College of Saint Benedict and Saint John's University

Digital Commons@CSB/SJU

All College Thesis Program, 2016-present Honors Program

Spring 2016

HPC Made Easy: Using Docker to Distribute and Test Trilinos

Sean J. Deal
College of Saint Benedict/Saint John's University, sjdeal@csbsju.edu

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_thesis

Cf Part of the Numerical Analysis and Scientific Computing Commons, and the Systems Architecture
Commons

Recommended Citation

Deal, Sean J., "HPC Made Easy: Using Docker to Distribute and Test Trilinos" (2016). All College Thesis
Program, 2016-present. 10.

https://digitalcommons.csbsju.edu/honors_thesis/10

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for
inclusion in All College Thesis Program, 2016-present by an authorized administrator of DigitalCommons@CSB/SJU.
For more information, please contact digitalcommons@csbsju.edu.

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_thesis
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_thesis?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_thesis/10?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu

HPC Made Easy: Using Docker to Distribute

and Test Trilinos

An All-College Thesis

College of Saint Benedict/Saint John’s University

In Partial Fulfillment of the Requirements
for Distinction in the Department of Computer Science

by Sean Deal
April 2016

Project Title: HPC Made Easy: Using Docker to Distribute and Test Trilinos

Approved by:

Mike Heroux

Scientist-in-Residence, Department of Computer Science

Imad Rahal

Associate Professor and Chair, Department of Computer Science

Noreen Herzfeld

Professor, Department of Computer Science

Emily Esch

Director, All-College Thesis Program

Abstract

Virtualization is an enticing option for computer science research given its abil-
ity to provide repeatble, standardized environments, but traditional virtual ma-
chines have too much overhead cost to be practical. Docker, a Linux-based tool for
operating-system level virtualization, has been quickly gaining popularity through-
out the computer science field by touting a virtualization solution that is easily
distributable and more lightweight than virtual machines. This thesis aims to ex-
plore if Docker is a viable option for conducting virtualized research by evaluating

the results of parallel performance tests using the Trilinos project.

Contents

(1 Introduction|

2 Background|

[4 Performance Testing|

M1 Methodd
B2 Resultd. o o
4.2.1 _Problem Size - 100010001
|1'212 I Ig!tllg:lll :‘!izigz - 2()!][1:;2!][1(]] ----------------------
4.2.3 Problem Size - 4000x40001

5 Conclusionl
B.I Tuture Researchl

6 Appendix]|

6.1

Computing Architecturel

6.2

Docker Setup Notes|.

6.3

Trilinos Configuration Script|

6.4

Epetra BasicPerfTest Source Code|.

10

12
12
15
15
17
19

21

22

1 Introduction

Virtualization - the isomorphic mapping of a virtual guest system to a real host system
- is an enticing option for many computing tasks. In particular, virtual machines (VMs)
are commonly used for several purposes. VMs can be summarized as virtual systems that
replicate an entire machine - for instance, VM software such as Oracle VM VirtualBox
can be used to run a virtual instance of Ubuntu Linux on a Windows machine or vice
versa. This level of virtualization is achieved by placing virtualizing software between the
software and hardware of the host machine. When creating an instance of a system virtual
machine, virtualizing software provides a guest operating system and facilitates access to
the native hardware of the host machine. In the case of differing system architectures
between the guest and host machines, the virtualization software also translates machine
instructions [24].

Virtual machines are sufficient for most casual computing needs, such as wanting
to run Windows software on a Mac. Due to their standardized environments, VMs have
also been used for more serious computing endeavors, such as software development and
research. However, VMs tend to be too impractical for repeatable and reliable research,
as they are not easily scalable and cam complicate the pipeline of studies using different
combinations of tools [3].

Docker is a new technology that has been making waves in the computer sci-
ence field, touting a method of virtualization that is both easily distributable and more
lightweight than virtual machines. As Docker has been rising in popularity, it has caught
the attention of researchers as a possible method of simplifying repeatable research [3].
This thesis aims to test the performance of Docker containers compared to native hard-
ware. By running tests from the Trilinos project in parallel, we will evaluate various
performance metrics in both environments. We will then attempt to conclude whether
or not Docker truly can be of use to computer science researchers and provide an easier

way to conduct repeatable research without sacrificing performance.

2 Background

2.1 Docker

Docker is a tool for operating system-level virtualization, which is a server virtualiza-
tion method where the operating system’s kernel allows for multiple isolated userspace
instances, referred to as containers. This allows multiple users to run operations as if
they are working on their own dedicated server, while these containers are being run off
of a single server. In addition, the server administrator has power to regulate workloads
across these isolated containers. Because these containers are completely isolated, oper-
ations executed in one container will not affect other containers, even if they are running
simultaneously [17].

Docker started its life as a component of the ‘Platform as a Service’ provider
dotCloud. In March 2013, dotCloud released Docker as an open source project. Docker
was originally built using Linux Containers (LXC), a userspace interface for the Linux
kernel that allows users to create and manage Linux containers. LXC’s primary goal “is
to create an environment as close as possible to a standard Linux installation but without
the need for a separate kernel” [5].

Docker was touted as a repeatable and lightweight virtualization solution due
to its heavy focus on isolation of both resources and file systems [I]. The benefits of
Docker were embraced immediately by developers. One of the most welcomed benefits was
the use of Docker for environment standardization in development. Previously, testing
environments varied at each step along the development cycle, but by using Docker,
developers could ensure that the environments used to develop and test the software
would be consistent [16].

Just about one year later, in March 2014, Docker was updated to version 0.9,
which included a major change to Docker’s infrastructure. Instead of exclusively using
LXC to access Linux container functionalities, the Docker group developed their own

execution environment called libcontainer [I5]. This environment allows Docker to have

direct access to container APIs instead of relying on outside technology, though Docker
still supports LXC as well as other execution environments (Figure [1)). This meant that
Docker was now one complete package and also opened the door for Docker to run on
non-Linux platforms [25]. By allowing Docker to become a self-contained complete
package, libcontainer was monumental in Docker’s rise to the top of the Linux container

community.

Docker

libcontainer

systemd-
NSpawn

¥ ¥ l ¥

Linux

libwirt [xe

cgroups namespaces netlink

selinux netfilter

capabilities apparmor

Figure 1: A diagram showing the various execution environments compatible with
Docker as of Docker 0.9. libvirt, Ixc, and systemdnspawn are separate from the
Docker engine, while libcontainer is part of Docker. This diagram also shows Linux
container APIs used by Docker [25].

Docker has quickly become the de facto standard for operating system-level
virtualization. dotCloud, Inc. officially changed its name to Docker, Inc. in October
2013 to reflect its change in focus from the dotCloud service to Docker [I0]. Docker, Inc.
proceeded to sell dotCloud to the German company cloudControl in 2014; cloudControl
filed for bankruptcy in February 2016, shutting down the dotCloud service that originally
spawned Docker [20]. Meanwhile, Docker has teamed up with high-profile companies

such as Google, Microsoft, Amazon, and IBM to create the Open Container Initiative.

This project is an effort to make Docker the true standard for Linux containers. Ideally,
the Open Container Initiative will make the Docker container format and runtime the
basis of this new standard, meaning that developers will be able to run their containerized

applications in any runtime [I8].

2.2 Trilinos

Trilinos is an open-source project consisting of several packages used for scalable sci-
ence and engineering applications. The initial goals of the Trilinos project regarded the
development of production-quality mathematical solvers. The project garnered success
and recognition early, receiving an R&D 100 award in 2004 [19]. Presently, there are
more than fifty packages in Trilinos covering a broad range of algorithms in the areas of

computational science and engineering (Figure .

Trilinos strategic capability areas:
e User experience
e Parallel programming environments
e Framework and tools
e Software engineering technologies and integration
e 1/0 support
e Meshes, geometry, and load balancing
e Discretizations
e Scalable linear algebra
e Linear and eigensolvers

e Embedded nonlinear analysis tools

Figure 2: Trilinos strategic capability areas. The primary package used in this

thesis, Epetra, falls under the area of scalable linear algebra [26].

Trilinos packages are self-contained software components, each with their own
requirements and dependencies. Trilinos is predominantly a community-driven project,
so keeping packages mostly isolated from each other allows Trilinos developers to focus
mainly on their own package. However, packages can also be built in combination with

each other. Many packages are built in close relation with others, providing expanded

functionality. In addition, Trilinos has support for more than eighty third-party libraries

which can be used in tandem with packages in Trilinos [13].

2.2.1 Epetra

Epetra is a package that implements serial and parallel linear algebra and provides the
foundation for Trilinos solvers. Epetra’s uses include construction and use of sparse
graphs, sparse matrices, and dense vectors. The package also includes wrappers that
provide simplified interaction with BLAS and LAPACK, two common linear algebra
packages outside of Trilinos [§]. Epetra was the primary package used for performance

testing in this thesis, the details of which will be explained later.

3 Benefits of Docker

3.1 Development

Because Docker containers are isolated userspace instances, they provide standardized en-
vironments that could be beneficial for both development and bug reproduction. Instead
of several developers working on the same project from different machines, creating one
or more standardized Docker images would provide a standard environment for all the
developers to work from. This would help fix errors during development that may arise
due to different developers having different versions of tools used to build and run Trili-
nos. In addition, standardized Docker containers can reduce costs needed for developers
to maintain their own development environments.

Any image can be run on any operating system that supports Docker. For
instance, a developer running Ubuntu can pull and work from a container based on Fedora.
This allows developers to test their software in several environments and also allows
several developers to work in the same environment regardless of their host machines’
operating system (Figure . By having standardized images for issue handling, bugs can

be reproduced in several different environments regardless of the host operating system

of the issue handler.

