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1. Introduction

One of the most important tasks of oscillation investigation in engineering is
to determine resonant regimes. Several problems related to parametric excitation
have been quite thoroughly examined in [1, 2}. The objective of this paper is to ex-
amine the influence of non-linear parametric excitation to resonant characteristics
of one degree of freedom system in which non-linear function contains derivatives
of second order (3, 4].

2. Averaging method for a system with second order deriva-
tive in the right side :
Consider an oscillating system described by the differential equation
i+ niz+ f(r) =eF(r,z,i,i) (2.1)

where f(r}, F(r,z,%,&) are periodic functions of 7 with the period 27, n is an
integer and € is a small parameter. Using the variable transformation:

& = r(r)cosnr + s(r) sinnr + x*('r)'

2.2
£ = —r{r)nsinnr + s(r)ncos nr + £*(r) (2.2)
where r and s are new variables,
a &=
J(r) = 5> + ) _(aj cos jr + bj sin jr),
i=1
(2.3)
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Equations for new variables will he

dr ) B * SR e TE e i+ -
_— = ———F(T, '+ rcosnT+S$siIanT, I — rnsSinnT + SN COs nT,
dr n
) #* —rn? cosnr — sn?sinnr — frsinnr + $ncosnr)sinnr,
ds & (2.4)
= —F(r,z* + rcosnr + ssinnr,£* — rnsinnr + sncosnr,
T on

£* — rn?cosnt — snlsinnr — fasinnr 4 $n cos nr) cos nr.

The averaging method can be applied to the equations (2.4) to find out its
approximate solutions [4]. First we write the equations (2.4) in the form:

dr € N . - .
::l? = ———-—F(T,:l: +rcosnT 4+ SSINNT, T — rrsSINNT + SNCOSNT,

n ,

#* — rn?cosnt — sn®sinn7) sin nr, (2.5)
ds ¢ . . . '
pri —F(r,z* + rcosnr + ssinnr, 2" — rosinnr + sncosnr,

n
#* —rn? cosnr — sn®sinnr) cosnr,
Averaging the right hand sides of these equations we obtain -
dr €
— = ——(Fsinnr) = e¢y(r,s),
dr n
is e (2.6)
— = —(Fcosnr) = eda(r,s
dT n( ) 962( 3 )!
2T
1 .
= — dr. 2.7
(=57 [ rir (27)
0

In general, it is impossible to integrate the equation (2.6). However, we can
find its important particular solution ry = comnst, sg = const, which satisfies
equations -

$1(ro,80) =0
(ro,50) =0, (2.8)
$2(ro,s0) = 0.

The equation system (2.8) is called amplitude equations since A = v/r? 4 52
is the amplitude of oscillation. The solution of equation (2.1) that corresponds to
(ro,$0) is called the stationary one.
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In order to study the stability of the solution (ro,s¢)} of the equation (2.6) we
consider an arbitrary solution (r, s), whose initial values are close to (ro,s0):
T =rg + br,

T . 8§ = 30-{-68.

Substitution of (2.9) into (2.6) and development of their right members into
power series of ér, és yield

dfiarr) - E(aatl)oér +-E(%§1-)063 T

d(;:) _ E(aaq?)o&r-l-e(%)"és + ey

where non-written terms are of higher order than one relatively to ér and és and
the symbols {...)o denotes that after differentiating we put r = ro, s = so.

(2.10)

- Necessary and sufficient conditions for asymptotic stability of stationary so-
lution are

(%%l-)o + (%)o <0 (211)

0¢1 042 I¢1 ¢,
(ar " 8s  0s 3r)o>0'

(2.12)

3. Amplitude-Frequency Equation of system with non-lin-
ear parametric excitation term

Examine resonant oscillations of an one degree of freedom system given by
the equation:

- 5
Z+ Az = E(Aa:c + Z gJ-a:j cosmr — B + ex® + e z? + 3212:?:) (3.1)

i=1
where the overdots denote derivation with respect to variable 7 and m is an integer.

