)2]

+
12mkL

π[9− (m + k)2][9− (m− k)2]

]
, m 6= k

m4π4EI0

4µ0L4

[
5L− 4m2L

π(1− 4m2)
+

4m2L
3π(9− 4m2)

]
, m ≡ k.

(32)

I1B =


3m3π3EI0

8µ0L3

[ m + k
9− (m + k)2 −

m− k
9− (m− k)2 − 5

( m + k
1− (m + k)2 +

m− k
1− (m− k)2

)]
, m 6= k

3m3π3EI0

8µ0L3

[ 2m
9− 4m2 −

10m
1− 4m2

]
, m ≡ k.

(33)

I1C =


3m2π4EI0

4µ0L4

[ −36mkL
π[9− (m + k)2][9− (m− k)2]

+
20mkL

π[1− (m + k)2][1− (m− k)2]

]
, m 6= k

3m2π4EI0

4µ0L4

[ −4mkL
π(9− 4m2)

+
20m2L

π(1− 4m2)

]
, m ≡ k.

(34)

I1D =
m2π2N

2µ0L
, I1E =

K0L
2µ0

, I1F =
m2π2G0

2µ0L
. (35)

Therefore, solving (29) using the method of Laplace transforms and convolution with the
initial conditions (8), we have

V(x, t) =
n

∑
m=1

Pk
2ω f

{
ω f

(ω2
f −ω2)(ω2

f −Ω2
1)(ω

2
f −Ω2

2)

[
2Rk(ω

2
f −Ω2

1)(ω
2
f −Ω2

2)(cos ωt− cos ω f t)

+(ω2
f −ω2)(ω2

f −Ω2
2)(cos Ω1t− cos ω f t) + (ω2

f −ω2)(ω2
f −Ω2

1)(cos Ω2t− cos ω f t)
]
sin

mπx
L

.
(36)

(36) above represents the transverse displacement response to a distributed force moving
at constant velocity of a non-uniform simply supported Bernoulli–Euler beam resting on
Pasternak elastic foundation.

2.3. Non-uniform Bernoulli–Euler beam traversed by moving distributed mass
In this section, the solution to the entire equation (22) is sought when no terms of the

coupled differential equation is neglected. Evidently, an exact solution to this equation
is not possible. All conventional methods break down, even the popular Struble’s tech-
nique [21] could not handle it because of the variability of the magnitude of the moving
load. Hence we resort to using finite element method (FEM) to model the structure. Then
Newmark numerical method of integration is used to solve the resulting semi-discrete
time-dependent equation to obtain the desired responses.

2.3.1. Finite Element Method (FEM)
The finite element technique assumes that the unknown transverse deflection of the

non-uniform beam, V(x, t), can be represented approximately by a set of piecewise con-
tinuous functions which are defined over a finite number of sub-regions called elements
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and composed of the numerical values of the unknown deflection within the region.
Thus, the first step involved in the technique, consist of dividing the spatial solution
domain of the non-uniform beam, which happened to be the length of the beam in this
case, into a number of sub-domains known as finite elements. These elements are joined
to each other at selected points called nodes. Next, the weak or variational form of the
governing equation (1) is constructed as follows:

Consider a typical element of length L so that its domain λe = (0, L). Substituting
(2) and (3) into (1), we have

∂2

∂x2

[
EI(x)

∂2V(x, t)
∂x2

]
+ µ(x)

∂2V(x, t)
∂t2 − N0

∂2V(x, t)
∂x2 + K0V(x, t)− G0

∂2V(x, t)
∂x2

= cos(ωt)
j

∑
i=1

Mi H (x− cit)
[

g−
(

∂2V(x, t)
∂t2 + 2ci

∂2V(x, t)
∂x∂t

+ c2
i

∂2V(x, t)
∂x2

)]
.

(37)

In order to solve Eq. (37), we shall consider a mass M travelling with uniform ve-
locity c along the x-coordinate. The solution for any arbitrary number of moving masses
can be obtained by superposition of the individual solution since the governing equation
is linear. Therefore, for the single mass M1, let W(x) be Galerkin’s weight function. Mul-
tiplying Eq. (37) by the weight function and integrate over the domain λe, after some
simplification and rearrangement yields

∫ Le

0
EI(x)

∂2V(x, t)
∂x2

∂2W(x)
∂x2 dx +

∫ Le

0
µ(x)

∂2V(x, t)
∂t2 W(x)dx−

∫ Le

0
(N0 + G0)