One of the key goals of Trilinos is universal interoperability, meaning that any
combination of packages and third-party libraries that makes algorithmic sense can be
built into a specific installation of Trilinos [13]. However, a problem arises when attempt-
ing to use an installation of Trilinos that was built for a different purpose. If the current
installation does not include necessary packages or third-party libraries, Trilinos must
be completely re-built and re-installed with the new packages included. Sometimes this
re-building process can be as simple as changing the configuration file, but considering
the large number of packages and third-party libraries compatible with Trilinos, this is
not always an easy process [2].

One of the most intriguing areas of potential benefit is the use of Dockerfiles for
creating new builds of Trilinos. Dockerfiles are short scripts that are used to automati-
cally create containers and run specified commands in them. This means that a simple
Dockerfile can be used to configure, build, and install a new installation of Trilinos and
provide an image with this new installation included. By providing different configura-
tion files to the same Dockerfile, it is possible to create many different images containing

different builds of Trilinos.

3.2 Distribution

A key function of Docker is the use of images in conjunction with containers. Docker
images are essentially snapshots of containers that are used as bases from which other
containers are created. At any time, a container can be committed to either the host
image or a new image, functionally saving the changes made inside the container. These
images can be shared through the Docker Hub Registry, a hosting service integrated into
Docker which acts as a repository for Docker images (Figure . Any user can pull any
public images and, if they are registered with Docker Hub, push their own images to the
Registry through simple Docker commands.

As mentioned previously, standardized environments are a benefit to develop-

Docker Hub Registry

Container Container Container Container

Trilinos image Trilinos image Trilinos image Trilinos image

Docker Engine Docker Engine Docker Toolbox

Docker Toolbox

Fedora Mac 05 X

Figure 3: A visualization of multiple Trilinos developers with different host operat-

ing systems working from the same image. Changes made by any developer can be
pushed to the Docker Hub and then pulled by other developers.

ers, but this quality of Docker extends to users as well. Docker images contain not only
the software component of an application but also all of the application’s dependencies,
including binaries, libraries, scripts, and other tools [I]. This allows developers to dis-
tribute not only their software but also the entire environment. Often, software issues
arise because the environment that a user runs the application in is different than that of
the developer, or the user is missing a certain tool that the application requires to run.
Docker images ensure that these environments are the same, effectively eliminating this
issue and resolving the problem of “dependency hell” [3].

Docker can provide an easy pathway to distributing Trilinos to end users. Cur-
rently, users of Trilinos have to download the Trilinos source, configure it for their pur-
poses, build it, and install it before they are able to start using it for their own applica-
tions. By providing images that have Trilinos already installed, users can start building
their own applications right away without having to go through the Trilinos build process.
These users could then create an image of their own application that uses the Trilinos

image as a base and distribute that image to users of their application [9].

3.3 Comparison to Virtual Machines

Docker containers are commonly compared to virtual machines. Both containers and

VMs are isolated instances, and both are built and run from a base image. The main

10

difference is that virtual machine instances include the entire guest operating system,
whereas Docker containers are run using the Linux kernel directly through the Docker
engine. By using built-in Linux functions such as cgroups and namespaces, Docker
containers create an isolated workspace on the same kernel that is significantly more
lightweight than a virtual machine instance (Figure [)). In addition, Docker images are

much smaller in size when compared to VM images; for instance, an Ubuntu VM image

is roughly 943 MB [21], while an Ubuntu Docker image is only about 188 MB [23].

App 2 App 3

Bins/Libs

Bins/Libs Bins/Libs

Bins/Libs

Infrastructure Infrastructure

Guest OS Guest OS Guest OS

App 3

OB O OB o

Figure 4: A visualization comparing virtual machines and Docker containers. VMs

include the entire guest OS, whereas Docker builds containers directly from the

operating system through the Docker Engine [7].

One drawback to Docker’s approach to virtualization is that it is entirely Linux-
based, meaning Docker does not run natively on Mac or Windows machines. Instead,
Mac and Windows users must run a custom VM through VirtualBox that allows access
to all the same Docker functionalities. For these users, Docker provides Docker Toolbox,
which includes everything needed to run the VM and start using Docker [6]. However,
not all Windows and Mac machines are capable of virtualization, and even if they are,
enabling virtualization can be a tedious process.

On March 24, 2016, Docker announced a new beta for Docker for Mac and Win-

11

dows which eliminates the need to run a VM through VirtualBox. This new beta directly
utilizes xhyve and Hyper-V, the built-in virtualization tools on Mac and Windows respec-
tively, to run an Alpine Linux distribution which in turn runs the Docker application.
Instead of running a VM, users on Windows and Mac now simply have to run the Docker
application [4]. This is an intriguing development that will likely make Docker much
easier to use on non-Linux platforms. It does not remove all problems, though, as users
still need to enable virtualization on their machines before being able to use this new

Docker application.

4 Performance Testing

With Docker providing a simplified way to distribute applications, its appeal has spread
to the area of computational research, including the field of high-performance computing
(HPC). Trilinos itself is not an application, rather a collection of libraries, but its packages
can be used for a wide range of algorithms and technologies in the areas of computational
science and engineering [13]. If Docker containers allow for performance at a similar level
as a native installation, the process of conducting repeatable computing research could

be greatly simplified.

4.1 Methods

For this thesis, performance testing was conducted in two environments. The first was
an eight node cluster named Melchior at CSB/SJU. Each node of Melchior uses an Intel
Xeon processor with 12 cores (Appendix . The second environment was a series of
Docker containers running on each node of Melchior (Appendix , with each container
being built off of the same base image. The installations of Trilinos were identical in both
environments (Appendix .

The Message Passing Interface (MPI) was used to conduct performance tests
in parallel; specifically, OpenMPI was used. MPI is a realization of the message-passing

model of parallel computation, which consists of a set of processes that only have local

12

memory but can communicate with other processes by sending and receiving messages
[11]. By programming with MPI, programs are able to split the workload between a
number of separate processes. Understandably, MPI is used frequently by computer
researchers, as it allows complex or computation-intensive tasks to be done much quicker.

As previously mentioned, Epetra is a package within Trilinos that implements
serial and parallel linear algebra. While Trilinos does not provide standalone software, its
packages have executable tests that can be used to evaluate performance. One of these is
the Epetra BasicPerfTest. This test takes parameters for the size of a mesh grid and, if
running in parallel, a matrix of processors. It then sets up a grid of the type Epetra_Map
of the specified size on each processor and performs the following operations for each

element of each matrix:

e MatVec - A simple solve of the equation y = Az. The MatVec is performed with
new and old implementations, with and without optimized storage, and with a
Trans variable set to 0 and 1, indicating whether to solve for the transpose of A.

All combinations are performed ten times each, resulting in eighty operations total.

e Lower/Upper Solve - An LU factorization. Both lower and upper triangular solves
are performed, varying optimized storage and transpose similarly to the MatVec

for a total of eighty operations.

The test then creates a vector of the type Epetra_MultiVector of the same length

as the matrix used above and performs these operations:

e Norm?2 - The Euclidean norm of the vector. This operation is performed ten times.

e Dot - The dot product of the vector with itself. This operation is performed ten

times.

e Update - A linear combination of the vector with itself, following the equation

w = ax + Py with o = 1.0 and 8 = 1.0. This operation is performed ten times.

13

For all operations, the BasicPerfTest returns a result in millions of floating-point

operations per second (Mega FLOPs, or MFLOPs), defined as

Number of floating—point operationsin a program
Ezecution timex 100

This serves as a more reliable indicator of performance than simply recording the time
spent to complete an operation, as MFLOPs values are solely dependent upon the machine
and the program [22].

The test was run several times, varying both the number of processes and the
problem size. Grid sizes of 1000, 2000, and 4000 square were used, and each grid size was
tested using 1, 8, 16, and 48 processes. The total number of equations evaluated for a
given test is equal to g * p where g is the grid size and p is the number of processes. For
each case, the test was performed five times, and results were recorded for the new MatVec
with optimized storage and Trans=0, the lower triangular solve with optimized storage
and Trans=0, the 10 Norm2’s, the 10 Dot products, and the 10 Updates. The harmonic
mean and median of each operation were then calculated [I4]. This was repeated for
both the native Trilinos installation on the Melchior cluster and the installation in Docker
containers. For the Docker installations, an equal number of containers was used on each
node of Melchior to match the number of processes; for example, with 16 processes, 2

Docker containers were used on each of the 8 nodes of Melchior.

14

4.2 Results

4.2.1 Problem Size - 1000x1000

7000
(<]
6000
5000
v 4000 o
a
(@]
—
(N,
= 3000
2000
- . . . ‘
0 —
MatVec Lower solve Norm?2 Update
M Harmonic mean - Native W Harmonic mean - Docker
e Median - Native o Median - Docker

Figure 5: Performance results for the Epetra BasicPerfTest with a problem size of

1000x1000 and 1 process.

15

35000

30000 -

25000

20000

MFLOPs

15000

10000

5000

0 — N— N—
MatVec Lower solve Norm?2 Dot Update
B Harmonic mean - Melchior B Harmonic mean - Docker

e Median - Melchior o Median - Docker
Figure 6: Performance results for the Epetra BasicPerfTest with a problem size

of 1000x1000 and 8 processes. One Docker container was used on each node of

Melchior.

30000
(<)
25000
20000
%)
a
53 15000
L
=
10000
5000
0 — N— N— N— N—
MatVec Lower solve Norm?2 Dot Update
B Harmonic mean - Native M Harmonic mean - Docker
e Median - Native o Median - Docker

Figure 7: Performance results for the Epetra BasicPerfTest with a problem size of

1000x1000 and 16 processes. Two Docker containers were used on each node of

Melchior.

16

40000

35000

30000

25000

20000

MFLOPs

15000

10000

5000

: o a _ .

MatVec Lower solve Norm?2 Dot Update
B Harmonic mean - Native M Harmonic mean - Docker
e Median - Native e Median - Docker
Figure 8: Performance results for the Epetra BasicPerfTest with a problem size
of 1000x1000 and 48 processes. Six Docker containers were used on each node of

Melchior.

