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Abstract

The High Performance Conjugate Gradient Benchmark (HPCG) is
an international project to create a more appropriate benchmark test for
the world’s most powerful computers. The current LINPACK benchmark,
which is the standard for measuring the performance of the top 500 fastest
computers in the world, is moving computers in a direction that is no
longer beneficial to many important parallel applications. HPCG is de-
signed to exercise computations and data access patterns more commonly
found in applications. The reference version of HPCG exploits only some
parallelism available on existing supercomputers and the main focus of
this work was to create a performance portable version of HPCG that
gives reasonable performance on hybrid architectures.
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1 Introduction

The High Performance Conjugate Gradients (HPCG) is an international project

to create a more appropriate benchmark for the world’s largest computers. The

current High Performance Linpack (HPL) benchmark, which is the standard

for measuring performance of the top 500 fastest computers in the world [2],

is directing changes in a way that is only partially beneficial to many impor-

tant parallel applications. HPCG was designed to complement HPL and move

changes in a desirable direction. HPCG uses the preconditioned conjugate gra-

dients method to solve a system of equations, that executes both dense compu-

tations with both high and low computational intensity such as sparse matrix-

matrix multiplications and matrix-vector multiplications. The reference version

of HPCG exploits only some parallelism available on existing supercomputers

and the main focus of this work is to create a portable version of HPCG that

gives reasonable performance on hybrid architectures.

The Trilinos project is an effort to facilitate the design, development, inte-

gration, and ongoing support of mathematical libraries for the solution of large

scale, complex, physics and scientific problems [9]. While there are many pack-

ages in Trilinos to accomplish its goal, this project focuses specifically on the

Kokkos package.

1.1 An Introduction to Iterative Methods

One of the most frequently encountered problems in scientific computing is

solving systems of linear equations [12].

Ax = b (1)
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The most straightforward approach to solving the system is to do Gaussian

elimination but this faces its own set of problems. On large problem sizes

Gaussian elimination becomes slow and susceptible to roundoff error. Iterative

methods can address these problems.

Iterative methods generate a sequence of solution vectors x so that the error

between each x and the exact solution x∗ is hopefully smaller than the previous

x. There are many examples of this ranging from Jacobi, to Gauss Seidel, to

successive over-relaxation method, to conjugate gradients. Iterative methods

do not guarantee the finding of the exact solution but will guarantee finding a

solution with an error within a user specified tolerance. Since calculating the

actual error between xi and x∗ involves actually knowing the solution it is not

a readily available measure of error. To account for this the idea of residuals,

ri = b − Axi, is used instead since if xi = x∗ → ri = 0. Thus in practice,

iterative methods aim to reduce the norm of each residual in a way so that it

converges to 0. Iterative methods that guarantee finding an exact solution are

called direct methods, conjugate gradients falls under this categorization but is

more often used as an iterative method due to it’s fast convergence rate. Since

this is such a broad topic, this thesis focuses on matrices A that are symmetric

and positive definite. Thus the matrix satisfies the properties in Equation 2.

These properties allow solutions to be found using the methods steepest descent,

and conjugate gradients.

A = AT and ∀x 6= 0→ xTAx > 0 (2)

2 Contributions to this Topic

This thesis provides a general introduction into iterative methods to solve a

linear system of equations namely, steepest descent and conjugate gradients.
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Secondly it demonstrates why conjugate gradients is a more optimal method

than steepest descent. Thirdly it introduces the programming model created by

the Kokkos package in the Trilinos Software Library. The contribution to the

field provided by this thesis is a version of HPCG that utilized Kokkos to create

a more performance portable reference version and compares it’s performance

to the reference version of HPCG.

3 Problem Statement

Computer architectures are evolving faster than ever and it has become increas-

ingly difficult to write optimal code across the multitude of setups. To address

this issue, Sandia National Laboratories has been working to develop the Kokkos

software package to allow for one version of code to be written that performs

optimally across multiple architectures. By successfully doing this it becomes

quicker and simpler to test code implementations and computer architectures.

To accurately compare new architectures to existing ones a unified way of

testing needs to be used. HPCG is the benchmark of choice but the reference

version consists of minimal parallelism using OpenMP and MPI. The aim of

this thesis is to mesh HPCG and Kokkos to create a performance portable

benchmark that can be quickly used to test various architectures. Finally since

HPCG uses the conjugate gradients method, we want to explore the efficiency of

a variety of iterative methods and compare speed up in various parallelizations

of the symmetric Gauss-Seidel preconditioner.
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Figure 1: Plot of quadric form of a symmetric positive definite system

4 Background

4.1 Conjugate Gradients Method

The Conjugate Gradients Method is an iterative method where, given a sym-

metric and positive definite matrix A and a vector b it can find the solution

vector x to Equation 1 which is done by minimizing the quadric form of the

system:

f(x) =
1

2
xTAx− xT b (3)

Since A is symmetric and positive definite the solution to our system can be

found at the minimum value of Equation 3 because:

∇f(x) = Ax− b (4)

To help clarify ifA is 2x2 matrix, Equation 3 looks like a 3-dimensional paraboloid,

as seen in Figure 1, and the solution is at the very bottom of the paraboloid [16].

To best understand how Conjugate Gradients works it helps to first understand

the method of Steepest Descent.

The Steepest Descent algorithm works like dropping a magical marble that
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ignores friction into the paraboloid created by Equation 3. The marble will

travel down the steepest path and then the next steepest path as it gets con-

tinually closer to the bottom but will take quite some time to stop if it ever

completely stops. Steepest Descent starts with an initial guess x0 and then

aims to improve the guess by proceeding in the direction where f(x) appears

to change most rapidly which is equal to −∇f(x0). Notice how this is equal to

the residual at x0, r0 = b − Ax = −∇f(x0). The only piece remaining is how

far to travel in the direction of r0 so x1 = x0 +αr0 so that x1 reduces the error

between itself and the exact solution and consequentially reduces the residual.

