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NATURAL FREQUENCY ANALYSIS OF
CRACKED BEAM
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Abstract. The model of cracked one-dimensional structure has been treated as two uniform
beams connected by an equivalent rotation spring at the crack location. The frequency equation in
bending vibration of the system is obtained in general form for arbitrary boundary conditions at both
ends used for analysing the natural frequencies as function of crack pesition and magnitude. This
investigafion allows to carry out general procedure for identificaticn of position as well as magnitude

of the crack by natural frequencies measured experimentally.

Introduction

The crack occurred in vibrating members (one-dimentional structures) can be treated in dif-
ferent manners. Yuen {1] characterized the crack by a local change in modulus of elasticity and
used the FEM to study the eigenprameters of cracked cantilever. Adams et al [2] represented crack
as change in axial vibration receptance of a bar at the crack location. Dimaroganas et al. [3, 4, 5]
suggested to model the crack by an equivalent rotation spring, connecting the beam segments on
both sides of the crack location. The last crack model has been used for studying effect of crack
on the vibration eigenparameters of beam in particular cases of boundary supports, For example,
natural frequencies were analyzed in dependence on crack parameters for cantilever in [6] and for
simply supported beam in {7]. General investigation of cracked beam was done in [9, 10].

In present paper the Dimaroganas’s crack model is utilized to develop general (independently
on boundary conditions} procedure for analyzing influence of the crack location and magnitude
on the natural frequencies. At first, general equation for frequency parameter X is derived inde-
pendently upon the boundary conditions of supports, then it is used for studying the dependence
of the A on the crack parameters: its sit £ and magnitude & for classical cases of the boundary

conditions.
Notation
E - Young’s modulus; v - Torsion stiffness of spring;
E - Cross section area; f - Frequency (Hz);
J - Moment of inertia; w=12rf;
¢ - Density; A - Frequency parameter;
L - Total length; f = EJ/vL - Magnitude of dramage;

1. Model of cracked beam

Consider a damaged beam with structural parameters: E| F, J, p, L for arbitrary support
conditions at the ends. Let crack be located at some unknown position yy, which divides the beam
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into 2 parts 1, 2 as shown in Fig. la. Accerding to {3, 4, 5|, the crack may be represented by a
torsional spring connecting the specimens of beam at the crack position. Stiffness v of the spring
can be calculated by the formulas

d omt)

here, h - the height of cross section of the béa,m, a - the depth of the crack and function [ (z) has
the form

I(z) = 1.86242° - 3.952° + 16.3755% — 37.2262° 4- 76.812° — 126.92" + 1722° — 143.972° + 66.562'°.

Introducing magnitude of the crack by the value: § = EJ/vL, we have

4= 5.3;6}&1(%) )

Therefore, two limiting cases can be underlined: Undamaged beam: § = 0 (or v = cc) because for
a = 0 function J(a/h) = 0, and completely damaged one, i.e. a = h, for which

B = Poc = 5.346(h/L}I{1) = 115.15{h/L).

T"L s <} | |
e = ——

Ftg. 1. Model of the cracked beam

2. Frequency equation

Condidering only the flexure of the beam, the equation of free bending vibration in the interval
{0, L), except the ends y = 0, y = L and crack position y = yo, has the form

MWy, ¢ 2 ¢

BI=— o . (2.1)

The function W {y, t} satisfies boundary conditions at the ends of beam and compatibilty condition
for displacements, moments and shear forces of both segments at the crack

Wiy —0,t) = W{z +0,t);

W'z = 0,t) = W"(z+0,t);
EJW"(yo - 0,t) = EJW"(yo + 0,2); (2.2)
vW'(yo — 0,8) + EJW" (yo — 0,8) = vW'{yo + O,t).
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The notation yy —~ 0 and y + 0 mean that they belong to segments 1, 2 respectwely in both
sides of the crack position.

