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ANHARMONIC EXAFS AND ITS PARAMETERS OF HCP
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Abstract. A new theory for ab initio calculation of the anharmonic Extended X-ray Ab-
sorption Fine Structure (EXAFS) and its parameters of hcp crystals has been developed
based on the single- shell model. Analytical expressions for the anharmonic contributions to
the amplitude and to the phase of EXAFS and a new anharmonic factor have been derived.
The EXAFS cumulant expressions are formulated based on the anharmonic correlated Ein-
stein model. The EXAFS function and its parameters contain anharmonic effects at high
temperature and appoach those of the harmonic model at low temperature. Numerical results
for Zn agree well with the experimental values.

I. INTRODUCTION

The harmonic EXAFS ab initio calculation method [1] works very well at low tem-
peratures because the anharmonic contributions to the atomic thermal vibrations can be
neglected. But at different high temperatures the EXAFS spectra provide apparently dif-
ferent structural information [2-19] (Fig. 1) due to the anharmonicity, and these effects
need to be evaluated.

a) b)
Fig. 1. EXAF spectra χ k3 (a) and their Fourier transform magnitudes (b) of Zn at
77 K (solid) and 300 K (dash) measured at HASYLAB am SESY, Germany [16].

The formalism for including anharmonic effects in EXAFS is often based on the cu-
mulant expansion approach [3,4], and the anharmonic effects in EXAFS have been valuated
by the ratio methods [3-9] in which the EXAFS and their Fourier transform magnitudes
at two different temperatures are compared to deduce the anharmonic effects in EXAFS.
Some progresses have been done towards ab initio calculation of EXAFS including anhar-
monic contributions [10-14] either by an empirical procedure [10-13] or by an analytical
procedure [14] for fcc crystals.

The purpose of this work is to develop a new theory for ab initio calculation of
EXAFS including anharmonic contributions of hcp crystals by deriving analytical expres-
sions for the anharmonic contributions to the amplitude and to the phase of the EXAFS.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229035745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ANHARMONIC EXAFS AND ITS PARAMETERS OF HCP CRYSTALS... 75

A new anharmonic factor has been developed to determine the anharmonic contribution
to the amplitude. To calculate the cumulants contained in the derived expressions the
quantum statistical approach with anharmonic correlated Einstein model [13] has been
used in which the parameters of the anharmonic effective potential are based on our
calculated Morse potential that characterizes the interaction between each pair of atoms,
and the anharmonicity is described by the cumulants obtained by the calculation of the
phonon-phonon interaction process [13,19]. Numerical results for Zn are discussed and are
found to be in good agreement with the experimental data [16].

II. FORMALISM

According to the cumulant expansion approach the EXAFS oscillation function is
given by

χ(k) = F (k)
e−2R/λ(k)

kR2
Im

{
eiΦ(k) exp

[
2ikR +

∑

n

(2ik)n

n!
σ(n)

]}
, (1)

where F (k) is the real atomic backscattering amplitude,Φ is the net phase shift, k and
λ are the wave number and the mean free path of the photoelectron, respectively, and
σ(n) (n = 1,2,3, . . . ) are the cumulants. They appear due to the thermal average of the
function exp (i2kr) in which the asymmetric terms are expanded in a Taylor series about
R = 〈r〉 with r as the instantaneous bond length between absorbing and backscattering
atoms and then are rewritten in terms of cumulants.

This EXAFS oscillation function including anharmonic effects contains the Debye-
Waller factor e−W (k,T) accounting for the effects of the thermal vibrations of atoms. Based
on the analysis [3-5,13] of cumulant expansion we obtain

W (k, T ) =2ikσ(1) (T ) − 2k2σ(2) (T ) − 4ikσ(2) (T )
(

1
R

+
1

λ(k)

)

− 4
3
ik3σ(3) (T ) +

2
3
σ(4) (T )k4 + · · ·

(2)

where σ(1) is the first cumulant or net thermal expansion; σ(2) is the second cumulant which
is equal to the mean square relative displacement (MSRD) or Debye-Waller factor σ2; σ(3)

and σ(4) are the third and the fourth cumulants, respectively. The higher cumulants are
not included due to their small contributions [9,13,14,18].

