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Abstract. In this paper, the problem of optimal design for eigen-frequencies of a longi-
tudinal bar using Pontryagin’s maximum principle (PMP) considering the influence of
concentrated mass is presented. The necessary optimality condition when simultaneously
maximizing system’s eigen frequencies and minimizing system’s weight considering the
influence of concentrated mass is established by using Maier objective functional in order
to control the final state of the objective functional. By considering eigen frequencies as
state variables, the analogy coefficient k in the necessary optimality condition is explicitly
determined. Numerical results obtained in this paper include: (1) the bar’s optimal con-
figurations as well as frequency responses in different cases of objective functions; (2) the
Pareto front for the system’s first eigen frequency and weight; (3) the influence of concen-
trated mass on the bar’s optimal configuration.

Keywords: Eigen frequencies, optimal design, longitudinal bar, concentrated mass, Pareto
front, Pontryagin’s maximum principle.

1. INTRODUCTION

Bars in longitudinal vibration may be adequately described by one-dimensional
continuous models [1]. Longitudinal vibration of bars could be easily found in ultrasonic
transducers, motors and machines or in measuring systems to determine material prop-
erties [2–5]. Therefore, determination of optimal eigen-frequencies (or eigen-values) as
well as configurations will provide useful solutions in practical applications of bars in
longitudinal vibration.

Pontryagin’s Maximum Principle (PMP) has been widely used to investigate the
optimal design for eigen-values of mechanical systems such as for thin walled I beams
[6, 7] or columns/rods [8–18] with different types of boundary and loading conditions.
However, several limitations are still found from the literature as below [19–21]:
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i) The optimal shape of a column of greatest efficiency was not determined directly
by maximizing column’s eigenvalues. Main reason is the fact that column’s eigenval-
ues were not considered as state variables; hence they were not included in objective
functions. Consequently, the optimal problems could only be solved by giving column’s
eigenvalues and minimizing column’s volume.

ii) Column’s cross-sectional shapes, which were considered as control/design vari-
ables, were subjected to unbounded and continuous variation.

iii) Optimal problems were performed with a single objective by minimizing the
column’s volume.

In our recent work [19–21], the problems of multi-objective optimal design for
eigen-frequencies of torsional shafts using Pontryagin’s maximum principle were pre-
sented with main contributions as follows:

i) The proposition of multi-objective optimal design for eigen-frequencies and
weight of circular bars under free torsional and longitudinal vibration using Pontrya-
gin’s maximum principle is written in general and dimensionless form and it is proved
for all cases of boundary conditions of the bars. The analogy coefficient k in the neces-
sary optimality condition is explicitly determined by considering eigen frequencies as
state variables, namely the state equations include eigen frequencies.

ii) Numerical simulations demonstrate the relationship between the optimal con-
figuration of the bar and their eigen modes. It is shown that optimal design of the bar
can be roughly carried out with the help of this relationship.

iii) The Pareto fronts and the boundary of the feasible region of objectives, eigen-
frequencies and weight of the bar, are constructed. These facilitate the estimation of the
level of the trade-off between objectives, and the selection of a suitable solution among a
set of competitive objectives.

iv) Equivalents about optimal shapes and eigen frequencies under specific bound-
ary conditions is investigated for bars of different lengths.

v) Bar’s cross-sectional diameters, which were considered as control/design vari-
ables, can be subjected to bounded and discontinuous variation.

In the present work, PMP is used to optimal design for eigen-frequencies of a cir-
cular bar in free longitudinal vibration considering the influence of concentrated mass.

2. PROBLEM UNDER CONSIDERATION

A circular bar of length L containing n concentrated masses me(e = 1÷ n) is sub-
divided into n − 1 segments (elements) as depicted in Fig. 1. Le and de are length and
diameter of ith element, respectively. The finite element model (FEM) of the bar includes
n nodes (1, 2, . . . , e, . . . , n− 1, n) and (n− 1) elements (1, 2, . . . , e, . . . , n - 2, n - 1).