∂2V(x, t)
∂x2 W(x)dx

+
∫ Le

0
K0V(x, t)W(x)dx−Mg cos(ωt)

∫ Le

0
H(x−ct)W(x)dx+M cos(ωt)

∫ Le

0
H(x−ct)

∂2V(x, t)
∂t2 W(x)dx

+ 2Mc cos(ωt)
∫ Le

0
H(x− ct)

∂2V(x, t)
∂x∂t

W(x)dx + Mc2 cos(ωt)
∫ Le

0
H(x− ct)

∂2V(x, t)
∂x2 W(x)dx

+ W(Le)Be
3 −W(0)Be

1 −
∂W
∂x

∣∣∣
x=Le

Be
4 +

∂W
∂x

∣∣∣
x=0

Be
2 = 0,

(38)

where

λ =
∂

∂x

[
EI(x)

∂2V(x, t)
∂x2

]
, φ = EI(x)

[
∂2V(x, t)

∂x2

]
, Be

k =
[
λW(x)

]∣∣∣Le

0
−
[
φ

∂W(x)
∂x

]∣∣∣Le

0
,

(39)

λ is the shear force, φ is the bending moment and Be
k, (k = 1, 2, . . . , 4) are the extremely

important and necessary four boundary terms, two at each of the end nodes of the ele-
ment. Furthermore, it can be readily shown that

∫ Le

0
H(x− ct) f (x)dx =

∫ Le

ct
f (x). (40)
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Thus, Eq. (38) becomes∫ Le

0
EI(x)

∂2V(x, t)
∂x2

∂2W(x)
∂x2 dx +

∫ Le

0
µ(x)

∂2V(x, t)
∂t2 W(x)dx−

∫ Le

0
(N0 + G0)

∂2V(x, t)
∂x2 W(x)dx

+
∫ Le

0
K0V(x, t)W(x)dx−Mg cos(ωt)

∫ Le

ct
W(x)dx + M cos(ωt)

∫ Le

ct

∂2V(x, t)
∂t2 W(x)dx

+ 2Mc cos(ωt)
∫ Le

ct

∂2V(x, t)
∂x∂t

W(x)dx + Mc2 cos(ωt)
∫ Le

ct

∂2V(x, t)
∂x2 W(x)dx

+ W(Le)Be
3 −W(0)Be

1 −
∂W
∂x

∣∣∣
x=Le

Be
4 +

∂W
∂x

∣∣∣
x=0

Be
2 = 0.

(41)

Eq. (41) is the desired weak form of the variable magnitude moving distributed
masses of non-uniform Bernoulli–Euler beam resting on elastic foundation. Therefore,
we seek an approximate solution over the element under consideration and thereby con-
struct the corresponding shape function. To this end, it is assumed that the unknown
deflection V(x, t) could be expressed approximately as

V(x, t) ≈ Vn(x, t) = H1(x)V1(t) + H2(x)V2(t) + H3(x)V3(t) + H4(x)V4(t)

=
4

∑
k=1

Hk(x)Vk(t) = {H}{V(t)}, j = 1, 2, 3, 4
(42)

where Hj(x) are called Hermite cubic shape functions and Vk(t) are the modal deflection
functions and H is a row vector defined as

[H] =
[
H1(x), H2(x), H3(x), H4(x)

]
. (43)

Using the procedures involved in constructing the Hermit-cubic interpolation func-
tions in [22], yields

H1 = 1− 3x2

h2 +
2x3

h3 , H2 = x− x2

h
+

x3

h2 , H3 =
3x2

h2 −
2x3

h3 , H4 = − x2

h
+

x3

h2 , (44)

where x is the spatial coordinate. Now substituting Eqs. (42)–(44) into the weak form
(41), after some simplification and rearrangement gives[

Ke]{V(t)
}
+
[
Ce]{V̇(t)

}
+
[
Me]{V̈(t)

}
+
{

f e}+ {Qe} = 0. (45)

The matrix equation (45) is the governing equation describing the behavior of a typical
finite element of the non-uniform beam traversed by a harmonic moving load.

[
Ke] is the

element stiffness matrix,
[
Me] is the element mass matrix,

[
Ce] is the element centripetal

matrix,
{

f e} is the force vector and
{

Qe} is the element boundary term vector.
The next step is assembling of the element equations. The procedure for assembling

various matrices and vectors for several beam elements which constitute a mesh is well
discussed in [23, 24]. Hence the governing assembled equation of motion describing the
dynamic behavior of the moving load problem with Pasternak foundation is[

K
]{

V(t)
}
+
[
C
]{

V̇(t)
}
+
[
M
]{

V̈(t)
}
=
{

F
}

, (46)
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where
[
K
]
,
[
M
]
,
[
C
]

and
[
F
]

are the assembled (global or overall) stiffness, mass, cen-
tripetal and load vector.