To consider anharmonic contributions to the MSRD we used an argument analogous
to the one [20] for its change due to the temperature increase and obtain

σ2 (T ) − σ2 (To) = (1 + β(T ))
[
σ2

H (T ) − σ2 (To)
]
, β(T ) = 2γG

∆V

V
, (3)

where γG is Grüneisen parameter, and ∆V/V is the relative volume change due to thermal
expansion,To is a very low temperature so that σ2 (To) is a harmonic MSRD. This result
agrees well with the one in another consideration [5] on the change of the MSRD. Deriving
further Eq. (3) we obtain the total MSRD

σ2 (T ) = σ2
H (T ) + β (T )

[
σ2

H (T ) − σ2 (To)
]
. (4)
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It is clear that the MSRD approaches the very small value of zero-point contribution σ2
0

when the temperature approaches zero, i. e.,

σ2 (To) → σ2
0 for To → 0. (5)

Hence, it can be seen in Eq. (4) that the total MSRD σ2 (T ) at a given temperature T
consists of the harmonic σ2

H (T ) and the anharmonic σ2
A (T ) contributions

σ2 (T ) = σ2
H (T ) + σ2

A (T ) , σ2
A = β (T )

[
σ2

H (T )− σ2
0

]
. (6)

This separation will help us to determine the anharmonic contributions to the EXAFS
amplitude.

The anharmonic correlated Einstein model [13] is now used widly in EXAFS data
analysis [14,15,17,22-27]. In the present approach we apply this theory to the calculation
of the cumulants where the effective interaction potential is given by

Veff (x) ∼=
1
2
keffx2 + k3x

3 + · · · = V (x) +
∑

j 6=i

V

(
µ

Mi
xR̂12.R̂ij

)
, µ =

M1M2

M1 + M2
. (7)

Here x is the deviation of instantaneous bond length between two atoms from equi-
librium, R̂ is the bond unit vector, keff is effective spring constant, and k3 the cubic
parameter giving an asymmetry in the pair distribution function. The correlated Ein-
stein model may be defined as a oscillation of a pair of atoms with masses M1 and M2

(e.g., absorber and backscatterer) in a given system. Their oscillation is influenced by
their neighbors given by the last term in the left hand side of Eq. (7), where the sum i is
over absorber (i = 1) and backscatterer (i = 2), and the sum j is over all their nearest
neighbors, excluding the absorber and backscatterer themselves whose contributions are
described by the term V (x).

To model the asymmetry we replaced the harmonic potential by an anharmonic one,
e. g., a Morse potential expanded only to the third order due to small anharmonicity in
EXAFS

V (x) = D
(
e−2αx − 2e−αx

) ∼= D
(
−1 + α2x2 − α3x3 + · · ·

)
, (8)

where x is the deviation of instantaneous bond length between the two atoms from equi-
librium, D is disociation energy and 1/α corresponds to the width of the potential.

Applying Eq. (8) to the effective potential of the system of Eq. (7) (ignoring the
overall constant) we obtain

keff = 5Dα2

(
1 − 3

2
αa

)
= µ ω2

E ; k3 = −5
4
Dα3 ; θE =

~ωE

kB
, (9)

where kB is Boltzmann constant; ωE ,θE are the correlated Einstein frequency and tem-
perature, respectively.

