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4Institute of Theoretical Physics, Physics Department, Warsaw University, Hoza 69, PL-00-681
Warsaw, Poland

5Soltan Institute for Nuclear Studies, Hoża 69, PL-00-681 Warsaw, Poland
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Abstract. We consider an extended model of the previously considered model with double-square
potential which is namely one-dimensional (1D) nonlinear Schrödinger equation (NLSE) with
self-focusing nonlinearity and a 1D double-gauss potential. Spontaneous symmetry breaking has
been presented in terms of the control parameter which is propagation constant in the case of
optics and chemical potential in the case of Bose-Einstein Condensate (BEC), correspondingly.
The numerical simulations predict a bifurcation breaking the symmetry of 1D solitons trapped in
the double-gauss potential of the supercritical type as in the case of double-square potential. Fur-
thermore we have constructed bifurcation diagrams, considering the stability of solitons with three
methods including the method using Vakhitov–Kolokolov (V-K) Stability Criterion, Pseudospectral
Method and Method for Linear-Stability Eigenvalues. It will show that the obtained results of our
model from the three methods are the same but the third one is the fastest.
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I. INTRODUCTION

It is well-known that in the traditional quantum mechanics with Schrödinger equation as
a fundamental one, the ground state of the linear system follows exactly the symmetry of the
Hamiltonian describing the system. In contrast to this, the nonlinear terms in so-called nonlinear
Schrödinger equation (NLSE) which describes the light propagation in nonlinear optical media
and also BEC (named frequently as Gross-Pitaevskii Equation (GPE)) lead to spontaneous sym-
metry breaking (SSB), when ground states have other symmetry than Hamiltonian (trap poten-
tial) has. This phenomenon has been emphasized at the first time in 1979 by E. B. Davies [1]
for atomic, molecular systems and analyzed intensively by B. A. Malomed’s group since more
than two decades [2–14]. In optics, the SSB occurs as a result of the interplay between the non-
linearity and waveguiding structures, when the strong nonlinearity partly suppresses the linear
coupling between parallel guiding cores, for example in self-focusing Kerr medium [15]. The
onset of a sharp symmetry-breaking instability in a double-hump two-component spatial optical
soliton was demonstrated experimentally in a planar nonlinear waveguide [16]. The analysis of
the SSB for soliton modes was performed in models of dual-core fiber Bragg gratings with the
Kerr nonlinearity [17], and coupled waveguides with the quadratic [18] and cubic-quintic [19]
nonlinear terms. As it has been emphasized above, in the quantum world, a similar situation oc-
curs when the double-well potential (DWP) traps an ultracold rarefied atomic gas in the state of
the Bose–Einstein condensate (BEC). In the mean-field approximation, which is extremely accu-
rate for rarefied atomic gases, repulsive or attractive collisions between atoms give rise to a cubic
nonlinearity that emulates the optical Kerr effect. The outcome in this scenario is that the Gross–
Pitaevskii equation (GPE) replaces the linear Schrödinger equation for describing the system [20].
In the effectively one-dimensional geometry, the SSB can be studied in the framework of the scaled
NLSE/GPE with potential V (x) of the DWP type, for the amplitude of the electromagnetic wave,
or the single-particle wave function, ψ (x, t):

i
∂ψ

∂ t
=−1

2
ψxx +σ |ψ|2 ψ +V (x)ψ (1)

where t is the time in the GPE or the propagation distance in the NLSE σ is nonlinear parameter,
σ =+1 and σ =−1 are the self-repulsive and self-attractive cases in BEC (or the self-defocusing
and self-focusing cases in optics), respectively. The ψxx is second derivative of ψ (x, t) with respect
to x.