In order to obtain a complete and unique solution (46), the prescribed boundary con-
ditions must be imposed on both the deflection/slopes and the shear force/bending mo-
ments, respectively. Finally, for a harmonic free vibration system without the centripetal
matrix, (46) reduces to ([

K
]
−ω2

i
[
M
]){

V(t)
}
= 0, (47)

where ω2 denotes the natural frequency and V(t) is the corresponding mode shape of
the system. Various methods can be used to solve for the eigenvalue ω2

i and the cor-
responding

{
V(t)

}
. The dynamic response of the non-uniform beam under a partially

distributed moving load are obtained by solving the equation of motion (46) directly by
Newmark method.

2.3.2. Newmark beta method algorithm

(a) Initial Computation
(1) Form stiffness [K], mass [M], and damping [C] matrices
(2) Initialize {V0}, {V̇0} and {V̈0}
(3) Select time step ∆t, parameters α and β, and calculate integration con-

stants.
β ≥ 0.5; α ≥ 0.25(0.5 + β)2

a0 =
1

β(∆t)2 ; a1 =
α

β∆t
; a2 =

1
β∆t

; a3 =
1

2β
− 1; a5 =

∆t
2
(α

β
− 2
)
;

a6 = ∆t(1− β); a7 = β∆t
(4) Form effective stiffness matrix:

[K̄] = [K] + a0[M] + a1[C]
(5) Triangularize [K̄]: [K̄] = [L][D][L]T

(b) For each time step:
(1) Calculate effective force vector at time t + ∆t
{F̄t+∆t} = {Ft+∆t}+ [M]

(
a0{Vt}+ a2{V̇t}+ a3{V̈t}

)
+ [C]

(
a1{Vt}+ a4{V̇t}+ a5{V̈t}

)
(2) solve displacement at time t + ∆t

[K̄]{Vt+∆t} = {F̄t+∆t}
(3) calculate {V̇} and {V̈} at time t + ∆t

• {V̈t} = a0
(
{Vt+∆t} − {Vt}

)
− a2{V̇t} − a3{V̈t}

• {V̇t} = a1
(
{Vt+∆t} − {Vt}

)
− a4{V̇t} − a5{V̈t}
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3. COMMENTS ON THE CLOSED FORM SOLUTIONS

Theoretically speaking, the deflections of the non-uniform Bernoulli–Euler beam
may increase beyond bounds. Practically, this means that the beam is in a state of reso-
nance. The speed of the load which brings about resonance effect in the system is termed
the critical speed. (36) clearly shows that the simply supported non-uniform Bernoulli–
Euler beam resting on a Pasternak foundation and traversed by a moving distributed
force reaches a state of resonance whenever

ω f = ω or ω f = Ω1 or ω f = Ω2. (48)

Eq. (30) shows that, the dynamic system will attain the state of resonance whenever ve-
locity is

c =
L

mπ

(
ω−ω f

)
or c =

L
mπ

(
ω f −ω

)
. (49)

Thus, Eq. (49) is critical speed for the dynamic problem.

4. ANALYSIS OF RESULT AND DISCUSSION

In order to illustrate the analysis presented in this work, non-uniform beam of length
L = 5 m is considered. The load velocity c = 50 ms−1, Young modulus E = 2.10924 ∗ 109

Nm−2, moment of inertia I = 0.00287698 m4, π = 22/7, mass per unit length of the
beam µ = 2758.291 Kgm−1 and ratio of the mass of the load to the mass of the beam
is 0.25. The transverse deflection of the beam is calculated and plotted against time for
various values of axial force N, foundation stiffness K and shear modulus G. Values of N
are varied between 4E+03 and 4E+09 while the values of K varies from 4E+03 to 4E+09.
The values of G are varied from 4E+03 to 4E+09 N/m3. The results are as shown on the
various graphs in Figs 2–7.