The governing equation of a bar in free longitudinal vibration is written under the
following form

EA
d2u(x)

dx2 + ρAω2u(x) = 0, (1)

where, E and ρ are the bar material’s elastic modulus and mass density, respectively.
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Fig. 1. The model of the circular bar containing concentrated masses

u(x) is the displacement at position x. A is the cross-sectional area. ω is the bar’s eigen
frequency. Eq. (1) can be rewritten in the form of state differential equations as (N is the
internal force amplitude) 

du
dx

=
N

EA
dN
dx

= −ρAω2u
(2)

At the section containing the concentrated mass m, the equilibrium and continuum
conditions are expressed as {

N+ = N− −mω2u
u+ = u−

(3)

where N+ and u+, N− and u− are the internal forces and the displacements on the right
and left of the considered section, respectively. The fixed – free boundary condition is
considered as follows

u(0) = 0, N(L) = 0. (4)
Eqs. (2) can be easily solved by finite element method (FEM) with matrix of dy-

namic rigidity using Matlab software.

3. MULTI-OBJECTIVE OPTIMAL DESIGN OF THE CIRCULAR BAR
IN FREE LONGITUDINAL VIBRATION

PMP is here used to multi-objective optimal design of the circular bar in free longi-
tudinal vibration, in which maximizing system’s eigen frequencies and minimizing sys-
tem’s weight are simultaneously involved Optimization problem is stated as follows:
find de(e = 1÷ n− 1), de ∈ [dmin, dmax], which satisfies the objective function F

F = −(1− kωW)
ωi

ω0i
+ kωW

W
W0
→ min (5)

where ωi is the ith natural frequency, kωW is non-negative weight, kωW ∈ [0, 1), W is the
total weight of the bar, ω0i and W0 are the ith natural frequency and the total weight of
the initial bar (before optimizing), respectively.

Based on the state differential equations (2); the objective function F, Eq. (5) as well
as the boundary condition, Eq. (4); the following proposition is needed for solving the
multi-objective optimal design problem.
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Proposition: with the above-mentioned suppositions, Eqs. (2), (4) and (5), the Hamilton-
ian function H is maximized, and the analogy coefficient k between adjoint variables and original
variables is positive, where

H =
1
k

(
− N2

EA
− ρAω2

i u2
)
− kωW

W0
ρA→ max (in A) (6)

Proof :
The natural frequency ωi is here considered as a state variable. It means that the

role of ωi is equivalent to those of u and N in the state Eqs. (2). The total weight W is also
a state variable. Hence, the state equations (2) can be rewritten in the form

du
dx

=
N

EA
, (7a)

dN
dx

= −ρAω2
i u, (7b)

dωi

dx
= 0, (7c)

dW
dx

= ρA. (7d)

The equilibrium and continuum conditions at the section containing the concen-
trated masses m are given as below{

N+ = N− −mω2
i u

u+ = u− = u (8a)

Thus, {
δN+ = δN− −mω2

i δu
δu+ = δu− = δu (8b)

The objective function (5) can be rewritten in term of the Maier objective functional
as follows

F = −(1− kωW)
ωi(L)

ω0i
+ kωW

W(L)
W0

→ min (9)

The Hamiltonian function H can be established in the form as follows

H = pu
N

EA
− pNρAω2

i u + pωω′i + pWρA, (ω′i = 0) (10)

The adjoint equations can be expressed in the following form

dpu

dx
= −∂H

∂u
= ρAω2

i pN , (11a)

dpN

dx
= −∂H

∂N
= − 1

EA
pu , (11b)

dpω

dx
= − ∂H

∂ωi
= 2ρi AiωiupN , (11c)



Optimal design for eigen-frequencies of a longitudinal bar using . . . 5

dpW

dx
= − ∂H

∂W
= 0 . (11d)

The adjoint variables pu, pN , pω, pW are determined from the expression
n

∑
i=1

pi(L)δxi(L)−
n

∑
i=1

pi(0)δxi(0) + δF(L) = 0, (12)

where xi, pi are state and adjoint variables, respectively.
Thus,

pu(L)δu(L) + pN(L)δN(L) + pω(L)δωi(L) + pW(L)δW(L)− pu(0)δu(0)

− pN(0)δN(0)− pω(0)δωi(0)− pW(0)δW(0) + pN+δN+ + pu+δu+

− pN−δN− − pu−δu− − (1− kωW)
δωi(L)

ω0i
+ kωW

δW(L)
W0

= 0.