We use the definition [13,19] y = x − a as the deviation from the equilibrium
value of x at temperature T to rewrite Eq. (7) as the sum of the harmonic contribution
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and a perturbation δ V due to the weak anharmonicity (ignoring the overall constant for
convenience)

Veff (y) =
1
2
keffy2 + δ V (y) , δ V (y) = 5Dα2

(
ay − 1

4
α y3

)
. (10)

To use phonon-phonon interaction procedure in quantum statistics [21] we express
y in terms of anihilation and creation operators, â and _

a
+
, i. e.,

y = κ
(
â + â+

)
; κ2 =

~
2µωE

(11)

and use harmonic oscillator state |n〉 with eigenvalue En = n~ωE(ignoring the zero point
energy for convenience). The MSRD is described by

σ2 =
1
Z

Tr
(
ρ y2

)
=

1
Z

∑

n

e−nβ ~ωE 〈n|y2 |n〉 , (12)

where due to weak anharmonicity in EXAFS we neglected [19] the small perturbation δρ

in the statistical density matrix ρ = ρ0 + δρ so that the canonical partition function is
given by

Z ≈ Trρo =
∑

n

e−nβ ~ωE =
∞∑

n=0

zn =
1

1 − z
; β = 1/kBT. (13)

For the odd cumulants (m = 1, 3, . . . ) we calculate

〈ym〉 =
1
Z

Tr (ρym) =
1
Z

∑

n,n′

e−βEn − e−βE′
n

En − E ′
n

〈n| δ Veff

∣∣n′〉 〈
n′∣∣ ym |n〉 . (14)

Using the above results in first-order thermodynamic perturbation theory with con-
sideration of the phonon-phonon interaction for taking into account the anharmonicity we
obtain the cumulants

σ(1) (T ) = σ(1)
o

1 + z

1 − z
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4
σ2, σ(1)
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3α

4
σ2
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1 − z
, σ2
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10Dα2
, (16)
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where σ
(1)
o , σ2

o , σ
(3)
o are the zero-point contributions to the first, second and third cumu-

lant, respectively.
Based on the derived cumulants and the correlated Einstein frequency we calculated

the relative volume change due to thermal expansion ∆V/V and Grüneisen parameter γG.
By substituting the obtained results in Eq. (3) we derived an anharmonic factor

β (T, R) =
9~ωE

80D
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This factor is proportional to the temperature and inversely proportional to the shell
radius, thus reflecting a similar property of anharmonicity obtained in an experimental
catalysis research [2] if R is considered as particle radius.

The anharmonic contribution to the EXAFS phase at a given temperature is the
difference between the total phase and the one of the harmonic EXAFS. On the left hand
side of Eq. (2) the 2nd and the 5th terms contribute to the EXAFS amplitude. Only the
1st, the 4th terms and the anharmonic contribution to the MSRD in the 3rd term are
anharmonic contributions to the phase. Therefore, from this equation we obtain

ΦA(T, k) = 2k

[
σ(1)(T )− 2σ2

A (T )
(

1
R

+
1

λ(k)

)
− 2

3
σ(3)(T )k2

]
. (19)

The 4th cumulant is often very small [9,13,14,18]. This is why we obtained from
Eqs. (1, 2), taking into account the above results, the temperature dependent K-edge
EXAFS function including anharmonic effects as

χ(k, T ) =
∑

j

S2
0Nj

kR2
j

Fj(k) e−(2k2σ2(T )+2Rj/λ(k)) sin
(
2kRj + Φj(k) + Φj

A(k, T )
)

, (20)

which by including Eq. (6) is resulting in

χ(k, T ) =
∑

j

S2
0Nj

kR2
j

Fj(k)e−(2k2[σ2
H(T )+σ2

A(T )]+2Rj/λ(k)) sin
(
2kRj + Φj(k) + Φj

A(k, T )
)

,

(21)
where S2

0 is the square of the many body overlap term, Nj is the atomic number of each
shell, the remaining parameters were defined above, the mean free path λ is defined by
the imaginary part of the complex photoelectron momentum p = k + i/λ, and the sum is
over all atomic shells.