4.2.2 Problem Size - 2000x2000

6000
5000
4000
(%]
o
9 3000
[N
=
2000
1000
0 N— R— N— R— N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior e Median - Docker

Figure 9: Performance results for the Epetra BasicPerfTest with a problem size of
2000x2000 and 1 process.

17

30000

25000
20000
(%] (<)
a
9 15000
[N,
=
10000
5000
0 N— — N— — N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior o Median - Docker

Figure 10: Performance results for the Epetra BasicPerfTest with a problem size
of 2000x2000 and 8 processes. One Docker container was used on each node of

Melchior.

35000
30000
@
25000
v 20000
o
(@)
o
(<)
= 15000
10000
o
5000
0 N— — N— — N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior o Median - Docker

Figure 11: Performance results for the Epetra BasicPerfTest with a problem size

of 2000x2000 and 16 processes. Two Docker containers were used on each node of

Melchior.

18

45000

40000 °

0 - | - |

MatVec Lower solve Norm?2 Dot Update
B Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior e Median - Docker
Figure 12: Performance results for the Epetra BasicPerfTest with a problem size
of 2000x2000 and 48 processes. Six Docker containers were used on each node of

Melchior.

4.2.3 Problem Size - 4000x4000

7000
6000
5000
v 4000
o
(@]
-
[N
= 3000
2000
1000
0 N— R— N— R— N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior e Median - Docker

Figure 13: Performance results for the Epetra BasicPerfTest with a problem size of
4000x4000 and 1 process.

19

30000

25000
20000
(%]
a
53 15000
[N,
=
10000
5000
0 N— — N— — N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior o Median - Docker

Figure 14: Performance results for the Epetra BasicPerfTest with a problem size
of 4000x4000 and 8 processes. One Docker container was used on each node of

Melchior.

30000
25000
20000
(%]
o
9 15000
[N
=
10000
5000
0 N— — N— — N—
MatVec Lower solve Norm?2 Dot Update
M Harmonic mean - Melchior M Harmonic mean - Docker
e Median - Melchior o Median - Docker

Figure 15: Performance results for the Epetra BasicPerfTest with a problem size
of 4000x4000 and 16 processes. Two Docker containers were used on each node of

Melchior.

20

When attempting to test a problem size of 4000x4000 with 48 processes on both Melchior
and Docker, the test process was killed with a signal indicating that the process ran out

of memory.

5 Conclusion

The results of running the Epetra BasicPerfTest both on the Melchior cluster and in
Docker containers have shown that there is little to no drop in performance when per-
forming tests using Docker containers. On serial performance tests, Melchior and Docker
performed virtually the same regardless of problem size (Figures[5 [0} [L3). When running
in parallel with MPI, the results became slightly more erratic, though Docker consistently
performed very similarly to the native installation. Larger problem sizes seemed to be
more conclusive, as the results were more consistent with fewer outliers. Interestingly,
Docker seemed to perform best with a larger number of processes, as the Docker con-
tainers outperformed the native installation more consistently on tests with 48 processes
(Figures , . One possible explanation is the use of multiple containers on each node
of Melchior for these tests. Using separate containers may have allowed each process to
remain tied to a single processor, cutting down on performance lost by switching pro-
cessors in the middle of the test. This certainly suggests that Docker handles scalable
applications very well, though further testing may be required to definitively conclude if
Docker actually improves scalability.

These results are very exciting, especially when combined with the other benefits
of Docker explained earlier. Since Docker provides an easy way to distribute applications,
the prospect of distributing research-related programs or packages is very promising.
Specifically with Trilinos, this means that a pre-installed copy of Trilinos could be dis-
tributed through the Docker Hub, and users could begin developing and distributing their
applications much quicker, and with no drop in performance.

Docker does not seem to be a complete silver bullet to virtual machines, though.

The lack of native Docker support on Windows and Mac is notable and possibly unavoid-

21

able due to Docker’s reliance on native Linux commands to create containers. Still,
Docker has shown that they are doing all they can to improve the experience of Windows
and Mac users through the Docker Toolbox and the recently announced Docker for Mac
and Windows beta, which eliminates the need for VirtualBox. For Linux users, Docker
indeed appears to be a favorable alternative to virtual machines, and these results show

that the HPC community can also find benefit in using Docker for scalable applications.

5.1 Future Research

Moving forward, similar performance testing will be done using different Trilinos packages,
such as AztecOO, which works closely with Epetra to provide an object-oriented interface
to the Aztec linear solver library [12]. This will serve to further explore the performance
capabilities of Docker containers. It would also be useful to vary not only the number
of processes but also the number of Docker containers set up on each node of Melchior.
Doing so would demonstrate whether or not the number of containers has an effect on
performance and would shed more light on the scalability of Docker containers.

In addition, we will likely move to create official Trilinos images in the Docker
Hub Registry. This will realize the prospect of providing Trilinos users with an installed
version of Trilinos that they can develop their applications against and distribute their
applications on top of to their users. It may also lead to the use of a consistent devel-
opment environment for Trilinos developers. In addition, with the recent announcement
of Docker for Mac and Windows, the pathway to using Docker on non-Linux platforms
is becoming easier. It would be beneficial to do more in-depth exploration into using

Docker on these platforms.

22

References

[10]

[11]

[12]

[13]

Abel Avram. Docker: Automated and consistent software deployments, 2013.
Roscoe Bartlett. Trilinos configure, build, test, and install quick reference guide.

Carl Boettiger. An introduction to docker for reproducible research. SIGOPS Oper.
Syst. Rev., 49(1):71-79, 2015.

Patrick Chanezon. Docker for mac and windows beta: the simplest way to use docker

on your laptop, 2016.

Linux Containers. What’s Ixc?

Docker.com. Docker toolbox.

Docker.com. What is docker?

Epetra Doxygen. Trilinos/epetra: Linear algebra services package, 2015.

John Foster. Run peridigm (and other scientific hpc codes) without building via

docker, 2015.
Ben Golub. dotcloud, inc. is becoming docker, inc., 2013.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface. MIT Press, 1999.
M. A. Heroux. Aztecoo users guide, 2007.

M. A. Heroux and J. M. Willenbring. A new overview of the trilinos project. Scientific

Programming, 20(2):83-88, 2012.

Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel computing

systems: Twelve ways to tell the masses when reporting performance results, 2015.

Solomon Hykes. Docker 0.9: introducing execution drivers and libcontainer, 2014.

23

[21]
[22]
[23]

[24]

[25]

[20]

Mike Kavis. Docker is open source!, 2013.

Bill Kleyman. Understanding application containers and os-level virtualization, 2015.

Frederic Lardinois. Docker, coreos, google, microsoft, amazon and others come to-

gether to develop common container standard, 2015.

R&D Magazine. 2004 r&d 100 winner: This pearl is a real gem, 2004.

Jordan Novet. Dotcloud, the cloud service that gave birth to docker, is shutting

down february 29, 2016.

OSBoxes. Ubuntu.

Karkal Prabhu. Using mips and mflops as performance metrics, 2008.

Docker Hub Registry. Ubuntu official repository.

James Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and

Processes. Morgan Kaufman Publishers; 2005.

Chris Swan. Docker drops Ixc as default execution environment, 2014.

Trilinos.org. Capabilities.

24

© 00 N o ot ks W NN

[T S S T e S e S S Gy SO G S S WY
SO © 00 N O ot ks W NNy = O

21
22

6 Appendix

6.1 Computing Architecture

The computing architecture of the Melchior cluster is as follows:

processor

vendor_id

cpu family
model

model name

0
Genuinelntel
6

45

Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz

stepping 7
microcode 0x710
cpu MHz 1199.968
cache size 15360 KB
physical id 0
siblings 12

core id 0

cpu cores 6

apicid 0
initial apicid 0

fpu yes
fpu_exception yes
cpuid 1level 13

wp yes
flags fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe

syscall nx pdpelgb rdt scp 1lm constant_tsc arch_perfmon pebs bts

rep_good nopl xtopology nonstop_tsc ap erfmperf eagerfpu pni

pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm

pcid dca ssed_

1 ssed4_2 x2apic popcnt tsc_deadline_timer aes Xxsave

avx lahf_1Im ida arat epb pln pts dtherm tpr_shadow vnmi flexpriority

ept vpid xsave opt

bogomips

clflush size

3790.61

64

25

23
24
25

~N O t e~ w [\]

0g) -~ (@) ot W~ w \V]

cache_alignment : 64
address sizes : 46 bits physical, 48 bits virtual

power management:

6.2 Docker Setup Notes

The following notes come from CSB/SJU Linux administrator Josh Trutwin, who was
invaluable in helping to get Docker working properly on Melchior. IP addresses and MAC
addresses have been obscured for security.