Fig. 2. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of axial force N and
fixed values of K(40000) and G(40000) that tra-

versed by moving distributed force

Fig. 3. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of foundation stiffness
K and fixed values of G(40000) and N(40000)

that traversed by moving distributed force
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Fig. 4. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of shear modus G and
fixed values of N(40000) and K(40000) that tra-

versed by moving distributed force

Fig. 5. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of axial force N and
fixed values of K(4000) and G(4000) that tra-

versed by moving distributed mass

Fig. 6. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of foundation stiffness
K and fixed values of G(4000) and N(4000) that

traversed by moving distributed mass

Fig. 7. Transverse displacement of the non-
uniform simply supported Bernoulli–Euler
beam for various values of shear modus G and
fixed values of N(4000) and K(4000) that tra-

versed by moving distributed mass

Figs. 2–4 show the transverse displacement responses of a non-uniform simply sup-
ported Bernoulli–Euler beam under distributed moving load travelling at constant ve-
locity under the action of moving distributed force for various values of (i) axial force
N and for fixed values of other parameters; (ii) various values of foundation stiffness K
and for fixed values of other parameters and (iii) various values of shear modulus G and
for fixed values of other parameters. The result shows that as N, K and G increases, the
deflection of the beam decreases. Similar results are obtained when the beam is subjected
to moving mass as shown in Figs. 5–7.
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Fig. 8. Comparison of the transverse displace-
ment of the moving distributed mass and mov-
ing distributed force for the non-uniform sim-

ply supported Bernoulli–Euler beam

Fig. 9. Comparison of the transverse displace-
ment of the analytical and FEM solutions for
the non-uniform simply supported Bernoulli–

Euler beam

Fig. 10. Comparison of the transverse displacement of the moving distributed mass and moving
distributed with SEM force for the non-uniform simply supported Bernoulli–Euler beam

Different comparisons of the transverse displacements are shown in Figs. 8–10. In
order to verify the accuracy of the present method, the vibration under variable mag-
nitude moving distributed masses of a simply supported non-uniform Bernoulli–Euler
beam resting on Pasternak elastic foundation obtained by the present method and the
frequency-domain spectral element method (SEM) are compared at two different veloc-
ities in Fig. 10. The results show that the dynamic responses obtained by the present
method are almost identical to those obtained by using the SEM.

5. CONCLUSION

The vibration under variable magnitude moving distributed masses of simply sup-
ported non-uniform Bernoulli–Euler beam resting on Pasternak elastic foundation is in-
vestigated. The problem is governed by fourth-order partial differential equations with
variable and singular coefficients. The main objective of this work is to obtain closed-
form solution to this class of dynamical problem. In particular, the simply supported
non-uniform Bernoulli–Euler beam is considered. In this dynamical problem, the beam
is not uniform but varied along the span of the beam and as such, the solution to the
governing equation are generally not obtainable by finite integral transform. Conse-
quently, an approach generally used in solving dynamical problem called Galerkin’s
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method is used to transform the governing equation with singular and variable coeffi-
cients. The resulting Galerkin’s equations are thereafter solved using (i) The method of
Laplace transformation and convolution theory to obtain the analytical solutions of the
one-dimensional dynamical problem for moving force problem and (ii) finite element
analysis in conjunction with Newmark method for the case of the moving mass problem
which is analytically unsolvable because of the harmonic nature of the moving load. To
verify the accuracy of the present method used in (i), the dynamic responses of a sim-
ply supported non-uniform Bernoulli–Euler beam obtained by the finite element method
(FEM) are compared in Fig. 9 and by frequency-domain spectral element method (SEM)
in Fig. 10. The analytical solutions obtained are analyzed and resonance conditions for
the problems started. Numerical analysis are carried out and the study exhibits the fol-
lowing interesting features:

1. As the values of axial force increases, the displacement amplitude of the simply
supported non-uniform Bernoulli–Euler beam under the action of moving uniformly dis-
tributed force decreases for fixed shear modulus G and foundation stiffness K. The same
results and analyses obtained for moving mass case.

2. When the axial force N and shear modulus G are fixed, the displacement of a
simply supported non-uniform Bernoulli–Euler beam resting on Pasternak foundation
and traversed by moving distributed force decreases as the foundation stiffness increase
in the dynamical problem. Similar results and analyses are obtained for the moving mass
case.

3. For fixed axial force N, foundation stiffness K, the response amplitude of the
simply supported non-uniform Bernoulli–Euler beam under the action of moving force
decreases as the shear modulus G is increased. Similar results and analyses are obtained
for moving mass case. Finally, this research work has suggested valuable methods of
solutions to this class of dynamical problem involving simply supported non-uniform
Bernoulli–Euler beam under variable magnitude moving distributed masses.
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