From the exact line search framework [6] we get that:

α =
rT0 r0
rT0 Ar0

(5)

Now all the pieces are in place and Algorithm 1 results. Steepest Descent is

guaranteed convergence, however the rate at which it achieves this is often too

slow [15]. Each residual vector is orthogonal to one another and thus create

a basis for Rn and the exact answer should be the initial guess plus a linear

combination of the residuals. Steepest Descent’s downfall is that it uses scalars

of the same residual vectors more than once. It would be more beneficial to

instead only travel the exact distance needed in a direction and never travel

that direction again. This is what the Conjugate Gradients Method achieves.
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Algorithm 1 Steepest Descent

1: Choose the initial guess x0

2: k = 1

3: while not close enough to solution do

4: rk−1 = b−Axk−1

5: αk =
rTk−1rk−1

rTk−1Ark−1

6: xk = xk−1 + αkrk−1

7: k = k + 1

The idea behind Conjugate Gradients is similar to that of Steepest Descent.

It still aims to minimize Equation 3, but instead of using the steepest gradient

for a search direction it follows a set of n linearly independent directional vectors

p1, p2, p3, ... traveling no further in a direction than needed to find the solution

to Equation 1. Now the question remains of how to find these vectors? The

answer is to find a set of n A-orthogonal vectors which means

pTi Apj = 0 if i 6= j (6)

and this set of A-orthogonal vectors is linearly independent and thus form a

basis for Rn due to the fact that A is positive definite. With this set of vectors

the actual solution x∗ can be found by

x∗ = x0 + α1p1 + α2p2 + ...+ αnpn (7)

Again ri is the residual vector at step i and the values for αi can be found

similar to the steepest descent but instead of using the residual vector as the

direction, use the next vector from the A-orthogonal set.

αi =
pTi ri−1

pTi Api
(8)
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Thus resulting in Algorithm 2 which assuming no rounding errors Axn = b [5]

will provide the exact answer to the solution after using each directional vector.

Algorithm 2 Orthogonal Directions

1: Choose the initial guess x0

2: k = 1

3: while not close enough to solution do

4: rk−1 = b−Axk−1

5: αk =
pT
k rk−1

pT
k Apk

6: xk = xk−1 + αkpk

7: k = k + 1

It’s important to note that in computing, storing n n-dimensional direction

vectors is expensive, especially for large values of n. So storing n directional

A-orthogonal vectors is unwise and advised against. The conjugate gradients

method remedies this by using the first residual vector as a direction and then

generating the next A-orthogonal direction vector based on the fact that all the

previous residual vectors are linearly independent. The Gram Schmit conjuga-

tion method can be used to find the set of A-Orthogonal vectors [16].

pk+1 = rk +
rTk rk

rTk−1rk−1
pk (9)

This means it is no longer necessary to store all n direction vectors. In fact

it is only necessary to store the previous residual vector if we remember rTk rk

between iterations. Finally we get Algorithm 3 for the Conjugate Gradients

method.
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Algorithm 3 Conjugate Gradients

1: Choose the initial guess x0

2: r0 = b−Ax0

3: p1 = r0

4: k = 1

5: while not close enough to solution do

6: αk =
rTk−1rk−1

pT
k Apk

7: xk = xk−1 + αkpk

8: rk = rk−1 − αkApk

9: pk+1 = rk +
rTk rk

rTk−1rk−1
pk

10: k = k + 1

Even though CG can be used to find the exact solution to a system of

equation it converges fast enough that it sees most of it’s use as an iterative

method to approximate a solution. Due to this if the matrix A has a high

condition number it becomes highly susceptible to error. To remedy this the

matrix A can be preconditioned by a matrix C−1 so that we solve the system:

C−1A(C−1)TCTx = C−1b (10)

Solving this system gives the solution CTx and can be brought back to our

solution x by multiplying by (C−1)T . This is only beneficial if the matrix

C−1A(C−1)T has a much smaller condition number than A. Consider Equation

10 as Ãx̃ = b̃ where the solution x̃ = CTx. This results in the CG iteration

performing the following:

13



α =
r̃Tk r̃k

p̃Tk Ãp̃k

x̃k+1 = x̃k − αp̃k

r̃k+1 = r̃k + αÃp̃k

β =
r̃Tk+1r̃k+1

r̃Tk r̃k

p̃k+1 = r̃k + βp̃k

Now let M = C2 and notice that r̃k = b̃− Ãx̃k = C−1(b−Axk) = C−1rk which

leads to another rendition of the CG iterations:

α =
rTkM

−1rk

(C−1p̃k)T Ã(C−1p̃k)

Cxk+1 = Cxk − αp̃k

C−1rk+1 = C−1rk + αC−1AC−1p̃k

β =
rTk+1M

−1rk+1

rTkM
−1rk

p̃k+1 = C−1rk + βp̃k

Finally by defining pk = C−1p̃k and zk = M−1rk this becomes the precondi-

tioned conjugate gradients algorithm which can be found in Algorithm 4 [6].
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Algorithm 4 Preconditioned Conjugate Gradients

1: Choose the initial guess x0

2: r0 = b−Ax0

3: Solve Mz0 = r0

4: p1 = z0

5: k = 1

6: while not close enough to solution do

7: αk =
rTk−1zk−1

pT
k Apk

8: xk = xk−1 + αkpk

9: rk = rk−1 − αkApk

10: pk+1 = zk +
rTk zk

rTk−1zk−1
pk

11: k = k + 1

12: Solve Mzk = rk

HPCG implements the preconditioning by solving the system Az = r, where

A is the original matrix of the system and r is the residual vector. This is

completed by using a single forward sweep symmetric Gauss-Seidel followed by

a single backward sweep of symmetric Gauss-Seidel.