Firstly install docker, which requires a custom CentOS repository to run on our

Red Hat Enterprise Linux 7 Workstation environment:

cat /etc/yum.repos.d/docker.repo
[dockerrepo]
name=Docker Repository
baseurl=https://yum.dockerproject.org/repo/main/centos/7
enabled=0
gpgcheck=1
gpgkey=https://yum.dockerproject.org/gpg
Install docker:
yum -y --disablerepo="*" --enablerepo=dockerrepo install docker-
engine
Setup a private network on 10.0.x.y on the second NIC on each node of the
cluster:
cat /etc/sysconfig/network-scripts/ifcfg-ethl

DEVICE=ethl
TYPE=Ethernet
HWADDR=--:--:--:--:--:--
BOOTPROTO=none
ONBOOT=yes

BRIDGE=brO

26

10
11
12

13
14
15
16
17
18
19

© 00 N o ot ks W N

—_
o

11
12
13
14
15
16
17

cat /etc/sysconfig/network-scripts/ifcfg-br0

DEVICE=brO0

TYPE=Bridge

IPADDR=10.0.0.4 <---- This is different for each HPC, node 0O is
10.0.0.1, 2 is 10.0.0.2, etc

NETMASK=255.255.0.0

BOOTPROTO=none

ONBOOT=yes

DELAY=0

/sbin/sysctl -w net.ipvé4.ip_forward=1

service network restart

Edit the docker service ExecStart configuration to assign a portion of the 10.1.x.y

network to each docker instance - for example, hpc3 below:

cat /usr/lib/systemd/system/docker.service
[Unit]

Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network.target docker.socket

Requires=docker.socket

[Servicel

Type=notify

ExecStart=/usr/bin/docker daemon --bridge=br0 --fixed-cidr=10.1.4.0/24
-H fd:// <--- HPCO is 10.1.1.0, HPC1 is 10.1.2.0 etc

MountFlags=slave

LimitNOFILE=1048576

LimitNPROC=1048576

LimitCORE=infinity

[Installl

WantedBy=multi-user.target

27

© 00 N o Ot ks W N

—_
o

11
12
13
14
15

N O Ut R W N

Start Docker, set to run on boot:

systemctl enable docker.service

systemctl start docker.service

Verify:

[root@hpc3 ~]# docker run -it centos /bin/bash

[root@el1e04cbOb6b /]1# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN

link/loopback :00:00:00:00:00 brd 00:00:00:00:00:00

inet ---.---.---.---/8 scope host lo

valid_1ft forever preferred_lft forever

inet6 ::1/128 scope host

valid_1ft forever preferred_lft forever

35: eth0@if36: <BROADCAST ,MULTICAST ,UP,LOWER_UP> mtu 1500 gdisc noqueue
state UP

link/ether --:--:--:--:--:-- brd ff:ff:ff:ff:ff:ff link-netnsid O

inet 10.1.4.12/16 scope global ethO

valid_1ft forever preferred_lft forever

inet6 ----::--:---:----:---/64 scope link

valid_1ft forever preferred_1lft forever

6.3 Trilinos Configuration Script

The same configuration script was used for the Trilinos installation on Melchior and the

installation in Docker.

rm -rf CMakeCache.txt CMakeFiles/

EXTRA_ARGS=3%0

cmake \

-D CMAKE_BUILD_TYPE:STRING=RELEASE \

-D CMAKE_INSTALL_PREFIX=../install \

28

10
11
12
13
14
15
16
17
18
19
20
21
22
23

~ (=] ot =~ w

10
11

\

-DTPL_ENABLE_MPI :BOOL=0N \
-DMPI_BASE_DIR:PATH=/usr/1ib64/openmpi \
\

-DTrilinos_ENABLE_OpenMP:BOOL=0N \

-D Trilinos_ENABLE_TESTS:BOOL=0N \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=0FF \
-D Trilinos_ENABLE_Epetra:BOOL=0N \
-DTrilinos_ENABLE_CXX11=0N \
-DTrilinos_ASSERT_MISSING_PACKAGES=0FF \
-DBUILD_SHARED_LIBS:BOOL=0FF \

\

-D CMAKE_VERBOSE_MAKEFILE:BOOL=0FF \

-D Trilinos_VERBOSE_CONFIGURE:BOOL=0FF \
$EXTRA_ARGS \

../publicTrilinos

6.4 Epetra BasicPerfTest Source Code

// @QHEADER

//

>k %k >k 5k >k 5k >k 5k >k %k %k 5k %k 5k %k 3k %k %k %k >k %k >k % >k >k >k > >k >k >k >k >k 5k >k >k >k >k %k >k %k >k %k >k %k >k %k >k %k >k %k %k %k >k %k >k % >k % >k >* >k >* %k >* %k % %k % %k

//

// Epetra: Linear Algebra Services Package
// Copyright 2011 Sandia Corporation

//

// Under the terms of Contract DE-AC04-94AL85000 with Sandia
Corporation,

// the U.S. Government retains certain rights in this software.

//

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions

are

29

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39

40
41

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//

//
//
//
//
//
//
//

met:

1. Redistributions of source code must retain the above copyright

notice, this 1list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this 1list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the Corporation nor the names of the
contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 0OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Questions? Contact Michael A. Heroux (maherou@sandia.gov)

>k 3k >k 5k >k 5k >k 5k %k 5k %k 5k Xk 3k Xk 3k Xk 3k Xk 3k X %k % %k 5 %k > %k > %k > %k > >k > >k >k %k > %k > %k 3k %k > %k > %k 3k % 3k % % % % % % % %k > %k > %k > %k % %k % %k

//@HEADER

30

42
43
44
45
46
47
48
49
50
51
52
53
o4
95
56
o7
o8
99
60
61
62
63
64
65
66

67
68

69
70
71
72

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

"Epetra_Map.h"
"Epetra_LocalMap.h"
"Epetra_BlockMap.h"
"Epetra_Time.h"
"Epetra_CrsMatrix.h"
"Epetra_VbrMatrix.h"
"Epetra_Vector.h"
"Epetra_IntVector.h"

"Epetra_MultiVector.h"

"Epetra_IntSerialDenseVector.

"Epetra_SerialDenseVector.h"

"Epetra_Flops.h"

#ifdef EPETRA_MPI

#include

#include

#else

#include

#endif

#include

#include

"Epetra_MpiComm.h"

Ilmpi .hll

"Epetra_SerialComm.h"

"../epetra_test_err.h"

"Epetra_Version.h"

// prototypes

void GenerateCrsProblem(int numNodesX,

int numProcsY, int numPoints,

hll

int numNodesY, int numProcsX,

int * xoff, int * yoff,

const Epetra_Comm &comm, bool verbose, bool

summary ,

Epetra_Map *&

map ,

Epetra_CrsMatrix *& A,

Epetra_Vector

Epetra_Vector

31

*& b,

*& bt

73

74
75

76
77

78
79
80
81
82

83
84

85
86
87

88
89
90
91
92

93
94

95
96
97

Epetra_Vector *&xexact, bool StaticProfile,

bool MakeLocalOnly);

void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX,
int numProcsY, int numPoints,
int * xoff, int * yoff, int nrhs,
const Epetra_Comm &comm, bool verbose, bool
summary ,
Epetra_Map *& map,
Epetra_CrsMatrix *x& A,
Epetra_MultiVector *& b,

Epetra_MultiVector *& bt,

Epetra_MultiVector *&xexact, bool StaticProfile

, bool MakeLocalOnly);

void GenerateVbrProblem(int numNodesX, int numNodesY, int numProcsX,
int numProcsY, int numPoints,
int * xoff, int * yoff,
int nsizes, int * sizes,
const Epetra_Comm &comm, bool verbose, bool
summary ,
Epetra_BlockMap *& map,
Epetra_VbrMatrix *& A,
Epetra_Vector *& b,
Epetra_Vector *& bt,
Epetra_Vector *&xexact, bool StaticProfile,

bool MakeLocalOnly);

void GenerateVbrProblem (int numNodesX, int numNodesY, int numProcsX,
int numProcsY, int numPoints,
int * xoff, int * yoff,
int nsizes, int * sizes, int nrhs,
const Epetra_Comm &comm, bool verbose, bool

summary ,

32

98
99
100
101
102

103
104

105
106
107

108

109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124

void GenerateMyGlobalElements (int numNodesX,

void runMatrixTests(Epetra_CrsMatrix * A,

void runLUMatrixTests (Epetra_CrsMatrix * L,

Epetra_BlockMap *& map,
Epetra_VbrMatrix *& A,
Epetra_MultiVector *& b,

Epetra_MultiVector *& bt,

Epetra_MultiVector x*&xexact, bool StaticProfile

, bool MakeLocalOnly);

numProcsX, int numProcs,

int numNodesY, int

int myPID, int * & myGlobalElements);

Epetra_MultiVector * bt,

Epetra_MultiVector * b,

Epetra_MultiVector * xexact, bool StaticProfile,

bool verbose, bool summary);

Epetra_MultiVector * bL,

Epetra_MultiVector * btL, Epetra_MultiVector * xexactL,

Epetra_CrsMatrix * U, Epetra_MultiVector * bU,

Epetra_MultiVector * btU, Epetra_MultiVector x*

xexactU,

bool StaticProfile, bool verbose,

int main(int argc, char x*argv([])

{

int ierr = O0;
double elapsed_time;
double total_flops;

double MFLOPs;

#ifdef EPETRA_MPI

// Initialize MPI
MPI_Init (&argc ,&argv);

Epetra_MpiComm comm(MPI_COMM_WORLD);

33

bool summary) ;

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142

143

144

145

146

147

148

149
150

#else

Epetra_SerialComm comm;

#endif

bool verbose

bool summary

//

if

//

if

false;

false;

Check if we should print verbose results to standard out

(argc>6) if (argv([6][0]=="-" && argv[6][1]==’v’) verbose = true;
Check if we should print verbose results to standard out
(argc>6) if (argv([6][0]=="-" && argv[6][1]==’s’) summary = true;

if (arge <

cerr <<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

6) {

"Usage: " << argv[0]

" NumNodesX_ NumNodesY NumProcX NumProcY, NumPoints [-v|-s]"
<< endl

"where:" << endl

"NumNodesX_ uuuuuuuu—uNumber jof ymesh nodes_ in X, direction
per processor" << endl

"NumNodesY, uuuuuuuu—uNumber ,of ymesh nodes_ in, Y, direction
per processor" << endl
"NumProcXyuuuuuuwuuu—uNumber j0of ,processors toyusein X,
direction" << endl
"NumProcY,uuuuuuuuu-uNumber jof y;processorstoyuseyin, Yy,
direction" << endl
"NumPointsy,,uuuuuuu-uNumber of ,points to,use in,stencil, (5,
Lu9uor,25,0nly) " << endl

"-v|-suuuuuuuuuuuuu-uw(Optional) yRunyin,verbose mode if -V
presentorsummary_ mode if ,-sypresent" << endl