(13)

Or,

pu(L)δu(L) + pN(L)δN(L) + [pω(L)− 1− kωW

ω0i
]δωi(L) + [pW(L) +

kωW

W0
]δW(L)

− pu(0)δu(0)− pN(0)δN(0)− pω(0)δωi(0)− pW(0)δW(0)

+ δN−(pN+ − pN−) + [pu+ − pu− − pN+mω2
i ]δu = 0.

(14)

We obtain 

pu(L) = 0

pω(L) =
1− kωW

ω0i

pW(L) = − kωW

W0
pN(0) = 0
pω(0) = 0
pW(0) = 0

(15a)

pu+ = pu− + pN+mω2
i ,

pN+ = pN− . (15b)

Assigning {
pu = −NH
pN = uH

(16)

Combining Eqs. (11a), (11b) and (16) yields

duH

dx
=

NH

EA
,

dNH

dx
= −ρAω2

i uH.
(17)

Eqs. (15) can be rewritten as follows

uH(0) = 0,
NH(L) = 0. (18a)
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NH+ = NH− −mω2
i uH ,

uH+ = uH− . (18b)

It is seen that Eqs. (7a) and (7b) are similar in form as those of (17) and the boundary
conditions (4) and the equilibrium and continuum conditions at the considered section
(8a) are also similar in form as the conditions (18a) and (18b), respectively.

As a result, we reached the following conclusion: the same analogy between the
adjoint variables and the original variables holds, or

kNH = N,
kuH = u. (19)

Explicit expression of k can be determined by integrating the Eq. (11c) with appro-
priate conditions in Eqs. (15)

L∫
0

p′ωdx = pω(L)− pω(0) =
1− kωW

ω0i
=

2ρωi

k

L∫
0

Au2dx. (20)

Hence,

k =
2ρωiω0i

1− kωW

L∫
0

Au2dx > 0. (21)

Thus, the sign of the analogy coefficient kis positive for the case of maximizing ωi.
It was demonstrated by considering the natural frequency ωi as a state variable. The
Hamiltonian function (10) will be maximized if the condition (6) corrects.

It is noted that kωW ∈ [0, 1), in the case of kωW = 1, the objective function (5)
becomes W = min, a trivial solution could be found with de = dmin. If the objective of
weight is not needed, kωW = 0.

Thus, basing on the PMP in optimal design for above-mentioned system’s natural
frequency and total weight containing the influence of concentrated masses, the obtained
optimal necessary conditions consist of: the state Eqs. (2), the boundary conditions (4),
the design vector de ∈ [dmin, dmax] and the maximum condition of the Hamiltonian func-
tion (6).

4. RESULTS AND DISCUSSIONS

A fixed-free circular bar in free longitudinal vibration is considered with the elastic
modulus and E = 200 GPa and mass density ρ = 7845 kg/m3. The bar is divided by
n− 1 elements (n nodes). Element length is Le = L/(n− 1), where L = 2 m is the bar’s
length. The initial bar diameter is taken as d0 = L/10. During optimization, the bar’s
shape might change and element diameter de varies in the range de/d0 ∈ [0.5, 1].

4.1. Optimal design for eigen frequencies of the bar
Studied cases with the different objective functions and necessary optimality con-

ditions (NOC) are presented in Tab. 1.
Four dimensionless ratios are here defined as below:
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Table 1. Studied cases

Case de (e = 1 ÷ 20), m Objective function NOC (in A)
Case 1 0.2

Case 2 [0.1, 0.2] ω1 →max − N2

EA
− ρAω2

1u2 → max

Case 3 [0.1, 0.2] ω2 →max − N2

EA
− ρAω2

2u2 → max

Case 4 [0.1, 0.2] ω1 →min
N2

EA
+ ρAω2

1u2 → max

Case 5 [0.1, 0.2] ω2 →min
N2

EA
+ ρAω2

2u2 → max

Rω1 =
ω1 −ω01

ω01

, Rω2 =
ω2 −ω02

ω02

, Rω12 =
(ω2 −ω1)− (ω02 −ω01)

ω02 −ω01

, Rw =
W −W0

W0
,

(22)
where, ω01, ω02 and W0; and ω1, ω2 and W are the first and second frequencies and total
weight of the bar in cases de = d0 and optimal cases, respectively.