4.2 HPCG

HPCG was designed to complement the High Performance Linpack (HPL)

benchmark test and better represent the needs of todays applications. It works

by generating a sparse linear system that is mathematically similar to a finite

element, finite volume or finite difference discretization of a three-dimensional

heat diffusion problem on a semi-regular grid.[11] The system is then solved

using a preconditioned conjugate gradient method where each sub-domain is

preconditioned with a single symmetric Gauss-Seidel sweep. It’s important to

mention that HPCG uses some multi-grid to precondition our problem but this
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will not be touched upon in this thesis.

HPCG has eight distinct phases:

1. Setup Problem: HPCG generates the matrix and vector structures for

the system of equations Ax = b. Specifically this phase generates the

matrix A, the vectors b and x. HPCG knows the exact solution to the

system it generates so it creates the predetermined solution vector as a

means to check accuracy later. Next it generates the information needed

for the multi-grid component of preconditioning. For each matrix level it

generates a smaller matrix than the previous level and its corresponding

x and b vectors. Before HPCG 3.0 was released this segment of code was

illegal to modify and not counted against the results generated in the end.

Now with 3.0 the user is allowed to optimize this code and the amount of

time it takes to generate the problem is counted against the end results.

Changes to this section are only valid if the generated matrices and vectors

pass the test found in “CheckProblem.cpp.”

2. Time Reference SpMV + MG: HPCG times the reference versions of

the function that computes sparse matrix vector multiplication (SPMV)

and symmetric Gauss-Seidel (SYMGS). The results gathered from running

the reference versions of these functions are included in the output report

to help the user determine which kernel to focus on for optimizations

as these kernels should be the most computationally intensive and thus

reduce performance the most when not optimized.

3. Time Reference CG: This phase runs fifty iterations of the reference

version of the conjugate gradients method (CG). The reference of CG and

the optimized version of CG are the same except reference CG calls the

reference version of all the compute kernels used where as the optimized

version calls the optimized compute kernels. HPCG records the final re-

16



duction in residual reached after the fifty iterations and requires that the

optimized version of CG reach the same reduction in residual even if that

means more iterations are required.

4. Optimize Problem: This section of code calls the user specified OptimizeProblem

function. Within this function the user is allowed to perform changes to

the sparse matrix data structure to enable more optimal memory access

patterns. It also allows for permutation of the system to better allow

for parallelism in kernels like SYMGS. A provided optimization found in

HPCG 3.0 will color the vertices of the matrix A which is beneficial in the

parallelization of the SYMGS kernel.

5. Test Validity: This calls two separate validation functions that make

sure that the user optimizations found in both SYMGS and SPMV pro-

duce valid results. The first of the tests is TestCG, this method replaces

the diagonal of the matrix A to make much more diagonally dominant.

With this change, it should only take a few iterations to CG to converge

to a solution and even less with preconditioning. To pass this test the

optimized CG code must converge in as few as twelve iterations with-

out preconditioning and two with preconditioning. The second of the

tests is TestSymmetry which, as the title suggests, confirms that our sys-

tem stayed symmetric after optimization and that the optimized SPMV

and SYMGS respect symmetry. To check SPMV it creates two randomly

filled vectors x and y and verifies that xTAy − yTAx, which should be

zero, is within some tolerance due to potential roundoff error. To check

SYMGS it calls ComputeSYMGS to find M−1y and M−1x and then calcu-

lates xM−1y− yM−1x to verify that it is also with in the same tolerance.

6. Setup Optimized CG: Here HPCG runs a single set of optimized CG

to determine how many iterations are required to reach the reduction in
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residual previously recorded in the “Reference CG Timing” phase. This

phase also determines whether or not the optimized version of CG will

converge and how many sets of CG are required to fill the user specified

amount of time alloted for benchmark. In order for the results to be

considered for submission HPCG must run for an hour. However as of

HPCG 3.0 with proper permissions this is no longer the case.

7. Time Optimized CG: At this point in HPCG runtime, the timed anal-

ysis actually occurs. It runs as many optimized CG sets as determined

in the previous phase and times how long it takes to complete the sets.

HPCG also collects the residual norm of each set and later computes the

mean and variance of all the norms to verify that both are within a toler-

ance. If not HPCG considers the result as not reproducible and therefore

invalid.

8. Report Results: Finally HPCG produces an output YAML file and

finalizes the ongoing creation of the log files used for debugging. This

final phase is also responsible for deallocating any and all memory used

by HPCG.

The HPCG output outlines specifically where the benchmark performed well

and where it’s bottlenecks were. For each major computational kernel, ie. sparse

matrix vector product, HPCG will tell you how many giga floating point opera-

tions per second (GFLOP/s) were achieved, this is very handy for optimizing the

code as it will tell you which algorithms to focus on and which are performing

optimally.

4.3 Kokkos

Kokkos is a package in the Trilinos software repository that is designed to ac-

commodate the multitude of computer architectures that exist in modern high
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performance computing. Modern supercomputers may consist of many nodes

and these nodes may carry a variety of different components. For example the

node could contain multi-core processors that focus on powerful serial perfor-

mance, it could contain many-core processors which sacrifices serial performance

for more cores to run simultaneously, it could contain graphics processors which

function like smaller many-core processors designed to handle long latencies,

or finally it could contain a combination of these. Each of these components

uses different parallel techniques found in various software packages to achieve

maximum performance. Kokkos was created to abstract the data structures and

parallel kernels so that the programmer could write one version of the code that

would run at peak performance for the desired architecture specified at compile

time. [17]

Kokkos has two main features: Kokkos::View, hereby referred to as View,

polymorphic multidimensional arrays and parallel dispatch. At compile time

the user specifies which execution space to run their parallel kernels from and

which memory space to store data for View. Currently Kokkos supports the

following execution spaces:

• Serial

• PThreads [1]

• OpenMP [14]

• Cuda [13]

4.3.1 View

View is a wrapper around an array of data that gives you option to specify which

memory space to store the data on and to choose memory access traits to decide

how this data will be accessed. Views handle their own memory management
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via reference counting so that the structures automatically deallocate themselves

when all the variables that reference them go out of scope, thus making memory

management across multiple devices simpler for the programmer.