It is obvious that in Eq. (21) σ2
A (T ) determines the anharmonic contribution to the

amplitude characterizing the attenuation, and ΦA(k, T ) is the anharmonic contribution
to the phase characterizing the phase shift of EXAFS spectra. They are calculated by
Eq. (6) and Eq. (19), respectively. Their values characterize the temperature dependence
of the anharmonicity, but the anharmonicity is described by the cumulants given by Eqs.
(15-17) obtained by consideration of the phonon-phonon interaction process. That is why
they also characterize the temperature dependence of the phonon-phonon interaction in
the EXAFS of hcp crystals. At low temperature these anharmonic values approach zero
and the EXAFS function Eq. (21) is reduced to the one of the harmonic model.

III. DISCUSSION OF NUMERICAL RESULTS AND COMPARISON
TO EXPERIMENT

Now we apply the expressions derived in the previous section to numerical calcu-
lations for hcp crystals. The Morse potential parameters D = 0.1688 eV, α = 1.7054
Å−1 for Zn and D = 0.1675 eV, α = 1.9069 Å−1 for Cd have been calculated using the
procedure presented in [15]. Morse potential calculated for Zn is illustrated in Fig. 2 in
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comparison to experiment [28]. These values are used for calculation of the EXAFS data.
Fig. 2 shows the temperature dependence of our calculated anharmonic factors of Zn and
Cd. Anharmonic factor of Zn is 3.75 % at 300 K, but only 0.28 % at 77 K. This figure also
denotes that the anharmonic effect in Zn is stronger than the one in Cd. The temperature
dependence of our calculated anharmonic contribution to EXAFS amplitude or to MSRD
of Zn is illustrated in Fig. 4 in comparison to experiment [16]. Fig. 5 shows the temperature

Fig. 2. Calculated Morse potential of Zn
compared to experiment [28].

Fig. 3. Temperature dependence of calcu-
lated anharmonic factors of Zn and Cd

Fig. 4. Temperature dependence of the calcu-
lated anharmonic contribution of Zn to MSRD
or to EXAFS amplitude in comparison to ex-
perimental values [16].

Fig. 5. Temperature dependence of the total
MSRD of Zn compared to the harmonic one
and to the experimetal values [16].

dependence of our calculated total MSRD of Zn compared to the harmonic one calculated
by the correlated Einstein model and to the experimental values [16]. The temperature
dependence of our calculated first and third cumulants of Zn is presented in Figs. 6 and
7, respectively, in comparison to experimental values [16]. It is shown that the calculated
Morse potential presented in Fig. 2 is found to be in good agreement with the experimental
result [28], and the EXAFS parameters calculated by present procedure, demonstrated in
Figures 4-7 agree well with the experimental values [16] at 77 K and 300 K. Fig. 8 illus-
trates our calculated anharmonic contributions to the EXAFS phase of Zn at 77 K, 300 K
and 500 K. It is seen that the phase shift due to anharmonicity is significant at 300 K and
500 K, but negligible at 77 K. Our calculated mean free path of the photoelectron of Zn
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in the EXAFS process is illustrated in Fig. 9. All the above calculated parameters have
been used for calculation of the EXAFS of Zn including anharmonic contributions. For
XANES (X-ray Absorption Near Edge Structure) the multiple scattering is important, but
for EXAFS the single scattering is dominant [29], and the main contribution to EXAFS
is given by the first shell [7]. This is why for testing theory we present only the results
for the first shell in single scattering. The generalization to the other shells is straigh-
forward. EXAFS spectra according to Eq. (21) provide information on atomic number of
each shell and on the thermodynamic parameters of the substance. The EXAFS calculated
by using the famous FEFF code [1] of the University of Washington with harmonic model
presented in Fig. 9a show no change at different temperatures 77 K, 300 K and 500 K,

Fig. 6. Temperature dependence of the calcu-
lated first cumulant of Zn in comparison to
experiment [16].

Fig. 7. Temperature dependence of the calcu-
lated third cumulant of Zn in comparison to
experiment [16].

