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Abstract. We study the gravitational wave emission of equal-mass neutron stars in binary orbits as the stars approach
the inner most last stable circular orbit. We illustrate the extraction of gravitational wave forms in a sequence of
quasi-circular orbit simulations including the general relativistic hydrodynamic response of the stars. We compare the
computed results with the Newtonian and post Newtonian results and show that substantial differences can arise as the
orbits approach the final inspiral.
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I. INTRODUCTION

Current interferemetric gravity wave observatories such as LIGO [1], GEO600 [2], GEO-
HF [3, 4], TAMA300 [5] and VIRGO [6] have been taking data for some time [7–10], while a
number of second generation observatories such as Advanced LIGO [11], Advanced VIRGO [12]
and KAGRA [13] soon will be online. These observatories seek to detect gravity-wave emission
from various sources, e.g. from core collapse supernovae, neutron star orbits, the stochastic cosmic
background, etc. [1]. Of the many systems that emit gravitational waves, compact neutron-star
and/or black-hole binaries are thought to be the best candidates for detecting gravitational radiation
[14]. Indeed, the first discovery of a black hole - black hole merger has been reported. The number
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of neutron star - neutron star systems detectable by Advanced LIGO [15] is estimated [14, 16–21]
to be of order several events per year based upon observed close binary-pulsar systems [22, 23].

To date there have been numerous attempts to calculate theoretical templates for gravity
waves from compact binaries based upon numerical and/or analytic approaches (see for exam-
ple [24–33]). However, most approaches utilize a combination of Post-Newtonian (PN) techniques
supplemented with quasi-circular orbit calculations and then applying full GR for only the last few
orbits before inspiral. In a previous paper [34] we have reported on a general relativistic hydro-
dynamics approach that can compute many orbits stably and efficiently from the PN regime until
the last stable orbits without the need to invoke the quasi-circular orbit condition. We established
the numerical stability of this approach based upon many orbit simulations of quasi-circular orbits
and showed that this approach is straightforwardly scalable to evolve to the ∼ 104 orbits within
the LIGO frequency range. In this paper we present a first study of associated gravity waveforms
from such multiple orbit simulations.

When binary neutron stars are well separated, the Post-Newtonian (PN) approximation is
sufficiently accurate [35]. In the PN scheme, the stars are often treated as point masses, either with
or without spin. At third order, for example, it has been estimated [36–38] that the errors due to
assuming the stars are point masses is less than one orbital rotation [36] over the ∼ 16,000 cycles
that pass through the LIGO detector frequency band [14]. Nevertheless, it has been noted in many
works [32, 39–50] that relativistic hydrodynamic effects might be evident even at the separations
(∼ 10−100 km) relevant to the LIGO window.

Indeed, the templates generated by PN approximations, unless carried out to fifth and sixth
order [36, 37], may not be accurate unless the finite size and proper fluid motion of the stars is
taken into account. In essence, the signal emitted during the last phases of inspiral depends on the
finite size and equation of state (EoS) through the tidal deformation of the neutron stars and the
cut-off frequency when tidal disruption occurs.

Numeric and analytic simulations [51–59] of binary neutron stars have analyzed the ap-
proach to the innermost stable circular orbit (ISCO). While these simulations represent some of
the most accurate to date, many simulations have only followed the evolution for a handful of
orbits and are based upon an extrapolation of quasi-circular orbits. With ∼ 16,000 cycles passing
though the LIGO frequency band, it may questionable whether templates based on only a small
number of orbits are sufficiently accurate to describe the full evolution of the system. Moreover,
although one can obtain a solution to Einstein equations in the quasi-circular orbit condition, there
is no guarantee that the true dynamical evolution actually passes through a given set quasi-circular
solutions.

Accurate templates may eventually require the ability to calculate many orbits, including
the radiation back reaction and relativistic hydrodynamic effects. Ideally, one would like to calcu-
late from the post-Newtonian regime to near the inner most stable circular orbit (ISCO).

Toward that end, we have developed an approach [34] based upon the general relativistic
hydrodynamics formalism developed in [40, 42, 60] that can evolve from the post-Newtonian to
ISCO regimes in a single calculation. We showed [34] that it is straightforwardly scalable to the
computation of the continuous evolution through the ∼ 104 orbits in the LIGO window. Here,
we illustrate an application of the formalism to estimate of the emergent gravity wave signal.
The method for including the radiation back reaction and the extraction of the outgoing gravity
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wave template is described in Section 2 along with an illustrative extraction of the gravity wave
parameters. Conclusions are presented in Sections 3.