Since View allows the user to specify the memory space where it’s data are

located and which execution space to run parallel kernels from, the program-

mer needs to be wary of where in during runtime the data are accessed. If

the View is stored on the host then its data is inaccessible from the device and

similarly if the View is stored on the device it is inaccessible from the host.

Kokkos addresses this issue through the use of Kokkos::View::HostMirror,

hereby referred to as HostMirror, which is a View that has the same prop-

erties as the View it is derived from but now it’s data will be stored on the

host. The easiest way to create a HostMirror is to use the built-in function

Kokkos::create mirror to return the HostMirror of the lone View input. To

get the data from the View to its HostMirror the function Kokkos::deep copy

needs to be called which does exactly what the name implies, it copies all the

data from one View to the other. Kokkos never calls Kokkos::deep copy implic-

itly and thus must be called by the programmer to copy date from one View to

another, this gives the programmer greater control when it comes to managing

data [3]. Nvidia solves this problem through Unified Virtual Memory (UVM)

which Kokkos can use but was discovered to be too inefficient for our work.

4.3.2 Parallel Dispatch

Kokkos has three different parallel kernels, parallel for, parallel reduce,

and parallel scan. These kernels are all launched from either a functor or a

lambda, however the latter can only be used if using the C++11 standard and

is not fully supported with Cuda as it currently does not support lambdas from

the host to be run on the device, Nvidia has stated that this will be a feature

in later versions of Cuda. Kokkos allows for all of these kernels to be launched
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nested within each other by creating a league of teams of threads.

parallel for is a generic for loop that runs the whole context of the loop

in parallel, each thread gets a range of iterations and runs until it completes

it’s iteration. To avoid race conditions, the loop must not have iterations that

depend on results from other iterations. This type of parallel kernel is suited for

algorithms like vector-vector addition by simultaneously adding corresponding

entries with one another and storing the result in its proper location in the

resulting vector.

parallel reduce is like parallel for but allows for each simultaneous it-

eration of the loop to update a single global value. Kokkos does not guarantee

the order in which the iterations are processed so to avoid race conditions its

best not to rely on a certain order of the iterations. Kokkos does however guar-

antee that the end result of the value being updated is deterministic if race

conditions are not present. This kernel works well for algorithms like dot prod-

uct by simultaneously multiplying the corresponding entries in the two vectors

and adding the product to our global result.

parallel scan is a kernel that keeps a running sum of values in an array

and stores the sums in the array. For example, a scan over the array [1, 2,

3, 4] becomes [1, 3, 6, 10] or [0, 1, 3, 6] depending whether or not the scan

is inclusive or exclusive, with inclusive resulting in the former. This kernel is

useful in setting up sparse matrices by turning an array that carries the number

of non-zero values per row into a map that tells what entries belong to which

rows.

Kokkos permits for parallel kernels to be nested greatly increasing the po-

tential for parallelism. This allows the programmer to run up to three levels of

parallelism inside a single kernel. This works by creating a league of teams so

that each team owns a specified number of threads. This can be furthered by
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taking advantage of the vector lanes in each thread to run those in parallel as

well. In essence this nested parallelism looks like three separate loops, the outer

loop is run in parallel by the teams in the league, the middle loop is run by

the threads in each team and finally the inner-most loop is run asynchronously

by the vector lanes in the threads. Depending on the type of problem where

this hierarchical is introduced, performance can significantly improve over just

running the outer most loop in parallel, but at the same time if the algorithm

is not suited for multileveled parallelism the increase in parallelism may not

outweigh the increase in overhead.

5 Methods

5.1 Solving a System using Iterative Methods

Earlier, this thesis introduced three distinct iterative methods for solving a sys-

tem of equations given that A is symmetric and positive definite. It was also

pointed out that Conjugate Directions and Conjugate Gradients are actually

direct methods for solving and that absent any round off error will produce the

exact solution to the system in n = length of A iterations, whereas Steepest

Descent is an iterative method that only guarantees convergence. To demon-

strate this section will solve Equation 11 using Steepest Descent, Conjugate

Directions, and Conjugate Gradients.

Ax =



4 1 1 0 1

1 3 1 1 0

1 1 5 −1 −1

0 1 −1 4 0

1 0 −1 0 4





x1

x2

x3

x4

x5


=



6

6

6

6

6


= b (11)
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Using Matlab the exact solution to the system in Equation 11 is found in

Equation 12. Matlab code for all the given algorithms can be found in the

Appendix.

x∗ =



0.4516

0.7097

1.6774

1.7419

1.8065


(12)

5.1.1 Steepest Descent

The steepest descent algorithm requires nothing more than the system of equa-

tions from Equation 11 and an initial guess x0 for our purposes the zero vector

will do. Resulting in our residual vector r0 = b−Ax0.

x0 =



0

0

0

0

0


r0 = b−Ax0 =



6

6

6

6

6


This is all the information needed to calculate α0

α0 =
rT0 r0
rT0 Ar0

= 0.192308
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Putting these pieces together results with:

x1 = x0 + α0r0 =



1.1538

1.1538

1.1538

1.1538

1.1538


A second iteration through Steepest Descent results in the following:

r1 =



−2.0769

−0.9231

0.2308

1.3846

1.3846


α1 = 0.320151

and

x2 = x1 + α1r1 =



0.4889

0.8583

1.2277

1.5971

1.5971


Continuing as long as the norm of the residual in each iteration is within a

tolerance of .00001, this algorithm needs 26 iterations to produce a result within

the desired tolerance. Below are the recorded values for x14 and x26 to try and

get a feel for how the rate of convergence slows.
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x14 =



0.4515

0.7098

1.6772

1.7418

1.8064


x26 =



0.4516

0.7097

1.6744

1.7419

1.8065


Clearly not the most efficient algorithm for this system of equations since

both Conjugate Directions and Conjugate Gradients are guaranteed to produce

the exact solution in five iterations for this particular system.