"UNOTES : yNumProcX*NumProcY must equal the number of
processorsyusedtoyrunthe problem." << endl << endl
"uSerial example:" << endl

argv [0] << '|u16u12u1|_|1u25u_vll << endl

34

151

152
153
154

155

156
157
158
159
160
161

162
163
164
165

166
167
168
169
170
171
172

173
174
175
176

<< ",Runythisyprogramyinyverbose modeony,l processorusingg ay
16 ,X,12,gridywitha, 25 ,pointystencil."<< endl <<endl

<< " MPI example:" << endl

<< "mpirun,-np.,32," << argv[0] << ",10,12,4,8,9,-v" << endl

<< ",Run,thisprogramgin,verbose modeon ;32 ,processors ,putting
vayl0yuXy12,subgridyonyeachprocessorusing 4, ,processors " <<
endl

<< "ginytheXydirectionyand ;8 ,in,the Y direction. ,Total gridy,
sizeyisy40ypointsyinyXyand 96, in,Yywitha, 9 point ;stencil . "
<< endl

<< endl;

return (1) ;

//char tmp;

//if (comm.MyPID()==0) cout << "Press any key to continue..."<<
endl ;

//if (comm.MyPID()==0) cin >> tmp;

//comm.Barrier () ;

comm.SetTracebackMode (0); // This should shut down any error
traceback reporting
if (verbose && comm.MyPID()==0)
cout << Epetra_Version() << endl << endl;
if (summary && comm.MyPID()==0) {
if (comm.NumProc ()==1)
cout << Epetra_Version() << endl << endl;
else
cout << endl << endl; // Print two blank line to keep output

columns lined up

if (verbose) cout << comm <<endl;

35

177
178 // Redefine verbose to only print on PE 0
179

180 if (verbose && comm.MyPID() !=0) verbose = false;

181 if (summary && comm.MyPID() !=0) summary = false;
182
183 int numNodesX = atoi(argv([1]);

184 int numNodesY = atoi(argv[2]);

185 int numProcsX = atoi(argvI[3]);

186 int numProcsY = atoi(argv[4]);

187 int numPoints = atoi(argv[5]);

188

189 if (verbose || (summary && comm.NumProc()==1)) {

190 cout << " Number of,local nodes, in X, direction ;=" << numNodesX <<
endl

191 << " Number of_local_ nodes_ in_ Y, direction_ =" << numNodesY <<

endl
192 << " Number of global nodes in_ X direction, =" << numNodesXx*

numProcsX << endl

193 << " Number of global nodes,in, Y, direction, =" << numNodesYx
numProcsY << endl

194 << " Number of local_ nonzero_entries uuuuuu=u" << numNodesXx*
numNodesY*numPoints << endl

195 << " Number of global_ nonzero_ entries, uuuu=u" << numNodesXx*

numNodesY*numPoints*numProcsX*numProcsY << endl

196 << " Number of Processors_ ingXydirection =u" << numProcsX <<
endl

197 << " Number of Processorsy in, Yy direction_ ,u=u" << numProcsY <<
endl

198 << " Number of_ Points_in,stencil,Luuuuuuuu=u" << numPoints <<

endl << endl;
199 }

200 // Print blank line to keep output columns lined up

201 if (summary && comm.NumProc()>1)

36

202

203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

cout << endl << endl << endl << endl << endl << endl << endl

endl << endl << endl;

if (numProcsX*numProcsY'!=comm.NumProc()) {
cerr << "Number of processors_ =_" << comm.NumProc () << endl
<< "gispynotytheproductof ;" << numProcsX << "jand " <<
numProcsY << endl << endl;

return (1) ;

if (numPoints!=5 && numPoints!=9 && numPoints!=25) {
cerr << "Number of points;specified =" << numPoints << endl
<< "gisgnot 5,.,9,,25" << endl << endl;

return (1) ;

if (numNodesX*numNodesY <=0) {

cerr << "Product_ of_ number of nodes_ is_ <=_,zero" << endl << endl;

return (1) ;

Epetra_IntSerialDenseVector Xoff, XLoff, XUoff;
Epetra_IntSerialDenseVector Yoff, YLoff, YUoff;

if (numPoints==5) {

// Generate a 5-point 2D Finite Difference matrix
Xoff.Size (5) ;
Yoff.Size (5);

Xoff [0]

-1; Xoff[1]

1; Xoff[2]

0; Xoff [3]

0; Xoff [4]

Yoff [0] 0; Yoff[1] 0; Yoff [2] 0; Yoff [3] -1; Yoff [4]

<<

// Generate a 2-point 2D Lower triangular Finite Difference matrix

XLoff.Size (2);

YLoff.Size(2);

37

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

XLoff [0]

YLoff [0]

// Generate a

XUoff.Size (3);

YUoff.Size(3);

XUoff [0]
YUoff [0]

}

0;

0;

XLoff [1]

YLoff [1]

3-point 2D

XUoff [1]

YUoff [1]

else if (numPoints==9) {

// Generate a 9-point 2D F

Xoff.Size (9);

Yoff.Size (9);

Xoff [0]
Yoff [0]
Xoff [3]
Yoff [3]
Xoff [6]

Yoff [6]

// Generate a 5-point lo

XLoff .Size(5);

YLoff.Size (5);

XLoff [0]
YLoff [0]
XLoff [3]

YLoff [3]

_1,
_1,
_1;

0;

Xoff [1] =
Yoff [1] = -
Xoff [4] =
Yoff [4] =
Xoff [7] =

Yoff [7] =

XLoff [1]

YLoff [1]

XLoff [4] =

YLoff [4] =

upper triang

1; XUoff [2]

0; YUoff [2]

inite Differ

0; Xoff[2] =
1; Yoff[2] =
0; Xoff[b] =
0; Yoff[5] =
0; Xoff[8] =
1; Yoff[8] =

wer triangular

0; Xoff[2]
-1; Yoff [2]
0;
0;

// Generate a 4-point upper triangular

XUoff.Size (4);

YUoff.Size (4);

XUoff [0]
YUoff [0]

XUoff [1]

XUoff [2] =

0; XUoff[3

38

ular Finite Difference matrix

ence matrix

2D Finite Difference matrix

2D Finite Difference matrix

1 = 1;

268
269
270
271
272
273
274
275
276
277

278

279
280

281

282
283

284

285
286

287

288
289

290

291

}

YUoff[1] = 1; YUoff[2] = 1; YUoff[3] = 1;

else {

// Generate a 25-point 2D Finite Difference matrix
Xoff.Size (25);
Yoff.Size (25);

int xi = 0, yi = 0;

int xo = -2, yo = -2;

Xoff [xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = =xo++;
++] = xo++; Xoff[xi++] = xo++;

Yoff [yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ;
++] = yo ; Yoff[yi++] = yo ;

X0 = -2, yo++;

Xoff [xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
++] = xo++; Xoff[xi++] = xo++;

Yoff [yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo
++] = yo ; Yoff[yi++] = yo ;

X0 = -2, yo++;

Xoff [xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
++] = xo++; Xoff[xi++] = xo++;

Yoff [yi++] = yo ; Yoffl[yi++] = yo ; Yoff[yi++] = yo ;
++] = yo ; Yoff[yi++] = yo ;

X0 = -2, yo++;

Xoff [xi++] = xo++; Xoffl[xi++] = xo++; Xoff[xi++] = xo++;
++] = xo++; Xoff[xi++] = xo++;

Yoff [yi++] = yo ; Yoff[yi++] = yo ; Yoff[yi++] = yo ;
++] = yo ; Yoff[yi++] = yo ;

X0 = -2, yo+t++;

Xoff [xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
++] = xo++; Xoff[xi++] = xo++;

Yoff [yi++] = yo ; Yoffl[yi++] = yo ; Yoff[yi++] = yo ;
++] = yo ; Yoff[yi++] = yo ;

39

Xoff [xi

Yoff [yi

Xoff [xi

Yoff [yi

Xoff [xi

Yoff [yi

Xoff [xi

Yoff [yi

Xoff [xi

Yoff [yi

292
293
294
295
296
297

298

299
300

301

302
303
304
305
306
307
308
309
310
311
312
313
314

315

316
317

// Generate a 13-point lower triangular 2D Finite Difference matrix

XLoff.Size (13)

YLoff.Size (13)

’

)

xi = 0, yi = 0;

Xo++;

yo

X0 ++;

yo

xo = -2, yo = -2;

XLoff [xi++] = xo++; XLoff[xi++] =
xi++] = xo++; XLoff [xi++] = xo++;

YLoff [yi++] = yo ; YLoff[yi++] =
yi++] = yo ; YLoff[yi++] = yo

X0 = -2, yo+t++;

XLoff [xi++] = xo++; XLoff [xi++] =
xi++] = xo++; XLoff [xi++] = xo++;

YLoff [yi++] = yo ; YLoff[yi++] =
yi++] = yo ; YLoff[yi++] = yo

X0 = -2, yo++;

XLoff[xi++] = xo++; XLoff [xi++] =

YLoff [yi++] = yo ; VYLoffl[yi++] =

XLoff [xi++]

YLoff [yi++]

XLoff [xi++]

YLoff [yi++]

XLoff [xi++]

YLoff [yi++]

Xo++;

yo

Xo++;

yo

Xo++;

// Generate a 13-point upper triangular 2D Finite Difference

XUoff.Size (13)

YUoff.Size (13)

’

B

xi = 0, yi = 0;

X0 ++;

yo

X0 ++;

yo

Xo++;

xo = 0, yo = 0;

XUoff [xi++] = xo++; XUoff[xi++] =

YUoff [yi++] = yo ; YUoff[yi++] =

X0 = -2, yo++;

XUoff [xi++] = xo++; XUoff[xi++] =
xi++] = xo++; XUoff[xi++] = xo++;

YUoff [yi++] = yo ; YUoff [yi++] =
yi++] = yo ; YUoff[yi++] = yo

X0 = -2, yo++;

XUoff [xi++] = xo++; XUoff[xi++] =
xi++] = xo++; XUoff [xi++] = xo++;

40

XUoff [xi++]

YUoff [yi++]

XUoff [xi++]