The analysis of the SSB in BEC and similar models based on Eq. (1) was initiated in
Refs. [21] and [22]. Further, GPE (1) was extended by adding an extra (free) spatial coordinate,
which transforms the DWP into a two-dimensional dual-core structure [23]. In such a setting,
the self-attractive nonlinearity gives rise to matter-wave solitons, which are self-trapped in the
free direction [24]. The SSB destabilizes symmetric solitons and replaces them by asymmetric
ones, provided that the norm of the wave function (which determines the effective strength of the
intrinsic nonlinearity) exceeds a critical value [23]. In the latter case, the mean-field symmetry
breaking is a phase transition of the first kind (alias a subcritical bifurcation [22]), which includes
hysteresis. The subcritical transition is typical to solitons in dual-core waveguides with the Kerr
self-focusing [25–28]. The same type of the transition may be featured by CW (continuous-wave)
states in dual-core systems with non-Kerr nonlinearities [29].
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The present paper addresses the symmetry-breaking bifurcation and the existence and sta-
bility of symmetric states in a one-dimensional system, which is a direct extension of the familiar
double-well model [23]. In this work, we focus on such effects in double-gauss potential settings,
which can be engineered by means of techniques mentioned above, using the self-focusing non-
linearity in optics or attractive interactions between atoms in BEC, as briefly described below. In
Sec. II, we formulate the model and give estimates of characteristic values of related physical
parameters. Section III reports full numerical results of 1D model, that is the diagram of them and
their stability is studied by means of direct simulations of slightly perturbed stationary states and
also, independently, through the computation of respective stability eigenvalues for small pertur-
bations. At the same time, we analyze the 1D model for double-rectangular potential considered
in [23]. Section IV contains conclusions.

II. THE MODEL

Following Ref. [30], the generally scaled form of the 1D equation with the stripe-shaped
potential and nonlinear parameter σ =−1 can be written as:

i
∂ψ

∂ t
=−1

2
ψxx−|ψ|2 ψ +V (x)ψ (2)

In this work, we consider the case of double-gauss potential:

V (x) =− 1
a
√

π

[
exp

(
−(x+1)2

a2

)
+ exp

(
−(x−1)2

a2

)]
. (3)

(a) (b)

Fig. 1. The shape of one-dimensional potential V (x), (a) corresponds to double-gauss
potential for different values of scaled width a of the individual well; (b) The shape of the
one-dimensional double-well potential U(x) with D, U0, and L being, respectively, the
width, depth of each well, and the width of the barrier between them (we will recall in
title III.1).
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We are looking for stationary solutions as ψ (x, t) = u(x)e−iµt where µ is propagation
constant (in optics) or chemical potential (in BEC) and real function u(x) satisfies the equation:

µu+
1
2

uxx−V (x)u+u3 = 0. (4)

Equation (4) conserves a dynamical invariant, namely the norm:

N =
+∞

∫
−∞

|ψ (x, t)|2 dx

=
+∞

∫
−∞

|u(x)|2 dx.
(5)

As in the previous papers [Refs. 4, 6, 11, 14], the asymmetry of soliton is defined by:

Θ =
N+−N−

N

=

(
∫+∞

0 |u(x)|2 dx−∫ 0
−∞ |u(x)|

2 dx
)

∫+∞
−∞ |u(x)|

2 dx
.

(6)

III. NUMERICAL RESULTS FOR BIFURCATION DIAGRAMS AND STABILITY

III.1. The one-dimensional setting for rectangular-well potentials
We solved equation (4) numerically by using a new numerical code based on the Acceler-

ated Imaginary-Time Evolution Method (AITM) with a fourth-order Runge-Kutta algorithm [30].
The accuracy of the numerical code was tested by comparing these results with the results obtained
in the previous paper [23]. It follows that one can reconstruct all the results obtained in that paper.

In addition, in the case of double-rectangle potential U(x) (see Fig. 1b) we also consider
the stability of symmetry and asymmetry states. The instability of states is determined by two
methods (direct propagation of perturbed states in real time method and (V−K) Stability Criterion
method [30]). The results are exactly the same. Note that, according to (V−K) Criterion, if N′< 0
then the state is stable and if N′ > 0 then the state is unstable (where the quantity N′ is derivative
of N with respect to µ).

In Fig. 2, the stability of solitons obtained by this method was then tested by direct prop-
agation of perturbed states in real time. Perturbations which are actually large, were not able to
destroy solitons that were identified as stable ones. On the contrary, much smaller perturbations
were sufficient to demonstrate instability of those solutions which are unstable, after a propagation
time of t = 1000.

Now we present the results for the case of double-gauss well potential. Based on the code
verified above, we set up bifurcation diagram of the symmetry breaking in this model. The results
are illustrated in Fig. 3 below.