5.1.2 Conjugate Directions

Conjugate Directions is almost computationally identical to steepest descent but

instead of traveling down the larges gradient it uses a set of A-Orthogonal vectors

to determine which direction to travel and calculates exactly how far it needs

to travel. Again using the system found in Equation 11, the zero vector can be

used as an initial guess x0, and with a bit of work the set P = {p1, p2, p3, p4, p5}

can be found where each pi is A-Orthogonal to pj when i 6= j.

p1 =



−0.5955

−0.7545

2.1364

0.7227

1


p2 =



−3

2

−2

−1

12


p3 =



1

−4

0

1

0


p4 =



0

0

0

1

0


p5 =



1

0

0

0

0


Given the initial conditions, the first iteration can be run using p1 by first
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easily finding r0 and α0. Then putting all the pieces together to get x1

r0 = b−Ax0 =



6

6

6

6

6


and α0 =

pT1 r0
pT1 Ap1

= 0.859084

x1 = x0 + α0p1 =



−0.5115

−0.6482

1.8353

0.6209

0.8591


It is simple to continue through the second iteration to find the following:

α1 = 0.859084 then x2 =



−0.7484

−0.4903

1.6774

0.2419

1.8065


Notice that by comparing this to the exact solution found in Equation 12 that

the value in the third and fifth row are exactly where they should be. This goes

back to how Conjugate directions only travels as far as it needs to in each search

direction and the remaining search directions don’t move orthogonal to those
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axes, thus these values are exact. To further see this look at x3 below.

x3 =



−1.0484

0.7097

1.6774

0.2419

1.8065


Since the only remaining search directions are along two different unit vectors

every value with the exception of those units are exact and the next iteration will

solve its search directions corresponding unit. The final two produced vectors

are:

x4 =



−1.0484

0.7097

1.6774

1.7419

1.8065


x5 =



0.4516

0.7097

1.6774

1.7419

1.8065


Since Conjugate Directions is a direct method x5 = x∗ as long as there is

no round-off error. Conjugate Directions is not used as an iterative method

because if the search directions are not chosen carefully it may not converge at

all until the final search direction has been used. This method is also highly

impractical for large systems since it requires a set of A-Orthogonal vectors to

be known in advance which may be difficult to do and, if the size of the system

is large enough, too expensive to store in memory. It’s interesting to note that

with this algorithm, if you guess the correct search direction right away this

method could converge on the first iteration.
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5.1.3 Conjugate Gradients

Conjugate gradients remedies the issues raised in Conjugate Directions by using

the residuals to compute the next search direction which avoids storing all the

directional vector and allows for early convergence. Once the current directional

vector is created the operations are the same as conjugate directions. So again

it begins with the initial guess x0 as the zero vector and the initial residual

vector r0 = b−Ax0.

The initial search direction p1 is chosen to be r0 since there are no other

search directions to be A-Orthogonal to. Now α0 and x1 are calculated as

shown below.

α0 =
rT0 r0
pT1 Ap1

= 0.192308 and x1 = x0 + α0p1 =



1.1538

1.1538

1.1538

1.1538

1.1538


At this stage in each iteration CG calculates the next residual as such:

r1 = r0 − α0Ap1 =



−2.0769

−0.9231

−.2308

1.3846

1.3846


Notice that the residual is not calculated in the traditional fashion of r1 =

b − Ax1 but the two equations can easily be shown to be equivalent. The

interpretation shown is preferred since Api needs to be calculated earlier in the

iteration and by reusing Api, CG can avoid doing unnecessary matrix-vector
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multiplications.

The iterations that proceed after the first iteration are slightly different

since CG needs to calculate a new directional search vector. To do this CG

uses the fact that each residual vector is linearly independent to one another

and the Gram Schmidt Conjugation to produce the next A-Orthogonal vector

from the set of linearly independent residual vectors [16]. Giving the following

computations.

β1 =
rT1 r1
rT0 r0

= 0.0503 and p2 = r1 + β1p1 =



−1.7751

−0.6213

0.5325

1.6864

1.6864


With p2 in place the rest of the iteration follows as the previous one.

α1 = 0.349407 and x2 =



0.5336

0.9368

1.3399

1.7431

1.7431


and r2 =



−0.1542

−0.4269

1.3162

−0.5692

−0.1660


The rest of the iterations proceed in the exact same manner as this and in

the provided example, CG requires all five iterations to converge to a solution.

However since CG is also a direct method the fifth iteration gives us the exact

solution if round off error is not present. Below are the remaining results of
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each iteration and the search vector used to find it.

p3 =



−0.6031

−0.5840

1.4509

−0.1426

0.2605


and x3 =



0.3972

0.8047

1.6680

1.7108

1.8020



p4 =



0.1207

−0.2054

0.0089

0.0162

0.0696


and x4 =



0.4415

0.7292

1.6713

1.7168

1.8276



p5 =



0.0314

−0.0609

0.0192

0.0783

−0.0658


and x5 =



0.4516

0.7097

1.6774

1.7419

1.8065


This system is small, thus it is unsurprising that it took all five iterations to

converge to a solution using CG. However this can be improved further by

implementing the same preconditioning as found in HPCG. By using the Pre-

conditioned Conjugate Gradients method found in HPCG this system converges

in only four iterations with our tolerance of .000001.

The Matlab code for all the iterative methods introduced can be found in

the appendix.
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5.2 Merging Kokkos and HPCG

The goal for this project is to create a version of HPCG that produces valid

results across many architectures without sacrificing performance. The Kokkos

library was decided to be the best available tool to provide performance porta-

bility for the C++ code. Thus it was chosen to re-factor HPCG.