II. GRAVITATIONAL WAVES

The physical processes occurring during the last orbits of a neutron star binary are currently
a subject of intense interest. As the stars approach their final orbits it is expected that the coupling
of the orbital motion to the hydrodynamic evolution of the stars in the strong relativistic fields
could provide insight into various physical properties of the coalescing system [34, 45, 61]. In
this regard, careful modeling is needed which includes both the nonlinear general relativistic and
hydrodynamic effects as well as a realistic neutron star equation of state.

Because our method of solving the field equations [34, 40, 60] does not explicitly evolve
gravitational radiation we use a multipole expansion originally developed in [62] as described
in [40, 60]. The gravitational radiation signal is derived via a multipole expansion of the metric
perturbation to the hexadecapole (l = 4) order including both mass and current moments and a
correction for the slow motion approximation. In [34], we computed quasi-equilibrium circular
orbit conditions for two neutron stars initially of gravitational mass 1.44 M�. We then considered
configurations as a function of total angular momentum from the post-Newtonian regime up to the
point that the stars enter the inspiral phase [34]. In this paper we perform an illustrative calculation
of the angular momentum and power loss rate and reconstruct the gravitational wave form. We
also summarize how to infer the possible signal to noise in the LIGO sensitivity band.

In general it is possible to express the emission of gravitational radiation in terms of an “ex-
act” expansion of multipole moments of the effective stress energy tensor, including corrections
for the so-called “slow motion” approximation [62]. It is important to appreciate that these formu-
lae can apply to strong-field sources as well as to weak field sources [62] as long as the relevant
components of the effective stress energy tensor can be identified.

Since in this paper, we are only concerned with orbital motion of equal mass binaries,
the multipole expansions reduce to only a few nonzero terms. These we evaluate and test for
convergence of the expansion.

In any asymptotically flat coordinate system (such as the one we are using here) in which the
gravity waves far from the source can be characterized as linear metric perturbations propagating
on a flat background, the transverse traceless part of the metric perturbation characterizes the
radiation completely. This metric perturbation then can be expressed [40, 60, 62] in terms of the
mass-multipole (Ilm) and current-multipole (Slm) moments as

hT T
jk =

∞

∑
l=2

l

∑
m=−l

[
r−1 (l)Ilm(t− r)T E2,lm

jk + r−1 (l)Slm(t− r)T B2,lm
jk

]
, (1)

where the superscript T T denotes the transverse traceless part of the metric perturbation and the
notation (l)Ilm and (l)Slm denotes the lth time derivative of the respective moments. As usual, the
gravitational wave strain can be given in terms of two polarization h× and h+.

From this, the general expression for energy loss is

dE
dt

=
1

32π

∞

∑
l=2

l

∑
m=−l
〈|(l+1)Ilm|2 + |(l+1)Slm|2〉 , (2)
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where the brackets denote averages over several wavelengths. Angular momentum loss can simi-
larly be written

dJ
dt

=
i

32π

∞

∑
l=2

l

∑
m=−l
〈(l)Ilm∗m(l+1)Ilm〉

+〈(l)Slm∗m(l+1)Slm〉 , (3)

where the expression in Eq. (3) assumes an alignment of the angular momentum vector with the z
axis.

The radiation reaction potential for the loss of orbital momentum can also be written [40]
in terms of these moments.

χ =
1

32π

∞

∑
l=2

l

∑
m=−l

xix j〈|(l+1)Ilm|2 + |(l+1)Slm|2〉 , (4)

The derivation of the relevant mass and current moments in our coordinates is straightfor-
ward as described in detail in Refs. [40, 60] and need not be repeated here. The contribution from
both the current moments and slow-motion correction is expected to be small. We compute terms
out to ω10, which includes mass multipoles out to l = 4, current multipoles out to l = 3 and the
leading correction for the slow motion correction.

In Table 1 we summarize the relative contributions of various moments to the energy and
angular momentum loss rates for a few values of total angular momentum J based upon the fidu-
cial multiple orbit simulation or Ref. [34] utilizing the MW equation of state for two equal mass
neutron stars of gravitational mass Mg = 1.44 M�. The orbit parameters for various fixed angular
momenta are summarized in Table 2 from Ref. [34]. As expected, the quadrupole term dominates
by more than an order of magnitude. The next largest term is the slow motion correction which
contributes only a few percent to the gravitational radiation and tends to decrease the loss rate.
Hence, we conclude that the moment expansion indeed converges quickly.