In this case the expression F(r,z,,%) is of the form

5
F = Aaz + Zgj:c’ cosm7 — B + ex® + e x2? + erx’i.
i=1

Equation (3.1} can be now rewritten under the form:

g+ Az =¢eF(r,z,%,E). (3.2)
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Consider the resonant case A = n?, In the first approximation the solution of
he equation (3.1) is assumed of the form

T =rcosnr+ $SinnT

& = —rnsinnr + sncosnr (3.3)

%= —rn®cosnr — sn?sinnr

Substituting (3.3) into (2.6) and making some transformations, the following am-
olitude - frequency equation of stationary oscillation can be established

3e + nZe; — 3n2e, s —r 1 —8
2 i _ - 2n
(n o+ 1 A) , ns s +2g16m .

92 on 2rs 22_ 3n —2r 93 (o, [ —5°

93 4n 37‘ .s g4A2 n 4rs 94 .35 —45r% — 1275
—6m 2, 2]+ 26m 4 4 2 .2
5re + g 16 Hr® - 3s* - 6res
9‘4 —4sr3 + 4rs 5g5 A% sr? — 348
1653‘” (r —i—s r2 2) MY 32 ~35 m (31'3 — rg? (3.4)
L 95 54n — 10sr* — 20¢2%s 4 95 g6n —8% — Bsrt + 107253\ 0
32 m Gr - 101'.5 201'332 327" \ r®+5rst—107%2 . ) T 7
where
5 — { 0 for g #£1
b 1 for j =1.

Equation (3.4) always has a trivial solution A = 0. For A # 0 it follows from
equation (3.4) a formula relating amplitude to frequency. The results obtained are
recapitulated in the Table 1.

4. Stability Analysis of Resonant Oscillations

With the help of stability conditions {2.11), (2.12) we can establish stability
conditions for stationary solutions of the equation (3.1) of the parameter oscil-
lation. Final results obtained after rather complicated transformations are as
follows:
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Table 1

Resonance

possibilities Amplitude - frequency formulas

3e + n?e; — 3nlesy

m=n nza e 4 Az:l:
69 + 5944 \/(292 toA)AT o
292 +94A ¥ . 64
men  nleo _detrie—3n’e; . 16g) + 16g54” + 15g54%
. 4 16g; + 893 A% + 5g5 A*
16 8g41A2 + 5g: A%\ 2
X\/( g1 + 9332 + 9gs ) _ n2g?
2
m = 3n nza:_3€ﬁ-ne;—3n2e2A2:t
499 + 594A? \/(4g2 +3g4A2)2 A2 _ g
4gs + 394 A2 162 '
3e +ne; — 3n’e '
m = 4n n2a=-—— i 2A2:J:'
2g3 + 3gs A* \/(ya +gs4%)24% n2 g
293 + 2g5 A% 64
3 2e — 3 2 2A6
m = bn nza:—f-l_nil1 BN 9:62 — n2g?
3e + nley — 3n? 248
m = 6n 1'1,20c=——e-+—ne‘11 nezAzi 9-';22 ~n?g?

a. Casem=n

For stationary solution A # 0 stability conditions are

da
~ <0 ==
dA< or dA>0

for the sign before the symbol of square root in amplitude-frequency formula is
positive or negative, respectively.

For the trivial solution A = 0, stability conditions are

_ﬂ<03
2

n?g* > —ntol.
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Since these conditions are always satisfied, the solution A = 0 is stable.

h. Case m = 2n

For stationary solution A # 0 stability conditions are

da‘<‘0' or 2250
dA dA

for the sign before the symbol of square root in amplitude-frequency formula is
positive or negative, respectively.