Variations of the bar’s optimal configurations versus the bar’s dimensionless length,
l/L with l ∈ [0, L], are presented in Fig. 2. It can be seen from Fig. 2 that in the cases
of maximizing bar’s eigen frequencies the bar’s optimal configurations are gradually
changed, whereas in the cases of minimizing bar’s eigen frequencies the variations of
the bar’s optimal configurations are in pulse shapes.
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Fig. 2. The bar’s optimal configurations in studied cases

Variations of Rω1, Rω2, Rω12, RW in cases 2, 3, 4, 5 are plotted in Fig. 3. Compared
to case 1, ω1 and ω2 vary from −41% to 44%, and from −41% to 42%, respectively. Re-
duction in the weight of the optimal bar falls in the range 34% ÷ 43% in cases 2-5. For
example, in case 2 (ω1 → max), ω1 increases 44% and W decreases 22%. The difference
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between ω2 and ω1, (ω2 − ω1), reduces 34% from that in case 1. Difference between the
first and second frequency is maximal in case 3, the ratio Rω12 reaches a maximal value,
about 71% and ω2 −ω1 = 13634 rad/s. ω1 increases and ω2 decreases in case 2, whereas
the inverse phenomenon is observed in cases 3 and 4.
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Fig. 3. Relative variation of ω1, ω2, ω2 −ω1 and W in studied cases

Frequency responses of the bar subjected to a harmonic axial force at the free end
of the bar in the studied cases are presented in Fig. 4, where f is the frequency of the
force. It is emphasized from Fig. 4 that appropriate configuration of the bar can be found
based on its working region and different purposes in using.
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Fig. 4. Frequency responses in studied cases

4.2. Multi-objective optimal design for the first eigen frequency and total weight of
the bar

In this subsection, the problem of multi-objective optimal design for the first eigen
frequency and total weight of the bar is considered. Hence, the necessary optimality
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condition, Eq. 6, becomes

H =
1
k

(
− N2

EA
− ρAω2

1u2
)
− kωW

W0
ρA→ max, (in A) (23)

where k =
2ρω1ω01

1− kωW

L∫
0

Au2dx, ω01 and W0 are respectively the first eigen frequency and

total weight of the bar in Case 1 (subsection 4.1).
From the multi-criteria optimization viewpoint, the Pareto front between the crite-

ria (−ω1 → min and W → min) is constructed according to the definition 6 in the book
by Coello et al. [22]. This definition says that x* is Pareto-optimal if there exists no feasible
vector x which would decrease some criterion without causing a simultaneous increase
in at least one other criterion (assuming minimization). Pareto front (or trade-off curve),
which include the set of points that bounds the boundary of the feasible region, of two
objectives is shown in Fig. 5.
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Fig. 5. Pareto front of two objectives −ω1 → min and W →min

In which, ω1Par (%) and WPar (%) are the normalized variation of the maximum
value of the first eigen frequency and the total weight of the bar, respectively. ω1up,
ω1low, Wup and Wlow are the biggest and smallest value of the first eigen frequency and
the total weight of the bar, respectively. ω1Ex and WEx are respectively the extremum
values of the first eigen frequency and the total weight of the bar determined from the
optimal condition, Eq. (23).

ω1Par =
100(ω1up −ω1Ex)

ω1up −ω1low
, WPar =

100(WEx −Wlow)

Wup −Wlow
.

From Fig. 5 it is seen clearly that all objectives can never be simultaneously reached
in best possibility or expected solution (point 0). The Pareto front allows evaluating dom-
inated and non-dominated Pareto optimal solutions and it also represents the possible



10 Bui Hai Le, Tran Minh Thuy

trade-off levels among different objectives (−ω1 → min and W → min) as explained in
Tab. 2. These results could be used as reference data for designers when designing bars
in free longitudinal vibration subjected to simultaneous constraints of eigen frequencies
and total weight of the system.