YUoff [yi++]

XUoff [xi++]

X0 ++;

yo

X0 ++;

yo

Xo++;

XLoff [

YLoff [

XLoff [

YLoff [

matrix

XUoff [

YUoff [

XUoff [

318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348
349

YUoff [yi++] = yo ; YUoff[yi++] = yo ; YUoff[yi++] =

yi++] = yo ; YUoff [y1++] = Yo)

Epetra_Map * map;

Epetra_Map * mapL;
Epetra_Map * mapU;
Epetra_CrsMatrix * A;
Epetra_CrsMatrix * L;
Epetra_CrsMatrix * U;
Epetra_MultiVector * b;
Epetra_MultiVector * bt;
Epetra_MultiVector * xexact;
Epetra_MultiVector * bL;
Epetra_MultiVector * btL;
Epetra_MultiVector * xexactL;
Epetra_MultiVector * bU;
Epetra_MultiVector * btU;
Epetra_MultiVector * xexactU;

Epetra_SerialDenseVector resvec (0);

//Timings
Epetra_Flops flopcounter;

Epetra_Time timer (comm);

int jstop = 1;

for (int j=0; j<jstop; j++) {

for (int k=1; k<2; k++) A{
int nrhs=k;

if (verbose) cout << "\mkkkk*kkxxkkk*k*x*x Results, for, "
"URHS with_";

bool StaticProfile = (j!=0);

41

yo ; YUoffl[

<< nrhs <<

350
351
352
353
354
355

356

357
358
359
360

361
362
363
364
365
366
367

368

369

370

371

372

373

374

if (verbose) {
if (StaticProfile) cout << " static_profile\n";

else cout << " dynamicprofile\n";

GenerateCrsProblem (numNodesX, numNodesY, numProcsX, numProcsY,
numPoints,
Xoff.Values (), Yoff.Values(), nrhs, comm,
verbose, summary,

map, A, b, bt, xexact, StaticProfile, false);

runMatrixTests (A, b, bt, xexact, StaticProfile, verbose, summary)

delete A;
delete b;
delete bt;

delete xexact;

GenerateCrsProblem (numNodesX, numNodesY, numProcsX, numProcsY,
XLoff.Length (),
XLoff.Values (), YLoff.Values(), nrhs, comm,
verbose, summary,
mapL, L, bL, btL, xexactL, StaticProfile, true

)

GenerateCrsProblem (numNodesX, numNodesY, numProcsX, numProcsY,
XUoff.Length (),
XUoff.Values (), YUoff.Values(), nrhs, comm,
verbose, summary,
mapU, U, bU, btU, xexactU, StaticProfile, true

)

42

375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

runLUMatrixTests (L, bL, btL, xexactL,

StaticProfile, verbose, summary);

delete L;
delete bL;
delete btL;
delete xexactL;

delete mapL;

delete U;
delete bU;
delete btU;
delete xexactU;

delete mapU;

Epetra_MultiVector q(*map, nrhs);
Epetra_MultiVector z(q);

Epetra_MultiVector r(q);
delete map;

q.SetFlopCounter (flopcounter) ;
z.SetFlopCounter (q);

r.SetFlopCounter (q);

resvec.Resize (nrhs);

flopcounter.ResetFlops ();

timer .ResetStartTime () ;

//10 norms

for(int i = 0; i < 10; ++i)

43

U,

bU,

btU,

xexactU,

408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

431
432
433
434
435
436
437
438
439

q.Norm2(resvec.Values ());

elapsed_time = timer.ElapsedTime () ;

total_flops = q.Flops();

MFLOPs = total_flops/elapsed_time/1000000.0;

if (verbose) cout << "\nTotal MFLOPs_ for_,10,Norm2’s=_," << MFLOPs

<< endl;

if (summary) {
if (comm.NumProc()==1) cout << "Norm2" << ’\t’;

cout << MFLOPs << endl;

flopcounter.ResetFlops () ;

timer .ResetStartTime () ;

//10 dot’s
for(int i = 0; i < 10; ++i)

q.Dot(z, resvec.Values());

elapsed_time = timer.ElapsedTime () ;

total_flops = q.Flops();

MFLOPs = total_flops/elapsed_time/1000000.0;

if (verbose) cout << "Total MFLOPs_ for_,10_,Dot’s ,=u" << MFLOPs <<

endl;

if (summary) A

if (comm.NumProc()==1) cout << "DotProd" << ’\t’;

cout << MFLOPs << endl;

flopcounter.ResetFlops () ;

timer .ResetStartTime () ;

44

440
441
442
443
444
445
446
447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

463
464
465
466

467
468
469
470

//10 dot’s
for(int i = 0; i < 10; ++i)

q.Update(1.0, z, 1.0, r, 0.0);

elapsed_time = timer.ElapsedTime () ;

total_flops = q.Flops();

MFLOPs = total_flops/elapsed_time/1000000.0;

if (verbose) cout << "Total MFLOPs_,for_10,Updates=_" << MFLOPs <<

endl;

if (summary) {
if (comm.NumProc ()==1) cout << "Update" << ’\t’;

cout << MFLOPs << endl;

b
#ifdef EPETRA_MPI
MPI_Finalize () ;

#endif

return ierr ;

}

// Constructs a 2D PDE finite difference matrix using the list of x and

y offsets.
//
// nx (In) - number of grid points in x direction
// ny (In) - number of grid points in y direction
// The total number of equations will be nx*ny ordered such that the

x direction changes

// most rapidly:

// First equation is at point (0,0)
// Second at (1,0)
//

45

471
472
473
474
475
476
477

478
479
480
481
482

483
484

485

486

487

488

489

490

491

492

493

494
495

496

//
//

//

//

//

//

//

//

//

//

//

//

/7

//

//

//

//

//

//

nx equation at (nx-1,0)
nx+1lst equation at (0,1
numPoints (In) - number of points in finite difference stencil
xoff (In) - stencil offsets in x direction (of length numPoints)
yoff (In) - stencil offsets in y direction (of length numPoints)
A standard 5-point finite difference stencil would be described as
numPoints = 5
xoff = [-1, 1, 0, O, 0]
yoff = [0, 0, O, -1, 1]
nrhs - Number of rhs to generate. (First interface produces vectors,
so nrhs is not needed
comm (In) - an Epetra_Comm object describing the parallel machine
(numProcs and my proc ID)
map (Out) - Epetra_Map describing distribution of matrix and

vectors/multivectors
A (Out) - Epetra_CrsMatrix constructed for nx by ny grid using
prescribed stencil

Off -diagonal values are random between O and 1. If

diagonal is part of stencil,

diagonal will be slightly diag dominant.
b (Out) - Generated RHS. Values satisfy b = Axxexact
bt (Out) - Generated RHS. Values satisfy b = A’*xexact
xexact (Out) - Generated exact solution to Ax = b and b’ = A’xexact
Note: Caller of this function is responsible for deleting all output

objects.

void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX,

int numProcsY, int numPoints,

int * xoff, int * yoff,

46

497

498
499
500
501
502

503
504
505
506

507
508

509
510
011
512
513
514
515
516
017

518
519

520
521
522
523

const Epetra_Comm &comm, bool verbose, bool

summary ,
Epetra_Map *& map,
Epetra_CrsMatrix *& A,
Epetra_Vector *& b,
Epetra_Vector *& bt,
Epetra_Vector *&xexact, bool StaticProfile,
bool MakeLocalOnly) {
Epetra_MultiVector * bl, * btl, * xexactl;
GenerateCrsProblem (numNodesX, numNodesY, numProcsX, numProcsY,
numPoints,
xoff, yoff, 1, comm, verbose, summary,
map, A, bl, btl, xexactl, StaticProfile,
MakeLocalOnly) ;
b = dynamic_cast<Epetra_Vector *>(bl);
bt = dynamic_cast<Epetra_Vector *>(btl);
xexact = dynamic_cast<Epetra_Vector *>(xexactl);
return;
}
void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX,

int numProcsY, int numPoints,
int * xoff, int * yoff, int nrhs,
const Epetra_Comm &comm, bool verbose, bool
summary ,
Epetra_Map *& map,
Epetra_CrsMatrix *& A,
Epetra_MultiVector *& b,

Epetra_MultiVector *& bt,

47

524

925
526
527
928
529

530
531
532
933

534
535
536
537
538
539
540
541

542
543

544
545
546
047
548
549
550
951
952

Epetra_MultiVector x*&xexact, bool StaticProfile

, bool MakeLocalOnly) {

Epetra_Time timer (comm) ;

// Determine my global IDs

int * myGlobalElements;

GenerateMyGlobalElements (numNodesX, numNodesY, numProcsX, numProcsY,

comm.MyPID (), myGlobalElements);

int numMyEquations = numNodesX*numNodesY;

map = new Epetra_Map (-1, numMyEquations, myGlobalElements, 0O, comm);

// Create map with 2D block partitioning.

delete [] myGlobalElements;

int numGlobalEquations = map->NumGlobalElements () ;

int profile = 0; if (StaticProfile) profile = numPoints;

if (MakeLocalOnly)

A = new Epetra_CrsMatrix(Copy, *map, *map, profile, StaticProfile);

// Construct matrix with rowmap=colmap

else

A = new Epetra_CrsMatrix(Copy, *map, profile, StaticProfile); //

Construct matrix

int * indices = new int[numPoints];

double * values = new double[numPoints];

double dnumPoints = (double) numPoints;

int nx = numNodesX*numProcsX;

for (int i=0; i<numMyEquations; i++) {

48

553
554
955
556
957

558
559
560
061
562

563
564
565
566
567
568
569
570
071
972
o973
074
975
o976
77
o978
979
580

081
582
583

int rowID = map->GID(i);

int numIndices = O0;

for (int j=0; j<numPoints; j++) {
int colID = rowID + xoff[j] + nx*yoff[jl; // Compute column ID
based on stencil offsets
if (colID>-1 && colID<numGlobalEquations) {
indices [numIndices] = collD;
double value = - ((double) rand())/ ((double) RAND_MAX);

if (colID==rowlID)

values [numIndices++] = dnumPoints - value; // Make diagonal
dominant
else
values [numIndices++] = value;
}
}
//cout << "Building row " << rowID << endl;