Table 1. Contribution of various moments to energy and angular momentum loss rates

J Ė l = 2,m = 2 Slow Motion Correction l = 4,m = 2 l = 4,m = 4

2.7×1011 5.06×10−9 2.63×10−9 −9.86×10−11 5.56×10−17 1.02×10−13

2.8×1011 3.57×10−9 1.85×10−9 −6.76×10−11 3.51×10−17 6.32×10−14

3.0×1011 1.72×10−9 8.90×10−10 −3.08×10−11 1.29×10−17 2.32×10−14

J J̇ l = 2,m = 2 Slow Motion Correction l = 4,m = 2 l = 4,m = 4

2.7×1011 1.26×10−1 1.17×10−1 −4.40×10−3 2.52×10−9 4.53×10−6

2.8×1011 1.77×10−1 9.20×10−2 −3.36×10−3 1.75×10−9 3.14×10−6

3.0×1011 1.07×10−1 5.53×10−2 −1.92×10−3 8.04×10−10 1.45×10−6
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Table 2. Orbital parameters for each EoS

EoS J(cm2) ω(rad s−1) dp(km) dc(km) MADM(M�) ρc(g cm−3)

MW 2.6×1011 780.92 65.22 51.52 1.391 1.67×1015

2.7×1011 671.85 71.18 57.24 1.393 1.62×1015

2.8×1011 602.80 76.94 61.86 1.394 1.60×1015

3.0×1011 482.30 86.91 72.36 1.396 1.55×1015

3.5×1011 300.46 116.13 100.8 1.399 1.44×1015

3.8×1011 235.72 136.93 119.74 1.401 1.39×1015

The sensitivity of the gravity wave frequency to the equation of state was summarized in
Ref. [34]. Here we analyze the gravity wave characteristics based upon one representative equation
of state. Fig. 1 shows f ,h, Ė, J̇ as a function of time to inspiral for a simulation based upon the
fiducial MW EoS. For this plot we adopt h≡ (h++h×)/2. In Fig. 2 we show various parameters,
i.e. f ,h, Ė, J̇ characterizing the gravity wave signals as a function of total angular momentum J
for calculations based upon the MW equation of state of Ref. [68]. In this figure, the points are
the numerical results. The lines drawn are polynomial fits to these computational results. These
analytic functions are summarized in Table 3.

Table 3. Polynomial fits to f ,h, Ė, J̇

a0 a1x a2x2 a3x3 a4x4

f 42.3 -32.65 8.77 -0.802

h 44.01 -29.48E+02 7.221 -0.6144

Ė 3752.90 -4488.11 2009.89 -399.21 29.66

J̇ 14.14 -12.00 3.42 -0.325

Having analytic fits to the various parameters as a function of J we can convert them to
time in the limit that only gravity waves affect the orbit decay time by integrating the angular
momentum loss timescale, i.e.

t =
∫ J

Jcoll

dJ′

J̇
(5)

where Jcoll is the minimum J value before collapse of the orbit.
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Fig. 1. Plot of f , h, Ė, and J̇ versus time to inspiral

For comparison the expected increase in gravity wave frequency from the post-Newtonian
and Newtonian estimate is compared with our calculations on Fig. 3. We see the chirp as the stars
approach. The fact that there is less increase in frequency as the stars approach implies that there
are more cycles per time bin so that the inspiral may be easier to detect [69].

Ultimately, however, one wishes to know the actual signal to noise response in an gravity
wave detector. The detector response in real applications involves a fourier transform integrated
over many orbits within the LIGO frequency band. To estimate of the effect of these orbits on the
detector signal to noise one must simply fourier transform the observed time-dependent gravity
wave form given above. That is, the time dependent detector strain is given by,

ht(t) = A×hcos
∫

2π f dt , (6)

where A is a parameter that depends upon detector inclination and response, while h is defined
above and given in Fig. 1. The detailed time evolution of h× and h+ are shown in Fig. 4 and Fig. 5
for the last 200 ms of inspiral.

The fourier transform is then written,

h̃( f ) =
∫

e2π f tht(t)dt (7)

The signal to noise per unit frequency is then,

d(S/N)2

d f
=

4|H̃2|
Sn

(8)

where Sn is the detector spectral density function. For our purposes Sn can be taken from the
analytic approximations of Ref. [70].
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Fig. 2. Plot of f , h, Ė, and J̇ versus J. The points are calculated. The lines are the
polynomial fits given in Table 3
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Fig. 3. Plot of gravity wave frequency f versus time to inspiral from this work compared
with the the PN prediction and the Newtonian prediction
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Fig. 4. Plot of the strain h×, versus time for the last 200 ms before inspiral.
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Fig. 5. Plot of the strain h+, versus time for the last 200 ms before inspiral.

III. CONCLUSIONS

We have computed the emergent gravity wave signal from a multiple orbit simulation of an
equal-mass binary neutron star system. The gravitational wave form was obtained via a multiple
expansion up to l = 4 and including the corrections to the slow motion approximation. Although
our approach employs a number of approximations including a conformally flat metric, a multi-
pole expansion, and quasi-stationary orbits, we have shown that this calculation can be performed
efficiently with limited computer resources. Hence, we suggest that the templates developed by
this method should be applied in current gravity wave observatories.
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