General Strategy for Kokkos re-factoring includes:

• Replace custom data types with Kokkos multidimensional arrays;

• Replace the parallel loops with Kokkos parallel dispatch;

• Code optimizations to improve usage of co-processors.

5.2.1 Replacing Custom Data Types

Prior to HPCG 3.0 the changes made to HPCG involved replacing every ar-

ray that HPCG created with a Kokkos::View. However this was considered

an illegal optimization and in HPCG 3.0 the correct optimizations were made

by creating two new data structures: Optimatrix and Optivector. As the

names suggest these new structures held the Kokkos information needed for our

optimized matrix and vector respectively.

Optimatrix is arguable the more interesting of the two since it contains

a new implementation of the sparse matrix created by HPCG. The original

HPCG sparse matrix held data in a 2-dimensional array in which accessing

matrixValues[i][j] would grab the jth non-zero value in the ith row. To in-

quire what column entry this value has you would have to access another array

with the identical i and j values. The Kokkos implementation, Kokkos::CrsMatrix,

of this array removed the 2-dimensional implementation and used a 1-dimensional

approach. The CrsMatrix consists of three 1-dimensional Views namely values,

entries, and row map. Values holds all the non-zero values found in the array
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sorted by row and then columns, so the value in position [2,5] appears before

[3,2] but after [1,8]. Entries stores all of the corresponding column positions for

values. Finally row map stores where each row begins in both entries and val-

ues. So row map[i] returns the starting position of row i in values and entries.

Optimatrix also holds relative information needed for various optimizations

to the symmetric Gauss-Seidel optimizations. Less interestingly Optivector

contains a 1-dimensional View that stores a copy of the original HPCG vector

data.

To fill the newly created data structures, HPCG had to first generate it’s

own data structures per legality requirements. After those had been created

we were allowed to use the information stored in these structures to create the

new structures, however since the data trying to be copied is stored on the host

and the new structures may be on the device, Kokkos parallel dispatch was

unavailable to move data in parallel and thus is done in serial. It is possible to

exploit other types of parallel dispatch to parallelize this chunk of code but that

is outside the scope of this project.

5.2.2 Replacing Parallel Kernels

HPCG has a specific set of compute kernels that can be optimized, some of these

include ComputeSPMV, ComputeDotProduct, etc... Reference HPCG has given

these functions basic parallelism through the use of OpenMP and this part of

the project was to replace this basic parallelism with Kokkos parallel dispatch.

A basic example of a for loop being converted to a Kokkos kernel is presented

in Figure 2. The outer loop is replaced with Kokkos::parallel for and the

inner workings of the loop are moved into the functor.

Most compute kernels were straightforward to replace with Kokkos and most

of our efforts were spent on replacing the ComputeSPMV and ComputeSYMGS ker-

nels. By nature of these kernels, HPCG spends most of it’s runtime in one
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Figure 2: An example of “nested loop to Kokkos kernel” conversion.

or the other, with a preference towards ComputeSYMGS. Since HPCG spends

most of it’s time here it made sense to focus on optimizing these kernels to

best improve performance. ComputeSPMV was easy to transform into Kokkos as

there is already a sparse matrix vector multiplication function built into Kokkos,

since this is already highly optimized for Kokkos it is used instead of my own

interpretation. ComputeSYMGS is inherently serial as the algorithm:

xki = (bi −
i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k−1
j )

has forward dependencies depending on which row of the matrix A we are work-

ing on.[8] Thus in order to parallelize, the matrix had to be broken into chunks

that that could safely be processed without running into dependencies within

each chunk. This resulted in two options level solve and color solve.
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5.2.3 Code Optimizations

This subsection will use the following matrix to demonstrate how each opti-

mization breaks the matrix into chunks.

A =



1 0 1 0

0 1 0 0

1 0 1 1

0 0 1 1


(13)

The level solve algorithm works by splitting our matrix A into parts L and U

where L and U are the lower and upper diagonal matrices that include the di-

agonal. For this algorithm to work we introduce another data structure Levels

inside of Optimatrix which stores all the information needed to break our ma-

trix A into distinct levels. When optimizing the problem we find dependencies

in solving the system Lx = b and sort the rows based upon those dependencies

such that a row will be contained in level i if and only if all of it’s dependencies

are in level j where j < i. In order to maintain symmetry level solve breaks

A into another set of distinct levels this time based on the dependences in the

system Ux = b. Using our matrix in Equation 13, we can find our set of levels

from L with the following logic:

• Row 1 has no dependencies so it gets level 1

• Row 2 has no dependencies so it gets level 1

• Row 3 has a dependency on row 1 so it gets level 2

• Row 4 has a dependency on row 3 so it gets level 3

With the matrix A broken into its chunks for both L and U we can parallelize

ComputeSYMGS running each chunk in parallel and waiting for the chunk to finish
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before running on the next chunk. To maintain symmetry we first do this with

the chunks from L and then with the chunks from U . In the end we get a version

of ComputeSYMGS that has some parallelism depending on the denseness of A

and with HPCG, the larger problem size, the sparser matrix.

The color solve algorithm works by creating an adjacency matrix out of A

where any non zero entry is denoted as an edge between its row and column.

With the adjacency matrix we use a greedy color algorithm to color the matrix

as quickly as possible and ensuring that the coloring is correct. While the

coloring is always valid it is not deterministic and there is no guarantee that

the same rows are always in the same color. The following is what the matrix

in Equation 13 could look like colored:

1

2

3

4

Similar to the level solve algorithm we can parallelize ComputeSYMGS by

running each color in parallel and waiting for that color to finish before starting

the next. To maintain symmetry we run the colors in ascending order and

then again in descending order. While coloring greatly increases symmetry

in sparse matrices it is again lacking in dense matrices. It’s also important

to note that unlike level solve, since we are not guaranteeing that each row’s

dependencies have completed before computing on the row, the output of this

kernel is nondeterministic and generally causes an increase in the overall number

of iterations required by CG to converge. This is a trade-off of higher parallelism
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than levels but more CG iterations that HPCG will not count towards the final

result.