A->InsertGlobalValues (rowID, numIndices, values, indices);

delete [] indices;

delete [] values;

double insertTime = timer.ElapsedTime () ;
timer .ResetStartTime () ;
A->FillComplete(false);

double fillCompleteTime = timer.ElapsedTime ();

if (verbose)
cout << "Timetoyinsertymatrix_ values_ =" << insertTime << endl
<< "Timetoycomplete fill uuuuuu=u" << fillCompleteTime <<
endl ;
if (summary) {
if (comm.NumProc()==1) cout << "InsertTime" << ’\t’;

cout << insertTime << endl;

49

584
5985
586
587
588
589
590
091
992
993
594
995
596
597
998
599
600
601
602
603
604
605
606
607
608

609
610
611
612

613
614
615

//

//
//
//
//

//
//
//

if (comm.NumProc()==1) cout << "FillCompleteTime" << ’\t’;

cout << fillCompleteTime << endl;

if (nrhs<=1) {
b = new Epetra_Vector (*map);

bt = new Epetra_Vector (*map);

xexact = new Epetra_Vector (*map);
}
else {
b = new Epetra_MultiVector (*map, nrhs);
bt = new Epetra_MultiVector (*map, nrhs);
xexact = new Epetra_MultiVector (*map, nrhs);
}

xexact->Random(); // Fill xexact with random values

A->Multiply(false, #*xexact, *b);

A->Multiply(true, *xexact, *bt);

return;
Constructs a 2D PDE finite difference matrix using the list of x and
y offsets.
nx (In) - number of grid points in x direction
ny (In) - number of grid points in y direction

The total number of equations will be nx*ny ordered such that the
x direction changes
most rapidly:
First equation is at point (0,0)

Second at (1,0)

50

616
617
618
619
620
621
622
623

624

625

626

627

628

629
630

631

632

633

634

635
636

637

638

639

640

//

//

//

//

//

//

//

//

/7

//

/7

//
//

//

//

//

//

//

//

//

//

nx equation at (nx-1,0)
nx+1lst equation at (0,1)
numPoints (In) - number of points in finite difference stencil
xoff (In) - stencil offsets in x direction (of length numPoints)
yoff (In) - stencil offsets in y direction (of length numPoints)
A standard 5-point finite difference stencil would be described as
numPoints = 5
xoff = [-1, 1, 0, 0, 0]
yoff = [0, 0, 0, -1, 1]
nsizes (In) - Length of element size list used to create variable

block map and matrix
sizes (In) - integer list of element sizes of length nsizes
The map associated with this VbrMatrix will be created by cycling
through the sizes 1list.
For example, if nsize = 3 and sizes = [2, 4, 3], the block map

will have elementsizes

of 2, 4, 3, 2, 4, 3,
nrhs - Number of rhs to generate. (First interface produces vectors,
so nrhs is not needed
comm (In) - an Epetra_Comm object describing the parallel machine
(numProcs and my proc ID)
map (Out) - Epetra_Map describing distribution of matrix and

vectors/multivectors
A (Out) - Epetra_VbrMatrix constructed for nx by ny grid using
prescribed stencil

Off -diagonal values are random between 0O and 1. If
diagonal is part of stencil,

diagonal will be slightly diag dominant.

51

641 |// b (Out) - Generated RHS. Values satisfy b

Axxexact

642 | // bt (Out) - Generated RHS. Values satisfy b = A’*xexact
643 | // xexact (Out) - Generated exact solution to Ax = b and b’ = A’xexact
644

645 |// Note: Caller of this function is responsible for deleting all output
objects.

646
647 |void GenerateVbrProblem(int numNodesX, int numNodesY, int numProcsX,

int numProcsY, int numPoints,

648 int * xoff, int * yoff,

649 int nsizes, int * sizes,

650 const Epetra_Comm &comm, bool verbose, bool
summary ,

651 Epetra_BlockMap *& map,

652 Epetra_VbrMatrix *& A,

653 Epetra_Vector *& b,

654 Epetra_Vector *& bt,

655 Epetra_Vector *&xexact, bool StaticProfile,

bool MakeLocalOnly) {
656

657 Epetra_MultiVector * bl, * btl, * xexactl;

658
659 GenerateVbrProblem (numNodesX, numNodesY, numProcsX, numProcsY,
numPoints,
660 xoff, yoff, nsizes, sizes,
661 1, comm, verbose, summary, map, A, bl, btil,
xexactl, StaticProfile, MakeLocalOnly) ;
662

663 b = dynamic_cast<Epetra_Vector *>(bl);

664 bt = dynamic_cast<Epetra_Vector *>(btl);

665 xexact = dynamic_cast<Epetra_Vector *>(xexactl);
666
667 return;

668 | ¥

52

669
670

671
672
673

674
675
676
677
678

679
680
681
682
683
684

685
686
687
688

689
690
691
692
693

694
695

void GenerateVbrProblem(int numNodesX, int numNodesY, int numProcsX,

int numProcsY, int numPoints,
int * xoff, int * yoff,
int nsizes, int * sizes, int nrhs,
const Epetra_Comm &comm, bool verbose, bool
summary ,
Epetra_BlockMap *& map,
Epetra_VbrMatrix *& A,
Epetra_MultiVector *& b,

Epetra_MultiVector *& bt,

Epetra_MultiVector *&xexact, bool StaticProfile

, bool MakeLocalOnly) {

int i, j;

// Determine my global IDs

int * myGlobalElements;

GenerateMyGlobalElements (numNodesX, numNodesY, numProcsX, numProcsY,

comm.MyPID(), myGlobalElements) ;

int numMyElements = numNodesX*numNodesY;

Epetra_Map ptMap(-1, numMyElements, myGlobalElements, 0, comm); //
Create map with 2D block partitioning.

delete [] myGlobalElements;

int numGlobalEquations = ptMap.NumGlobalElements () ;

Epetra_IntVector elementSizes(ptMap); // This vector will have the
list of element sizes
for (i=0; i<numMyElements; i++)
elementSizes[i] = sizes[ptMap.GID(i)%nsizes]; // cycle through

sizes array

23

696
697

698
699
700
701
702
703

704
705
706
707
708
709

710

711
712
713

714
715

716
717
718
719
720
721
722
723

map = new Epetra_BlockMap (-1, numMyElements, ptMap.MyGlobalElements ()
, elementSizes.Values (),

ptMap.IndexBase (), ptMap.Comm());

int profile = 0; if (StaticProfile) profile = numPoints;

if (MakeLocalOnly)
A = new Epetra_VbrMatrix(Copy, *map, *map, profile); // Construct
matrix rowmap=colmap
else

A = new Epetra_VbrMatrix(Copy, *map, profile); // Construct matrix

int * indices = new int[numPoints];

// This section of code creates a vector of random values that will
be used to create
// light-weight dense matrices to pass into the VbrMatrix

construction process.

int maxElementSize = 0;
for (i=0; i< nsizes; i++) maxElementSize = EPETRA_MAX(maxElementSize,

sizes[i]);

Epetra_LocalMap lmap(maxElementSize*maxElementSize, ptMap.IndexBase ()
, ptMap.Comm());

Epetra_Vector randvec (lmap);

randvec.Random () ;

randvec.Scale(-1.0); // Make value negative

int nx = numNodesX*numProcsX;

for (i=0; i<numMyElements; i++) {

int rowID = map->GID(i);

54

724 int numIndices = 0;

725 int rowDim = sizes[rowID%nsizes];
726 for (j=0; j<numPoints; j++) {
727 int colID = rowID + xoff[j] + nx*yoff[jl; // Compute column ID

based on stencil offsets

728 if (colID>-1 && colID<numGlobalEquations)

729 indices [numIndices++] = colID;

730 }

731

732 A->BeginInsertGlobalValues (rowID, numIndices, indices);
733

734 for (j=0; j < numIndices; j++) {

735 int colDim = sizes[indices[jl/nsizes];

736 A->SubmitBlockEntry (&(randvec [0]), rowDim, rowDim, colDim);
737 }

738 A->EndSubmitEntries () ;

739 }

740

741 delete [] indices;
742
743 A->FillComplete () ;
744
745 // Compute the InvRowSums of the matrix rows
746 Epetra_Vector invRowSums (A->RowMap ());

747 Epetra_Vector rowSums (A->RowMap());

748 A->InvRowSums (invRowSums) ;

749 rowSums .Reciprocal (invRowSums) ;

750

751 // Jam the row sum values into the diagonal of the Vbr matrix (to

make it diag dominant)
752 int numBlockDiagonalEntries;

753 int * rowColDims;

754 int * diagoffsets = map->FirstPointInElementlList ();

95

755 A->BeginExtractBlockDiagonalView (numBlockDiagonalEntries, rowColDims)

756 for (i=0; i< numBlockDiagonalEntries; i++) {

757 double * diagVals;

758 int diagLDA;

759 A->ExtractBlockDiagonalEntryView(diagVals, diagLDA);

760 int rowDim = map->ElementSize(i);

761 for (j=0; j<rowDim; j++) diagVals[j+j*diagLDA] = rowSums[

diagoffsets[i]l+j];
762 }

763
764 if (nrhs<=1) {

765 b = new Epetra_Vector (*map);

766 bt = new Epetra_Vector (*map);

767 xexact = new Epetra_Vector (*map);

768 }

769 else {

770 b = new Epetra_MultiVector (*map, nrhs);

771 bt = new Epetra_MultiVector (*map, nrhs);

772 xexact = new Epetra_MultiVector (*map, nrhs);
773 }

774

775 xexact ->Random(); // Fill xexact with random values
776

e A->Multiply(false, *xexact, *b);
778 A->Multiply (true, *xexact, *bt);
779
780 return;
781 |}