We set up bifurcation diagram for different width values. Figures 3(a), 3(b) and 3(c) corre-
sponds with a = 0.2, in this case, the bifurcation point is Nbi f = 0.65; Figures 3(d), 3(e) and 3(f)
corresponds with a = 0.5, in this case, the bifurcation point is Nbi f = 0.925; Figures 3(g), 3(h)
and 3(i) corresponds with a = 1, in this case, the bifurcation point is Nbi f = 1.925. Thanks to the
illustration, we realize that the spontaneous symmetry breaking bifurcation is supercritical. We
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(a) (b)

(c)

Fig. 2. The evolution of a stable symmetric state for N = 0.5 (a), of a stable asymmetric
state for N = 1 (b), of an unstable symmetric state for N = 1 (c). The parameters are
L = 1, D = 1, U = 1. The evolution time is t = 1000.

can conclude that the results for smooth Gaussian potential agree with that for the rectangular-
well model, what is according with our predictions. In the above figures, solid and dashed lines
correspond to stable and unstable states.

In order to determine instability of soliton, we use Pseudospectral Method, (V-K) Criterion
or use Methods for Linear-Stability Eigenvalues, all of them are described in [31].

In figures 3(c), 3(f), 3(i) we see that the slope of these curves is negative (it means N′′).
Thus these asymmetric states is stable.

Through the evolution of states from time to time, we will determine their stability. Figures.
4(a), 4(b), and 4(c) show the evolution of a symmetric state for N = 0.5, a = 0.5, the asymmetric
state for N = 2, a = 0.5 and a symmetric state for N = 2, a = 0.5, respectively. Looking at the
above figures, we lead to that two-peak symmetry soliton in Fig. 4(a), single-peak asymmetry
soliton in Fig. 4(b) are stable and two-peak symmetry soliton in Fig. 4(c) is unstable.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. (Color online) Families of asymmetric states in the plane of (Θ,µ), (Θ,N) and
(N,µ) : (a), (b), (c) for the values of potential parameter a= 0.2; (d), (e), (f) for the values
of potential parameter a = 0.5; (g), (h), (i) the values of potential parameter a = 1.

For the computation of eigenvalues, perturbed solutions were looked for as

ψ (x, t) =
{

u(x)+ [V (x)+W (x)]eλ t +[V ∗ (x)+W ∗ (x)]eλ ∗t
}

e−iµt , (7)

where u(x) is a stationary solution to Eq. (4) with chemical potential (or is propagation constant)
µ , while V and W are components of a perturbation mode, pertaining to instability growth rate
λ ≡ λr+ iλ i. The substitution of expression (7) into Eq. (2) and linearization lead to the eigenvalue
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problem based on the following equations:

i

(
0 1

2
d2

dx2 +µ +u2 (x)−V (x)
1
2

d2

dx2 +µ +3u2 (x)−V (x) 0

) V

W

= λ

 V

W

 (8)

(a) (b)

(c)

Fig. 4. The evolution of a stable symmetric state for N = 0.5, a = 0.5 (a), of a stable
asymmetric state for N = 2, a = 0.5 (b), of an unstable symmetric state for N = 2, a = 0.5
(c). The evolution time is t = 300.

In order to determine the stability of these states, we determine the eigenvalue spectrum of
perturbed rate λ . According to this, if this spectrum contains eigenvalues with positive real parts,
the solitary wave is linearly unstable. In the three cases (figures 5, 6, 7), we find that only in the
case of Fig. 7 there exist eigenvalues for the positive real component. We conclude that in the cases
of Fig. 5 and Fig. 6 the soliton states are stable, whereas the case of Fig. 7 is the unstable soliton
state. The obtained results for the stability of soliton in these cases are the same as the results
obtained by two above-mentioned methods. In practice, we concluded that the fastest method is
the Method for Linear Stability Eigenvalues.
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Fig. 5. Example of a stable symmetric state, found with a fixed norm, N=0.5, a=0.5. In subplot, the left and right 
panels show profiles of the stationary states and spectral planes of the instability eigenvalues, respectively. 
 