6 Results

This thesis attempts to compare how Kokkos + HPCG with no optimizations

performs in comparison to reference HPCG and could be used as a basis for

a new reference implementation, and how the various preconditioning paral-

lelizations perform in the new Kokkos + HPCG implementation across both

OpenMP and Cuda while attempting to analyze what causes the fluctuation in

performance. All the data gathered for the analysis comes from running Kokkos

+ HPCG and reference HPCG on the test bed Shannon with access provided by

Sandia National Laboratories. The specifications for Shannon can be found in

Table 1. The tests were all completed using the Stella nodes of Shannon which

contain an Intel Xeon processor and a Tesla K80 Co-Processor.

6.1 KHPCG vs. HPCG

The initial goal was to create a reference version of HPCG that used Kokkos

data structures and Kokkos parallel dispatch. Performance wise we hoped to

see a version of HPCG that performed on par with reference HPCG with a

slight slow down due to the necessity of creating the new data structures. Each

variation of the code was run three separate times and the harmonic mean of the

results is plotted in Figures 3, 4, 5, 6, and 7. However to much surprise, there is

an overall increase in performance and performance remains relatively similar

across various problem sizes whereas HPCG showed a reduction in GFLOP/s

(Giga Floating Point Operations per Second) as problem size increased.
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Name Shannon

Nodes 32

CPU 2 Intel E5-2670 HT-off

Co-Processor K20x ECC on

Memory 128 GB

Interconnect QDR IB

OS RedHat 6.2

Compiler GCC 4.8.2+CUDA 6.5

MPI MVAPICH2 1.9

Other Driver: 319.23

Table 1: Configurations of Shannon testbed

Figure 3: GFLOP/s for all reference variations of HPCG and KHPCG on prob-

lem size 163.
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Figure 4: GFLOP/s for all reference variations of HPCG and KHPCG on prob-
lem size 323.
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Figure 5: GFLOP/s for all reference variations of HPCG and KHPCG on prob-

lem size 643.
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Figure 6: GFLOP/s for all reference variations of HPCG and KHPCG on prob-
lem size 1283.

Figure 7: GFLOP/s for all reference variations of HPCG and KHPCG on prob-

lem size 2563.
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At first the overall increase in performance along with the stable production

through various problem sizes was tough to explain. However going back to the

previous change made during HPCG 2.4, the reason for the change in results

across implementations arose when we replaced HPCGs implementation of a

sparse matrix with the Kokkos implementation. Once things were moved to

HPCG 3.0 the Kokkos “wrapper” around the HPCG sparse matrix was depre-

cated due to the illegal way it was set up. Since the most expensive kernels are

the ones that need to access all the information in a sparse matrix the change

from a two dimensional implementation to a one dimensional implementation

cuts the amount of time spent accessing the memory. Instead of each data

access requiring a memory access that points to another array in memory the

one dimensional implementation gathers which section of the array to look in

and then directly accesses the data in memory, which may already be loaded in

cache. It would be interesting to recreate the Kokkos “wrapper” of the HPCG

sparse matrix implementation and the various Kokkos Kernels and compare the

results between the three implementations.

6.2 Comparing Preconditioning Algorithms

Once the reference version of the code was complete, attempts to optimize the

code began. The main focus of the optimizations were in the symmetric Gauss-

Seidel preconditioning kernel of HPCG. The optimizations were described in

detail earlier and now we discuss the results of each optimization. Both op-

timizations use the same solve kernels and the way the matrix is broken into

chunks is the only difference between the two. All runs were tested with either

OpenMP or Cuda and either hierarchical parallelism or single level parallelism.

Both implementations of the algorithm showed a similar distribution of perfor-

mance among the combinations of tests and problem sizes. Each test was run
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three times on each problem size and the harmonic means of the results are

plotted in figures 8, 9, 10, 11, and 12.

Figure 8: GFLOP/s for all combinations of execution spaces and optimizations

of SYMGS in KHPCG on problem size 163.
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Figure 9: GFLOP/s for all combinations of execution spaces and optimizations
of SYMGS in KHPCG on problem size 323.

Figure 10: GFLOP/s for all combinations of execution spaces and optimizations

of SYMGS in KHPCG on problem size 643.
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Figure 11: GFLOP/s for all combinations of execution spaces and optimizations
of SYMGS in KHPCG on problem size 1283.
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Figure 12: GFLOP/s for all combinations of execution spaces and optimizations

of SYMGS in KHPCG on problem size 1923.

Both optimizations show a similar trend in performance across the various

execution spaces. But the performance difference is greatly in favor of the

coloring algorithm likely due to the fact that level solve is more restrictive in

how it forms the row chunks used for parallelism which hinders the amount of

parallelism that can be squeezed out of it. Another interesting trend is that

hierarchal OpenMP is out performed by single level OpenMP and the opposite

is what happens when using Cuda. The exact cause of this is unknown and more

testing and tweaking of variables could be done in tangent with using different

test beds to explore why. In the final version of KHPCG there is an option

to allow for the reordering of the matrix based on the coloring to help reduce

the number of cache misses. The option is not included here since a similar

optimization was not done for the leveling algorithm as it would require storing

two copies of the matrix and we were already experiencing issues with running
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out of memory on GPUs. In the future it would be very simple to implement.

7 Conclusion

This work confirmed that while the steepest descent algorithm achieves what it

sets out to do, it is often too inefficient to be used in practice. Then the idea

of conjugate directions was introduced and although it can address the rate of

convergence issue, it runs into its own set of problems. Next the method of

conjugate gradients addresses the issues of conjugate directions by computing

each search direction at the time its needed, removing the need to store each

search directions. Not only did this method act as a better direct method, it

converges to a solution much faster than steepest descent so it is used more as

an iterative method in practice.