782
783 | void GenerateMyGlobalElements (int numNodesX, int numNodesY, int
numProcsX, int numProcs,

784 int myPID, int * & myGlobalElements) {

785

26

786
787
788
789

790
791
792
793
794
795
796

797
798
799
800
801

802

803
804
805
806
807
808
809
810
811
812
813
814
815

myGlobalElements = new int[numNodesX*numNodesY];

int myProcX = myPID%numProcsX;

int myProcY myPID/numProcsX;
int curGID = myProcY#*(numProcsX*numNodesX)*numNodesY+myProcXx*
numNodesX;
for (int j=0; j<numNodesY; j++) {
for (int i=0; i<numNodesX; i++) {
myGlobalElements [j*numNodesX+i] = curGID+i;
X
curGID+=numNodesX*numProcsX;
X

//for (int i=0; i<numNodesX*numNodesY; i++) cout << "MYPID " << myPID

<<" GID "<< myGlobalElements[i] << endl;

return;

void runMatrixTests(Epetra_CrsMatrix * A, Epetra_MultiVector * b,
Epetra_MultiVector * bt,
Epetra_MultiVector * xexact, bool StaticProfile,

bool verbose, bool summary) {

Epetra_MultiVector z(xb);
Epetra_MultiVector r(*b);

Epetra_SerialDenseVector resvec(b->NumVectors ());

//Timings

Epetra_Flops flopcounter;
A->SetFlopCounter (flopcounter) ;
Epetra_Time timer (A->Comm());
std::string statdyn = "dynamic";

if (StaticProfile) statdyn = "staticy";

for (int j=0; j<4; j++) { // j = 0/2 is notrans, j = 1/3 is trans

o7

816
817
818
819
820
821
822
823
824
825
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840

841
842
843
844
845
846

bool TransA = (j==1 || j==3);
std::string contig = "without";
if (j>1) contig = "with,ou";

#ifdef EPETRA_SHORT_PERFTEST

int kstart = 1;
#else
int kstart = 0;

#endif

for (int k=kstart; k<2; k++) { // Loop over old multiply vs. new

multiply
std::string oldnew = "old";
if (k>0) oldnew = "new";

if (j==2) A->0OptimizeStorage();

flopcounter.ResetFlops ();

timer.ResetStartTime () ;

if (k==0) {
//10 matvecs
#ifndef EPETRA_SHORT_PERFTEST
for(int i = 0; i < 10; ++i)
A->Multiplyl(TransA, *xexact, z); // Compute z = A*xexact or
z = A’*xexact using old Multiply method
#endif
}
else {
//10 matvecs
for(int i = 0; i < 10; ++i)
A->Multiply (TransA, *xexact, z); // Compute z = A*xexact or z

= A’xxexact

98

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863

864
865
866

867

868
869
870
871
872
873
874

double elapsed_time = timer.ElapsedTime () ;

double total_flops = A->Flops();

// Compute residual
if (TransA)

r.Update(-1.0, z, 1.0, *bt, 0.0); // r = bt - z
else

r.Update(-1.0, z, 1.0, *b, 0.0); // r = Db - z

r.Norm2(resvec.Values ());

if (verbose) cout << "ResNorm =_," << resvec.NormInf () << ":,";
double MFLOPs = total_flops/elapsed_time/1000000.0;
if (verbose) cout << "Total MFLOPs,_ for_,10," << oldnew << " MatVec
’sywith" << statdyn << " Profile,(Trans,=_" << TransA
<< ")yuandy" << contig << " optimized storage, =
L" << MFLOPs << " (" << elapsed_time << "_;s)
" <<endl;
if (summary) {
if (A->Comm () .NumProc ()==1) {
if (TransA) cout << "TransMv" << statdyn<< "Prof" << contig
<< "OptStor" << ’\t’;
else cout << "NoTransMv" << statdyn << "Prof" << contig << "
OptStor" << ’\t’;
¥

cout << MFLOPs << endl;

}

return;

29

875

876

877

878
879
880
881

882

883
884
885

886

887
888
889
890
891
892
893
894
895
896
897
898
899

//

void runLUMatrixTests (Epetra_CrsMatrix * L, Epetra_MultiVector * bL,
Epetra_MultiVector * btL, Epetra_MultiVector * xexactL,
Epetra_CrsMatrix * U, Epetra_MultiVector * bU,
Epetra_MultiVector * btU, Epetra_MultiVector x*
xexactU,

bool StaticProfile, bool verbose, bool summary) {

if (L->NoDiagonal (D)) {
bL->Update (1.0, *xexactL, 1.0); // Add contribution of a unit
diagonal to bL
btL->Update (1.0, *xexactL, 1.0); // Add contribution of a unit
diagonal to btL
}
if (U->NoDiagonal ()) {
bU->Update (1.0, *xexactU, 1.0); // Add contribution of a unit
diagonal to bU
btU->Update (1.0, *xexactU, 1.0); // Add contribution of a unit

diagonal to DbtU

Epetra_MultiVector z(*bL);
Epetra_MultiVector r (*blL);

Epetra_SerialDenseVector resvec(bL->NumVectors());

//Timings

Epetra_Flops flopcounter;
L->SetFlopCounter (flopcounter) ;
U->SetFlopCounter (flopcounter) ;
Epetra_Time timer (L->Comm());
std::string statdyn = "dynamic";

if (StaticProfile) statdyn = "static,";

60

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918

919
920

921
922
923
924
925
926
927
928
929
930

for (int j=0; j<4; j++) { // j = 0/2 is notrans, j

bool TransA = (j==1 || j==3);
std::string contig = "without";
if (j>1) contig = "with,uu";
if (j==2) {

L->0ptimizeStorage ();

U->0ptimizeStorage ();

flopcounter.ResetFlops ();

timer.ResetStartTime () ;

//10 lower solves

bool Upper = false;

= 1/3 is tran

bool UnitDiagonal = L->NoDiagonal(); // If no diagonal, then

must be used
Epetra_MultiVector * b = TransA 7 btL : bL; //
appropriate b vector
for(int i = 0; i < 10; ++i)
L->Solve (Upper, TransA, UnitDiagonal, *b, z);

L’z = bLt

double elapsed_time = timer.ElapsedTime();

double total_flops = L->Flops();
// Compute residual
r.Update(-1.0, z, 1.0, *xexactlL, 0.0); // r = bt

r.Norm2 (resvec.Values ());

if (resvec.NormInf () >0.000001) {

cout << "resvec_ =" << resvec << endl;

61

solve with the

// Solve Lz =

S

unit

bL or

931
932
933
934
935
936
937
938

939

940
941
942

943

944
945
946
947
948
949
950
951
952

953
954
955

956
957

cout << "z =" << z << endl;
cout << "xexactL_ =" << *xexactlL << endl;

cout << "r_ =" << r << endl;

if (verbose) cout << "ResNorm, =" << resvec.NormInf () << ":,";
double MFLOPs = total_flops/elapsed_time/1000000.0;
if (verbose) cout << "Total MFLOPs_for_10," << "_,Lower solves " <<
statdyn << " Profile,(Trans, =_," << TransA
<< ")yuandy" << contig << "optystorage,=," <<

MFLOPs << ", (" << elapsed_time << " s)" <<endl

if (summary) {
if (L->Comm () .NumProc ()==1) {
if (TransA) cout << "TransLSv" << statdyn<< "Prof" << contig <<
"OptStor" << ’\t’;
else cout << "NoTransLSv" << statdyn << "Prof" << contig << "
OptStor" << ’\t’;
}
cout << MFLOPs << endl;
}
flopcounter.ResetFlops () ;

timer .ResetStartTime () ;

//10 upper solves
Upper = true;
UnitDiagonal = U->NoDiagonal(); // If no diagonal, then unit must
be used
b = TransA 7 btU : bU; // solve with the appropriate b vector
for(int i = 0; i < 10; ++i)
U->Solve (Upper, TransA, UnitDiagonal, *b, z); // Solve Lz = bL or

L’z = bLt

elapsed_time = timer.ElapsedTime ();

62

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

977

978
979
980

981

982
983
984
985
986
987

}

total_flops = U->Flops ();

// Compute residual
r.Update(-1.0, z, 1.0, *xexactU, 0.0); // r = bt - z

r.Norm2 (resvec.Values ());

if (resvec.NormInf () >0.001) {
cout << "U,=," << *U << endl;
//cout << "resvec = " << resvec << endl;
cout << "z =," << z << endl;
cout << "xexactU_=_" << *xexactU << endl;
//cout << "r = " << r << endl;

cout << "by=," << xb << endl;

if (verbose) cout << "ResNorm,=_," << resvec.NormInf () << ":,";
MFLOPs = total_flops/elapsed_time/1000000.0;
if (verbose) cout << "Total MFLOPs_,for,10," << ", Upperysolves,"
statdyn << " Profile,(Trans =" << TransA
<< ") pand," << contig << "_opt,storage,=," <<
MFLOPs <<endl;
if (summary) {
if (L->Comm () .NumProc ()==1) {
if (TransA) cout << "TransUSv" << statdyn<< "Prof" << contig
"OptStor" << ’\t’;
else cout << "NoTransUSv" << statdyn << "Prof" << contig <<
OptStor" << ’\t’;
}

cout << MFLOPs << endl;

return;

<<

<<

63

	HPC Made Easy: Using Docker to Distribute and Test Trilinos
	Recommended Citation

	Introduction
	Background
	Docker
	Trilinos
	Epetra

	Benefits of Docker
	Development
	Distribution
	Comparison to Virtual Machines

	Performance Testing
	Methods
	Results
	Problem Size - 1000x1000
	Problem Size - 2000x2000
	Problem Size - 4000x4000

	Conclusion
	Future Research

	Appendix
	Computing Architecture
	Docker Setup Notes
	Trilinos Configuration Script
	Epetra BasicPerfTest Source Code

