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Abstract. The averaging method is an -useful tool for investigating both deterministic
and stochastic quasilinear system. In the stochastic problems, however, the method has
often been developed only for mechanical systems subjected to white noise excitations.
In the paper this method is applied to high order stochastic differential equations. The
nonlinear oscillations in high order deterministic differential equations were investigated
in the fundamental work of Prof. Nguyen Van Dao. As an application of high order sto-
chastic differential equations the nonlinear oscillation of single degree of freedom systems
subjected to the excitation of a class of colored noises is outlined. The results obtained
show that the higher order averaging method can also be successfully extended to the
cases of colored noise excitation.

1. INTRODUCTION

Interest in the investigation of random phenomena is considerable over the recent years,
due to various problems encountered in engineering applications. The well - known averag-
ing method originally given by Krylov and Bogolibov and then developed by Mitropolskii
is one of most popular methods for the approximate analysis of nonlinear systems [2]. The
advantage of this method is that it reduces the dimension of the response coordinates.
In the field of random vibration the averaging method was extended by Stratonovich [3]
and has a mathematically rigorous proof by Khasminskii [4]. It is well-known, however,
that the effect of some nonlinear terms is lost during first - order averaging procedure.
In order to overcome this insufficiency, the procedures for obtaining higher approximate
solutions in the stochastic averaging method were developed [6-8, 10]. In the paper the
averaging method is applied to high order stochastic differential equations. The nonlin-
car oscillations in high order deterministic differential equations were investigated in the
fundamental work of Prof. Nguyen Van Dao [1].

Nonlinear random vibrations in dynamical systems subjected to the excitation of a
white noise have often been investigated by many authors. It is well-known that the
white noise process has a constant spectral density function and thus does not exits in
the practice. Mean white, the random processes with lincar - fractional spectral density
function of the frequency describe well many real environmental loadings. These processes
contain an important class of colored noises which can be interpreted as the result of the
passage of white noise through a certain linear system with constant parameters, called
a forming filter. As an application of high order stochastic differential equations the
nonlinear oscillation of single degree of freedom systems subjected to the excitation of a
class of colored noises is outlined [9].
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2. EXCITATION OF WHITE NOISE

Let the dynamic system is described by a high order stochastic differential equation
in the form [1, 5]
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where a dot denotes time differentiation and z(*) = 5 «ay are constants, € is a positive
small parameter, F' and G are nonlinear functions. The excitation £ (t) is a zero mean

Gaussian white noise stationary process with unit intensity

E (g ()€ (t + 7)) =5 (7). (2.2)

The operator E denotes the mathematical expectation, §(7) is Dirac — Delta function.
The solution of the equation (2.1) depends on the roots of the characteristic equation of
the generating linear equation corresponding to (2.1) (¢ = 0)

L) =y + o™ + .+ op1p +an = 0. (2.3)

Suppose the characteristic equation (2.3) has N distinct double conjugate complex
roots p; = Aj — iy, f; = Aj + i€, A; < 0, M distinct real negative roots pon ik =
hr < 0; H distinct double pure imagine roots ponar+1 = Wi, HoNr+ = —iw;, where
|Ai]5 lhel, @5, w1 >>6,j=1,N, k=1,M,i=1,H, M+2N+2H =n.

Using Ito formula for changing variables it can be shown that the solution of the
equation (2.1) contains M + 2N rapidly decaying components and H slowly changing
ones. Thus at the first approximation the rapidly decaying components can be neglected
and the solution of the equation (2.1) is described by a H- frequency particular solution
of the form:

H
=) = Z a; (t) cos e, P (t)=wit+06,(t), (2.4)
I=1 '

where a;(t), 6;(t) are determined by the system of stochastic differential equations [5]
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To study the system (2.5), the corresponding Fokker — Planck equation for stationary
probability density function W (a, #) of amplitude and phase can be formed as follows
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The integration of the FP equation (2.7) is still a difficult problem. However, in some
cases, the solution of (2.7) can be obtained in the explicit form [5].

3. EXCITATION OF COLORED NOISE

When a mechanical system subjected to colored noise the problem can be introduced to
the high order differential equation subjected to white noise as considered in the previous
section. In fact consider a mechanical system whose motion is described in the form:

i+ W’z = ef (x, &) + Veq(t). (3.1)
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The excitation g(z) is a normal stationary random process, the result of the passage
of a white noise through the linear forming filter

7 n—1 5

d .d .
Lq(t) = 2—q(t) + > asroa(t) = b6 (1), (3.2)
=0

where as, b = const, {(t) is a white noise of unit intensity. In the equation (3.1) w is the
natural frequency, f is a nonlinear function of displacement and velocity. The spectral
density of the process ¢(t) can be easy obtained from (3.2)

Sp) = g (33)
) o T Gw) L (—iw) '
where

n—1
L) = A"+ ) s, (3.4)

s=0

Eliminating now ¢(¢) from (3.1), (3.2) one obtains

L(Z+ wzx) = eLf (z, ) + ebé (t). (3.5)

Thus, the equation (3.5) is of the form (2.1) and can be investigated using the method
considered above.