Table 2. Trade-off levels among different objectives

Segment Variation of ω1Par, % Variation of WPar, % Higher performance in optimizing

AB 1.6 - 9.7 W
BC 4.3 -8.5 W
CD 13.9 -20.3 W
DE 21.8 -23 W
EF 29.4 -20.9 ω1

FG 18.8 -8.3 ω1

4.3. The influence of the concentrated mass on the bar’s optimal configurations
In order to study the influence of the concentrated mass on the bar’s optimal con-

figurations, the bar containing a concentrated mass at the node 11 (m11) is considered.
The bar’s optimal configurations in the case of ω1 →max with different values of m11 are
plotted in Fig. 6.
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Fig. 6. The influence of the concentrated mass on the bar’s
optimal configurations in the case of ω1 →max

It can be found from Fig. 6 that, the concentrated mass m11 has significant influence
on the bar’s optimal configuration. When increasing the value of m11, the different among
diameters of the bar’s segments also increases. When m11 is equal to or higher than a
critical value (about 150 kg), the bar’s optimal configuration is in the pulse shape with
only two steps and the transitional point coincides with the location of the concentrated
mass m11.
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5. CONCLUSIONS

In this paper, the problem of optimal design for eigen-frequencies of a longitudinal
bar using Pontryagin’s maximum principle (PMP) considering the influence of concen-
trated mass is presented. The main results are summarized as follows:

- The proposition of multi-objective optimal design for eigen-frequencies and total
weight of a longitudinal bar using PMP considering the influence of concentrated mass
is written and demonstrated in dimensionless form. The analogy coefficient k in the
necessary optimality condition is explicitly determined by considering eigen frequencies
as state variables, namely the state equations include eigen frequencies.

- Numerical simulations present the variations of for eigen-frequencies and total
weight of the bar in the cases of maximizing and minimizing system’s eigen frequencies
as well as the bar’s frequency responses in different cases of objective functions.

- The Pareto front of the objectives (−ω1 → min and W → min) is constructed. It
facilitate the estimation of the level of the trade-off between objectives, and the selection
of a suitable solution among a set of competitive objectives.

- The influence of the concentrated mass on the bar’s optimal configuration is also
studied.

Results can be easily extended to other boundary conditions, higher frequencies of
the bar as well as to differential structures.
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of Mechanics-A/Solids, 18, (5), (1999), pp. 903–913. doi:10.1016/s0997-7538(99)00128-x.

[9] V. B. Glavardanov and T. M. Atanackovic. Optimal shape of a twisted and compressed
rod. European Journal of Mechanics-A/Solids, 20, (5), (2001), pp. 795–809. doi:10.1016/s0997-
7538(01)01165-2.

[10] T. M. Atanackovic and D. J. Braun. The strongest rotating rod. International Journal of Non-
Linear Mechanics, 40, (5), (2005), pp. 747–754. doi:10.1016/j.ijnonlinmec.2004.09.002.

[11] T. M. Atanackovic and B. N. Novakovic. Optimal shape of an elastic column on
elastic foundation. European Journal of Mechanics-A/Solids, 25, (1), (2006), pp. 154–165.
doi:10.1016/j.euromechsol.2005.06.008.

[12] T. M. Atanackovic. Optimal shape of a strongest inverted column. Journal of Computational
and Applied Mathematics, 203, (1), (2007), pp. 209–218. doi:10.1016/j.cam.2006.03.019.

[13] T. M. Atanackovic. Optimal shape of a rotating rod with unsymmetrical boundary condi-
tions. Journal of Applied Mechanics, 74, (6), (2007), pp. 1234–1238. doi:10.1115/1.2744041.

[14] Z. D. Jelicic and T. M. Atanackovic. Optimal shape of a vertical rotating col-
umn. International Journal of Non-Linear Mechanics, 42, (1), (2007), pp. 172–179.
doi:10.1016/j.ijnonlinmec.2006.10.020.

[15] D. J. Braun. On the optimal shape of compressed rotating rod with shear and ex-
tensibility. International Journal of Non-Linear Mechanics, 43, (2), (2008), pp. 131–139.
doi:10.1016/j.ijnonlinmec.2007.11.001.

[16] T. M. Atanackovic, B. B. Jakovljevic, and M. R. Petkovic. On the optimal shape of a column
with partial elastic foundation. European Journal of Mechanics-A/Solids, 29, (2), (2010), pp. 283–
289. doi:10.1016/j.euromechsol.2009.08.003.

[17] V. B. Glavardanov, D. T. Spasic, and T. M. Atanackovic. Stability and optimal shape of Pflüger
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