By the transformation ¢ = y/L — 0.5 the equation (2.1) becomes

34W(§r tj + pFL4 82W(g, t)

EJ e 7 - gt2

=0

with the condition (2.2}, now taken the form
Wz —~ 0,t) = W(z + 0,t);

W"(z - 0,t) = W"{z +0,¢);
W"(z —0,t) = W"(z +0,¢);
W' (z—0,t)+ pW"(z ~ 0,t) =W (z + 0,¢t)
where z = yo/L —0.5 and § = EJ/vL.
Assuming W{¢,t) = ¢{¢) sinwt, where w - natural frequency and ¢(¢) - mode shape, last
equation and condition lead to

¢(IV)(S.) —-Mg)=0; —-05<¢ <05

4 2PF
M =LYy 57

and
#(z—0)=¢(z+0); ¢"(z~0)=¢"(z+0); ¢"(z—0}=¢"(z+0);

¢'(z—0)+ f¢"(z - 0) =¢'(z + 0)

Suppose that at the ends of the beam, ¢ = +0.5, boundary conditions are given as one of the
well known classical cases, for example, fixed ends. In general, bending vibration mode shape of
this beam can be written in the form: '

¢( ) = { C1Li(g) + CaLafs) =41(¢), —05<¢<z

OsLs(s) + CuLa(¢) = dale), = <¢<05. (2:3)

Functions L;(¢), + = 1,...,4 are determined by boundary condition at the ends and all of
them satisfy equation {these functions for various boundary conditions are given in Appendix 1}):

::4 {z. (s‘)} - X Li(g) =o.

C = {C4,C5,Cs,C4}T are constants determined together with so-called frequency parameter X
from compatibility conditior at the x

$1(x) = da(2);  #Y(z) = ¢¥(ﬂ=); #1'(=) = 4 (), (2.4
#1(z) + A9 (z) = ¢3(2), ;
where the prime denotes differentiation with respect to ¢.
Substituting (2.3) into (2.4) yields:
-~ A(Mz,B)C =0, (2.5)
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where matrix 4 has the form:

Ly(4) La(61) —Ly(¢a) —L4(£2)
4= ) L&) +BALY(G) - Lp(&) + AALE(S)  —Ls(£2)  —Li(Ca) (2.6)
Li(&:) L3(&) —-L3(&) ~Li(%) '

ey E) L&) -LiE)

g =Mz +05); & =Az—0.5)
3
For existence of C = {C}, Cs, C3, C4}7, X must satisfy equation:
det A(\,z,8) = F()\, z,8) =0, (2.7)

called frequency equation. Frequency parameter A, as a solution of (2.7), is a function of damage
parameters z, 5: ‘

A= A(z:ﬁ)s

and the natural frequency of the beam will be:

EJ N2 1 [EJrA\2
ey o e (E)
Introducing matrices:

TEE
A7) =3 Lige, Lﬁ(ei)) “Li(e) L) [ (2:)

L&) L3'(6) -Lg'(&) -LY'(&)

d
- Lufe)  b(e) ~hle) -Li)
. _ " It O . 0
g = A B e 29)
L&) L&) —L3'(&) —Li'(&)
we get
F()(A,Z) = detAu(A,z) - F()\,GJ,O},
Fy(\,2) = detA; (A, z) = ?F—(;’Bfﬂ - (2.10)

In fact, the first equality of (2.10} is evident by substituting # = 0 into (2.6). The second one can
be obtained by differentiating determinant det A(}, z, ) with respect to §. Considering (2.10) as
a differential equation of F'(}, z, f} with initial condition at § = 0, we have:

F(M\z,8) = Fi()2)8 + Fo(), z). (2.11)

Thus, the frequency equation {2.7) can be rewritten as:
BF (M ) + Fo(A, z) =0, ' (2.12)
From here, particular equations, corresponding limiting cases of damage will take the form:
| Fy(A, z) = det Ap(X, 3} =0, (2.13)
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for undamaged beam, and:

Fi(A,z) =det A (A, z) =0, (2.14)
for other limiting case. Let A(f, =}, A0, Al {x) be the roots of equations (2..12), (2.13) and (2.14)
respectively. '

3. Sensitivity of the frequencies

Let us consider, at first, equation (2. 13) Differentiating function Fy(}, z} = det Ag(A, x) with

respect to z gives
3R (A 1)

dz
Consequently, as well known the frequencies of undaniaged beam do not depend on position .

=0 or Fy(Az)=F(}).

Since A(B, z) is a solution of (2.12) we have

ﬁF].[A(ﬂ:m):x]'i"FO[A(ﬁ: x” =0! (3'1)
consequently
— — ) - A — — _
Fif.n) + ﬁmj—ﬁ + Fm—gg =0, AFu22 4+ pFr +Tonor =0,
Fy = Fi\(,z),3] = F1(B,2), Fin= ——[)«(ﬁ,m) z) = F1r (8, 2),

6F1 aFO

Fi, P\(ﬂ:z):i'] Fi.(8,3), ?oa-—[/\(ﬁa z)] = Fox(B, )

(with the functions F1y, Fiz, Foa calculated from given functions Fy, Fi)

In the end, we get

aA -Fl(ﬂj m)
=R f — ) = 3
3/9 p(8,2) = : ﬁFlf\(@_m)-{-Fo,\(ﬂ;x} (3.2)
L SR p— L —
31 ’ AF (B, z) + Foa(#, z)
In the case, if 8 = fy + 68, = zo + 6z, we get approximately
AX = Ry (o, %0)88 + Ra{fo, 30)63. (3.3)

This equation may be useful for detection of the crack parameters if the changes of the frequencies
will be given.