HPCG uses the conjugate gradients method to solve a system of equations

and is the new upcoming benchmark to be used in tangent with HPL to measure

the performance of the world’s largest and fastest supercomputers. Since HPCG

is used across a multitude of systems, it is often user optimized to accommodate

the architecture it is being run on. Through the use of the Kokkos package de-

veloped by Sandia National Laboratories this thesis worked to create a reference

version of HPCG that could easily be modified to accommodate a variety of ar-

chitectures and perform optimally across each. To test performance portability,

we tested HPCG and KHPCG across multiple Kokkos execution spaces and

noted similar performance between the two. Finally we made our own optimiza-

tions to KHPCG and noted that with the given solve kernel certain execution

spaces perform better than others with both hierarchal parallelism and sin-

gle level parallelism but overall the coloring implementation outperformed the

leveling implementation.
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7.1 Future Work

The goal of this project was to create a reference version of HPCG using Kokkos

but there is still plenty of work to be done. For starters, it may be more in the

design of HPCG to use a Kokkos “wrapper” sparse matrix structure than the one

found in the Kokkos package allowing the end user greater freedom with their

optimizations. On top of this, during the work with HPCG 2.4 we experienced

issues with using MPI in tangent with the Kokkos data structures so then it was

decided to work on a single node implementation of Kokkos + HPCG. Now that

the single node implementation is complete, work needs to be done to re-enable

the ability to use MPI with the code.

Since there is now a single node implementation it would be fascinating to

compare the optimized results of this code with those of the code provided by

large vendors like Intel and Nvidia. This would be a good comparison test to

see how the Kokkos programming model stands up to the current models used

across each compatible architecture. The code provided here has seen some

optimizations but I acknowledge that it may not be the most optimal imple-

mentation, and other implementations could be explored to further improve

optimized results. On top of these there needs to be better memory manage-

ment as the current setup did not allow for problem sizes of 2563 to be run on

the GPUs we tested on, as they would run out of memory to store the data.

8 Appendix

8.1 Github Repositories

The repository for HPCG can be found from their webpage hpcg-benchmark.

org. The Trilinos repository where the Kokkos package is located can be found

at https://github.com/trilinos/Trilinos.git. There is too much code in
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the KHPCG project to be printed in this paper, however, the git repository for

this project can be found at https://github.com/zabookey/KHPCG3.0.git

along with instructions on how to build the project.

8.2 Matlab Code

The Matlab code for each of the iterative methods introduced can be found

below.

Steepest Descent Code:

1 f unc t i on x = SteepDescent (A, x0 , b)
2 x = x0 ;
3 r = b − A∗x0 ;
4 n = s q r t ( r ’∗ r ) ;
5 k = 1 ;
6 whi le n > .000001
7 a = ( r ’∗ r ) /( r ’∗A∗ r ) ;
8 x = x + a∗ r ;
9 r = b − A∗x ;

10 n = s q r t ( r ’∗ r ) ;
11 k = k+1;
12 end
13 f p r i n t f ( ’ Achieved Convergence in %d s t ep s \n ’ , k−1) ;
14 end

Conjguate Directions Code:

1 f unc t i on x = ConjDi rec t ions (A, x0 , b , P)
2 x = x0 ;
3 r = b − A∗x0 ;
4 n = s q r t ( r ’∗ r ) ;
5 k = 1 ;
6 whi le n > .000001 && k <= length (b)
7 p = P( : , k ) ;
8 a = (p ’∗ r ) /(p ’∗A∗p) ;
9 x = x + a∗p ;

10 r = b − A∗x ;
11 n = s q r t ( r ’∗ r ) ;
12 k = k+1;
13 end
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14 f p r i n t f ( ’ Achieved Convergence in %d s t ep s \n ’ , k−1) ;
15 end

Conjugate Gradients Code:

1 f unc t i on x = ConjGradients (A, x0 , b , prec )
2 i f narg in < 4
3 prec = f a l s e ;
4 end
5 x = x0 ;
6 p = x0 ;
7 r = b − A∗x0 ;
8 n = s q r t ( r ’∗ r ) ;
9 k = 1 ;

10 whi le n > .000001
11 i f prec
12 z = ze ro s ( l ength ( r ) , 1 ) ;
13 z = SYMGS(A, r , z ) ;
14 e l s e
15 z = r ;
16 end
17 i f k == 1
18 p = z ;
19 rz = r ’∗ z ;
20 e l s e
21 rz0 = rz ;
22 rz = r ’∗ z ;
23 beta = rz / rz0 ;
24 p = beta ∗p + z ;
25 end
26 Ap = A∗p ;
27 alpha = rz /(p ’∗Ap) ;
28 x = x + alpha ∗p ;
29 r = r − alpha ∗Ap;
30 n = s q r t ( r ’∗ r ) ;
31 k = k+1;
32 end
33 f p r i n t f ( ’ Achieved Convergence in %d s t ep s \n ’ , k−1) ;
34 end
35

36 f unc t i on x = SYMGS(A, r , x0 )
37 x = x0 ;
38 Adim = s i z e (A) ;
39 nrow = Adim(1) ;
40 nco l = Adim(2) ;
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41 %Forward sweep
42 f o r i = 1 : nrow
43 sum = r ( i ) ;
44 f o r j = 1 : nco l
45 sum = sum − A( i , j ) ∗ x ( j ) ;
46 end
47 sum = sum + x ( i ) ∗A( i , i ) ;
48 x ( i ) = sum/A( i , i ) ;
49 end
50 %Backward sweep
51 f o r i = nrow :−1:1
52 sum = r ( i ) ;
53 f o r j = 1 : nco l
54 sum = sum − A( i , j ) ∗ x ( j ) ;
55 end
56 sum = sum + x ( i ) ∗A( i , i ) ;
57 x ( i ) = sum/A( i , i ) ;
58 end
59

60 end
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