For illustration let g(¢) be an exponentially correlated stationary random process, with
following spectral density and correlation function

5% a 2 _—alT| 9 =)
Sq (w) = ?m, ]((1 (T) = (516 y T 2> E. (d())

The corresponding forming filter is
Lg=q(t)+ aq(t) = 61v2a€ (1) . (3.7)

According to the procedure described the solution of the system (3.1), (3.7) is defined
in the form:
z(t) =acosp, ©=—awsing, = —aw?cosy,
where a(t), 0(t) are Markov diffusion processes satisfying the equations
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0 = eus (a, 0) + VEVY (a,0) ,f (t) (3.8)
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Further, the solution to the corresponding FP equation can be performed as described
above.
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4. DUFFING OSCILLATOR SUBJECTED TO THE EXPONENTIALLY
CORRELATED RANDOM PROCESS

It is well-known that the exact solution of the Duffing oscillator subject to colored
noise it not available up to now. So, the approximate solutions are to be interested. So,
consider the Duffing system.

F + 2ehi + Wiz + eva® = Veq (1), (4.1)

where ¢(t) is the exponentially correlated random process (3.6). For this case, one gets

. df
f (z, &) = —2hd — yx®, Ejz: + af = —2hi — 20hi — 3va’i — ayad. (4.2)

Using the procedure described the second approximate probability density function of
amplitude and phase to the Duffing system (4.1), (3.6) is found as:
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In the limit case when the colored noise ¢(t) tends to as white noise 8¢ (t) , i.c.
Ji

a, 0 — +00, — 6% = const, (4.4)

the solution (4.3) tends to the following expression

2w?ha? !
W(a,p) = Ca exp{—iy—m—} [1 - %;a‘l (3+ 4cos2p + cosdy) |, (4.5)
which was obtained in [8].

Table 1. Mean — square amplitude of Duffing oscillation to colored noise
forwe=1,9=01lh=Ka=0e{=20

a < gF > < a° >
2.0 7.134 8.148
4.9 4.500 4.719
6.9 3.156 " 3.246
8.0 2.143 - 2.462
10.0 1.950 1.981

In Tab.1 the mean - square amplitudes of Duffing oscillation subject to colored noise
(3.6) are given when the bandwidth parameter a varies. It is seen that the mean — square
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amplitude decreases when « increases from 2.0 to 10.0, and for a = 10.0 the mean — square
amplitude is closed to the one (value 1.944) of the corresponding Duffing oscillator subject
to the white noise with intensity equal to 0.4. In Tab.1 the mecan — square amplitude of
corresponding linear system (a2)g, (y = 0), is also given. It is shown that in the case of
colored noise the effect of cubic non — linearity can be investigated by using higher order
averaging procedure proposed. A similar result was also obtained for the Duffing oscillator
(4.1) using the method of stochastic linearization [11, 12].

5. CONCLUSION

The averaging method is an useful tool for investigating both deterministic and sto-
chastic quasilinear system. In the stochastic problems, however, the method has often
been developed only for mechanical systems subjected to white noise excitations. In the
paper this method is applied to high order stochastic differential equations. The nonlin-
ear oscillations in high order deterministic differential equations were investigated in the
fundamental work of Prof. Nguyen Van Dao. As an application of high order stochastic
differential equations the nonlinear oscillation of single degree of freedom systems sub-
jected to the excitation of a class of colored noises is outlined. The results obtained show
that the higher order averaging method can also be successfully extended to the cases of
colored noise excitation.
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NGHIEN CUU PHUONG TRINH VI PHAN NGAU NHIEN CAP CAO
BANG PHUONG PHAP TRUNG BINH

Phuong phdp trung binh la mot cong cu tién loi trong viéc nghién ciru cdc hé 4 tuyén tién
dinh va ngdu nhién. Tuy nhién phwong phép nay thuong dwoc dp dung cho cic hé co hoc chiu
kich dong on trdng. Trong bai bdo phwong phép trung binh da dwgc phét trién cho phwong trinh
vi phan ngau nhién cip cao. Dao ddng phi tuyén trong cidc phwong trinh vi phan tién dinh cip
cao da dwoc GS. Nguyén Vin Pao nghién ctru mot cdch hé théng bang phwong phép tiém céin.
Mot trong cdc ng dung clia phwong trinh vi phan ngau nhién cap cao l1a co hé chiu kich dong
on mau. Céc két qua nghién ctru cho thdy phwong phdp trung binh ngau nhién bac cao cé thé 4p
dung hiéu qua cho co hé chiu kich dong 6n mau.