Fig. 8. Calculated anharmonic contributions to EX-
AFS phase of Zn at 77 K, 300 K and 500 K.

Fig. 9. Calculated mean free path of
photoelectron of Zn in EXAFS process.

but those calculated by the present anharmonic procedure (Fig. 9b) contain significant
phase changes at these temperatures, thus reflecting the phase shift effects appeared in
the experiment shown in Fig. 1. Significant differences in phase and in amplitude of our
calculated anharmonic EXAFS of Zn from those calculated by the harmonic model [1] are
presented for T = 300 K (Fig. 10a) and for T = 500K (Fig. 10b). The anharmonic EXAFS
spectra are attenuated and shifted to the left especially at high k-values. The attenuation
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is caused by the anharmonic contribution to the amplitude presented in Fig. 4, and the
phase shifts are caused by the anharmonic contributions to the phase presented in Fig. 8.
The peaks of Fourier transform of the EXAFS provide information on the radius of atomic
shells. Fourier transform magnitudes of EXAFS over the range 3.00 Å−1 < k < 13.50Å−1

for Zn calculated by the FEFF code with harmonic model [1] (Fig. 12a) provide the same
values of the first shell radius at different temperatures 77 K, 300 K and 500 K, but those
calculated by present anharmonic theory (Fig. 12b) provide different values of the first
shell radius which are shifted to the right as the temperature increases, thus reflecting
apparently the effect of different information on the shell radius at the different high
temperatures provided by the experiment shown in Fig. 2. Fourier transfom magnitudes
of the EXAFS of Zn calculated by the present theory are compared to those calculated by
the FEFF code and to experiment [16] for T = 77 K (Fig. 13a) and T = 300 K (Fig. 13b).
They are found to be in good agreement with experiment [16]. The peaks are shifted
to smaller distances by 0.05 Å at 300 K and 0.085 Å at 500 K in comparison to the
harmonic model results. Thus providing apparently different structural information at
the different high temperatures which must be treated for the harmonic model to describe
the experimental results or to extract physical parameters from the experimental EXAFS
data.

a) b)
Fig. 10. EXAFS calculated by harmonic FEFF with no phase shift (a) and those
calculated by present anharmonic theory with different phase shifts (b) of Zn at 77 K,
300 K and 500 K.

a) b)
Fig. 11. Comparison of EXAFS calculated by present anharmonic procedure with
those calculated by harmonic FEFF [1] at 300 K (a) and at 500 K (b).
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a) b)
Fig. 12. Peaks of Fourier transform magnitudes of EXAFS for first shell of Zn calcu-
lated by FEFF code [1] with harmonic model provide the same shell radius at 77K,
300K and 500K (a), but those calculated by present anharmonic theory provide differ-
ent shell radiuses at these temperatures (b) reflecting the experimental effect (Fig. 1).

a) b)
Fig. 13. Comparison of Fourier transform magnitude of EXAFS of Zn calculated by
present anharmonic theory to those calculated by FEFF code [1] and to experiment
[16] for T = 77 K (a) and T = 300 K (b).

IV. CONCLUSIONS

We have developed an anharmonic theory of EXAFS for hcp crystals based on the
single shell approach and anharmonic correlated Einstein model. Our new development
is derivation of expressions for the anharmonic contributions to the EXAFS amplitude
and phase and its parameters. The total MSRD is the sum of the harmonic and the
anharmonic contributions.

Advantages of the present procedure are as follows: the anharmonic contributions
can be calculated and analyzed for any temperature and for any k-value; the present
theory contains the results of the classical limit at high temperature and of the harmonic
model at low temperature as its special cases; Morse potential parameters included in the
anharmonic EXAFS and its parameters have been also calculated to fulfil the ab initio
calculation procedure.

The good agreement between the calculated results and the experimental values
shows the advantage and efficiency of this new theory for the calculation and analysis of
the anharmonic EXAFS and its parameters of hcp crystals.
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