Furthermore, let us consider the position = of crack, at which the change of the frequency
parameter A(4,z) in comparison with one of uncracked beam A reaches extremum.

At first, we consider the crack position z*, for which the crack magnitude does not affect the
natural frequencies of the beam.

Theorem 1. The eritical points £* cen be found from the equation
F (%24 =0, (3.4)
where A is the solution of (2.13), 1.e. Fy(Ao) = 0.
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In fact, it means that at such position z* the solution of the equations {2.12) A(f, z*) = const
Y8 or _
aA Fi g,z
a ——Rﬂ(ﬂ )=_ o t(ﬁ: ......) .
_ . g BF1A(B,2*) + Fox(B, 5%}
. From here it follows that Fi[A(8,2*),2*] = 0, Vf and due to (3. 2) it y1e1ds Fo[ [ﬁ,z*)] =
Therefore, it must be A(8, z*) = A%, Thus, we have

A(ﬁlx*]= { ) AO vB.

=0, Vg

So, at the position z* equations (2.13), (2.14) have the same solution A”. The position z*, if
it exists, is called critical point for given A°. Certainly, critical point is related with every solution
A% separately, i.e. various solution \® of the equation {2.13) may have different critical points. In
addition, a given solution may have either no or more than one critical point. On the other hand,
critical points are that, at which corresponding bending moment is equal to zero. Because of this,
damage occurred at the critical points of a mode has no influence on the corresponding natural
frequency. '

Now we investigate those points in the beam, at which the change of frequencies is a maximuam
for a value of crack magnitude § # 0. Such a position denoted by ™. will be called the most
gensitive.

Theorem 2. The most sensitive position ™ of a crack 1s that, where for given § > O the equaitons
(2.12) and
le()\, Z) =0 - (35)

have the common solution with respect to A.

As shown in the Theorem 1, minimal change of natural frequencies, which are equal to zero, has
appeared at the critical points and corresponds to § = 0, while common solution of the equations
{2.12) and (3.5) may contain the critical points only in the case of uncracked beam (8 = 0). When
beam has cracked (§ > 0) the common solution of the mentioned equations consist of only the
most sensitive points.

Likely to the critical crack position, the most sensitive crack position is also related to each
frequency differently. Every frequency has itself most sensitive to the crack position, so that
knowing these positions may be helpful for crack detection.

4. Numerical examples

For illustration, here three wellknown cases of boundary supports (simply supported, clamped
both ends and cantilever) are investigated numerically. Solutions of equations (2.13), {3.1) are
calculated and given in the Table 1. In particularity, for gimply supported beam analytical solutions
of the equations are

)t?cr-kvr, k=1,2,...; Zgm=—-05+m/k, m=1,...,k—1

General solution of the equation (2.12) and functions (3.2) have been calculated as a function
of z for different values of 8. Graphics of the obtained functions are presented in Fig. 2, 3, from
which one can make the following conclusions:

- Straight lines corresponding zero crack magnitude (undamaged) really show the 1ndependence
of the frequencies on the position z,

- Frequencies decrease with the growth of the crack magnitude at any position of the crack.
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a) Simply supported beam
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Fig. 2. The dependente of three fraquencies on the crack position % for different values of
crack magnitude (from 0.0 to 4.0) in different cases of the boundary conditions
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Fig. 8. Sensitivity of the first frequency on the crack parameters in dependence
on the crack position for various values of the crack magnitude
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- The existence of the critical and most sensitive points is clearly shown in the figure, they
validate the theorem 1, 2 and given in Table 1.

- In addition, graphics in Fig.3 show also the positions of crack, at which for given § the
change of the frequencies will be maximum and the more crack magnitude the lower frequencies.