For the trivial solution A = 0, stability conditions are
—ﬁ < 0:
1 2
n%g? > ng — (n2a) ,
it follows that the solution A = 0 is only stable outside resonant region.
¢. Casem =3n
For stationary solution A # 0 stability conditions are
d
-— <0 or o >0

dA dA

for the sign before the symbol of square root in amplitude - frequency formula is
positive or negative, respectively.

For the trivial solution A = 0, stability conditions are always satisfied, the
solution A = 0 is stable.

d. Case m = 4n

For stationary solution A # 0, stability conditions are

do do
a<0 or EZ>O

-for the sign before the symbol of square root in amplitude - frequency formula is
positive or negative, respectively.

For the trivial solution A = 0, stability conditions are always satisfied, the
solution A = 0 is stable.

~e. Case m = bn

For stationary solution A # 0, stability conditions are



for the sign before the symbols of square root in amplitude - frequency formula is
positive or negative, respectively.

- For the trivial solution- A = 0, stability conditions are always satisfied, the__ o

_solution A = 0 is stable
f. Case m = 6n

For stationary solution A 5 0, stability conditions are

do do
a(O 01'_&1)0

for the sign before the symbol of square root in amplitude - frequency formula is
positive or negative, respectively.

For the trivial solution A = 0, stability conditions are always satisfied, the
solution A = 0 is stable.

5. Numerical Simulation

The values of the following parameters are given for numerical simulation:
g1 =0.3; g =0.1; g3 =0.03; g4 =0.02; g5 = 0.008

e =0.01; e; =0.02; ey =0.02.

The remaining data are given according to each resonant case, such as:

+ For case m = n, given m = n = 4; § = 0.003; o = 0.05.

+ For case m = 2n, given m =6; 8 = 0.03; a = 0.

+ For case m = 3n, given m = 9; § = 0.03; a = (.05.

+ For case m = 4n, given m = 16; § = 0.03; a = 0.1.

+ For case m = 5n, give m = 15; § = 0.003; o = 0.08.

+ For case m = 6n, give m = 18; § = 0.003; o = 0.08.

The MATLAB program [5] has been used for determination of amplitude -
frequency curve according to formulas in the Table 1 and for integration of differ-
ential equation of oscillation with initial conditions determined from the amplitude
- frequency curves. '

Fig.1 represents the amplitude - frequency curves of resonant oscillations.

Fig.2 shown graphically oscillation in time domain. It is noticed that there
is a correspondence between the results obtained by analytic method and by nu-
merical simulation and that harmonic resonant oscillations depend strongly on the
damping parameter 3.
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Resonant curve in the case m = 2n = 6
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Vibration when m=n=4, ini.condition==(3,0]
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6. Conclusion

This article presented an applicationof-averaging method to the examination — -

of resonant oscillations in a system with nonlinear parametric excitation. An
analytic approach has provided amplitude - frequency equations and enabled to
examine stability regimes of possible resonant oscillations.

Analytic results correspond satisfactorily to the ones obtained by numerical
simulation. It is shown a strong dependence of periodic oscillations on damping
parameter 3. Further investigation of influence of # on oscillation regimes of the
system will be published later.

This work is completed with financial support from the Council for Natural
Sciences of Vietnam.
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VE ANH HUGNG CUA KICH PONG THAM SO PHI TUYEN
PEN TINH CHAT cONG HUGNG CUA HE DAO DONG

Trong bai bdo di ép dung phwong phdp trung binh @& khdo sit dao déng
¢béng hudng cda mdt hé dao dong <6 kich déng tham s8 phi tuyén. Bing cdng cu
gidi tich da thu dwoe phwong trinh bién d6 - tin s8 v khdo sét cic ché€ @ én dinh
cla céc dao déng cdng hwédng xuit hién. Céc két qud tinh toan gidi tich khd phu
hop véi céc k&t qud tinh todn bing s6. Cac két qud thu dwoc cho thiy sw phu
thudc rit manh cda cdc nghiém tuiin hodn vio tham s6 cdn 3.
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