  
Fig. 6. Example of a stable asymmetric state, found with a fixed norm, N=2, a=0.5. In subplot, the left and right 
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Fig. 7. Example of an unstable symmetric state, found with a fixed norm, N=2, a=0.5. In subplot, the left and right 
panels show profiles of the stationary states and spectral planes of the instability eigenvalues. 
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We performed calculations for ten different values of the width (a), we obtained the bi-
furcate norm as a function of the gaussian width a and bifurcate propagation constant (in optics)
or chemical potential (in BEC) as a function of the gaussian width a. From the illustration, we
determined the regions (1) where stable asymmetry and unstable symmetry states coexist, and the
regions (2) where only stable-symmetry states exist.

� �
0

�

�

��

��� + � + ��(�) − �(�)

�

�

��

��� + � + 3��(�) − �(�) 0
� �

�

�
� = � �

�

�
�   (8) 

In order to determine the stability of these states, we determine the eigenvalue spectrum of 
perturbed rate �. According to this, if this spectrum contains eigenvalues with positive real parts, the 
solitary wave is linearly unstable. In the three cases (figures 5, 6, 7), we find that only in the case of fig 7 
there exist eigenvalues for the positive real component. We conclude that in the cases of fig 5 and fig 6 
the soliton states are stable, whereas the case of fig 7 is the unstable soliton state. The obtained results for 
the stability of soliton in these cases are the same as the results obtained by two above-mentioned 
methods. In practice, we concluded that the fastest method is the Method for Linear Stability Eigenvalues.  
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Fig. 8. (a) shows the coordinates of the bifurcation point, Nbif , as functions of a, (b) shows the coordinates of the 
bifurcation point, μbif , as functions of a. 
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(in BEC) as a function of the gaussian width a. From the illustration, we determined the regions (1) where 
stable asymmetry and unstable symmetry states coexist, and the regions (2) where only stable-symmetry 
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IV. CONCLUSIONS 

In this work, we have introduced a physical model that gives rise to the SSB of 1D solitons in a 
dual-core system. This model is extended from a 1D model with a rectangular-shape potential given in 
[30]. Our model is based on the 1D nonlinear Schrödinger equation with the self-focusing cubic 
nonlinearity and a 1D double-channel potential. The model applies to the description of spatial optical 
solitons in a bulk medium with two waveguiding slabs embedded into it, or spatiotemporal solitons in a 
planar waveguide into which two guiding channels were inserted. The same model may also be 
interpreted as the Gross-Pitaevskii equation for Bose-Einstein condensate trapped around two attractive 
parallel light sheets. By using the numerical method we have determined the supercritical symmetry 
breaking bifurcation in the model. We considered also the stability of symmetry and asymmetry states. 
We obtained the stability regions for these states. In particular, we want to emphasize that determining the 
stability of states in three different ways gives the same result, but the Method for Linear Stability 
Eigenvalues is the fastest in our case.  

Our numerical work in a near future will be extended for considering Coupled Ring Resonators 
with Gain and Loss [31], where our code used here will be extended to the system of two coupled NLSE. 
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In this work, we have introduced a physical model that gives rise to the SSB of 1D soli-
tons in a dual-core system. This model is extended from a 1D model with a rectangular-shape
potential given in Ref. [30] Our model is based on the 1D nonlinear Schrödinger equation with
the self-focusing cubic nonlinearity and a 1D double-channel potential. The model applies to the
description of spatial optical solitons in a bulk medium with two waveguiding slabs embedded
into it, or spatiotemporal solitons in a planar waveguide into which two guiding channels were in-
serted. The same model may also be interpreted as the Gross-Pitaevskii equation for Bose-Einstein
condensate trapped around two attractive parallel light sheets. By using the numerical method we
have determined the supercritical symmetry breaking bifurcation in the model We considered also
the stability of symmetry and asymmetry states. We obtained the stability regions for these states
In particular, we want to emphasize that determining the stability of states in three different ways
gives the same result, but the Method for Linear Stability Eigenvalues is the fastest in our case.

Our numerical work in a near future will be extended for considering Coupled Ring Res-
onators with Gain and Loss [31], where our code used here will be extended to the system of two
coupled NLSE.
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