Table 1. Three first frequencies of undamaged beam and corresponding
their critical points in different cases of boundary supports

Type of Value of the Critical points Total
boundary freq. parameters - quan-
condition  of intact beam 1 2 3 4 tity
1. Simply 2§ = 3.14159 - - - - 0
supported A9 = 6.28319 0.9 - - - 1

beam Ag = 0.42478 - 0.1666 + 0.1666 - - 2

_ A0 =187510 - - - - 0

2. Cantilever A =4.69409 - 0.2836 - - - 1
A3 =7.85474 - 0.3673 - 3.9E-3 - - 2

3. Beam A =4.73004 - 0.2759 -+ 0.2759 - - 2
with A =7.85318 - 0.3674 0.0 + 0.3674 - 3
fixed ends A0 =10.9954 -0.4046 -0.1432 + 0.1432 + 0.4046 4

5. Conclusion

The main results obtained in this stady can be underlined as follows:

‘1. While the previously published papers have dealt with the cracked beam in particular
cases of the boundary supportg, the present work gives general equations for analysing natural
frequencies in dependence on the crack parameters, These equations can be efficiently used to
detect the position and magnitude of the crack by measurements of natural frequencies.

2. The equations established have been used for investigating the natural frequencies as
function of crack parameters in the classical cases of boundary conditions. Here, there have been
‘carried out the positions of the crack, at which the crack magnitude does not influence cn the
natural frequencies, This fact is useful for detection of the crack position if a changeless of some
measured frequencies in comparison with those of the undamaged beam will be recognized.

3. The numerical resulis confirm the efficiency of the equations and exactness of the theoretical
results. One shows also that the change of the frequencies is more considerable at the small values
of crack magnitude. '

4. The crack detection problem using the equations will be investigated in an other paper.

This publication is completed with financial support from the National Basic Research Pro-
gramme in Natural Sciences.
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Appendix 1. Functions L;(z), j=1,...,4

Introducing functions

Ki(§)=sin{—sh¢; Ks(é) =siné +sh¢;
K;(¢) = cos € —chg; Ky(€) =cosé +ch¢;
satisfying
Klsz, K£=_K3; 'K;:K‘i, K«;="K1
the fanctions L; (€), L2(€), La(€), L4(€) in matrices A;, Ao for different cases of boundary condi-
tions have the following form

1. Simply supported heam

Ly(§) = La(§) =sin g Lo(€} = Ly(§) =sh €
Li(§) = L5(€) =cos g L5(&) = Liy(€) =ch¢

1€ =L5(§)=—sin&  Ly(€) = L{(§) =sh¢
LY'(€) = Ly (¢} = —cos §;  Ly'(€) = Ly'(€) = ch ¢

2. Beam with fixed ends

Li(§) = Ls(¢) = K.(§); La(€) = Ly(8) = Ka(€);
Li(€) = Lg(€) = Kal€);  La(§) = Li(€) = —Ks(8);
Li(§) = L3(§) = —Ks(§); | Lz(€) = Li(€) = —Ku($);
Ly'(€) = L3'(8) = - Kau(€);  L3'(8) = LY'(¢) = K. (9)

In this case, we have a symmetrical function Fy(}, z) with respect to z.

3. Cantilever beam

Li(¢) = Ku(€);  Le{8) = Kal€);  Ls(§) = Ks(€);  La(4) = Ku(€);
Li(8) = Kx(€); Lu(8) =-Ea(8); Ly(€) = Ku(€);  Ly(&) = —K1(8);

L{(¢) = —Ka(€); L5(€) = —Ka(8); L5(8) = —Ki(&); Li(£) = -K:(¢)

LY'(8) = —Ka(€); L'(§) = Ku(8);  L3'(€) = —Ka(é); LY'(€) = Ka(8)
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PHAN TICH TAN SG RIENG CUA DAM C6 VET NUT

Trén cé & mé hink vé nit dwge mé t4 bing mdt 1 xo xodn ndi hai phin dim ma vét nit
tac nén:

- X4y dung dwege cdc phwong trinh tin s3 tong quét cho cdc disu kién bién khéc nhau v phy
thude vio cic tham s v& nét nhw vi trf vi méc 46 mit;

- Phian tich sy phu thudc cia tin s8 ridng d6i véi cde didu kién bidn khic nhau vio cic tham
8 vét nit; ‘

- Sy phu thudc niy dwge nghién ctru bing s8 vé dwoe mink hoa bing céc b tranh diy dd
qua céc 4B thi vi bing bidu.

Nhirng k&t quid ndy 1a co s& quan trong cho viéc phat hién va xik If cdc v nit trong cic k&t
cdu céng trinh thwe nhe ciu, ¢t dién hay cdc nhi cao ting v.v...
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