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Abstract. We study the energy-loss function for lead in the framework of the time-dependent den-
sity functional theory, using the full-potential linearized augmented plane-wave plus local orbitals
method. The ab initio calculations are performed in the adiabatic local density approximation.
The comparison between the obtained energy-loss function for zero momentum transfer with those
from reflection electron energy loss spectroscopy measurements and from first-principles calcula-
tions shows good agreement.
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I. INTRODUCTION

The energy-loss function (ELF) represents the probability that an incident electron loses an
energy and transfers a momentum per unit path length traveled in a solid. The ELF is directly re-
lated to the dielectric function, and hence many dielectric properties of materials can be extracted
from the determination of the ELF. Unfortunately, experimental data for the ELF is not always
available because it is difficult to determine experimentally. The ELF for zero momentum trans-
fer is usually obtained from optical reflection and transmission measurements on thin film [1].
The ELF for finite momentum transfer is then determined with extrapolation algorithms [2-6].
However, the accuracy of the extrapolated ELF is questionable due to the lack of experimental
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data for evaluations. An approach of the extrapolation algorithms is to use a linear combination
of Drude/Lindhard/Mermin ELF [2,4] with fitting parameters for oscillators. Another approach
is based on the Penn algorithm [3] without any fitting parameters. An advantage of the fitting
approach is to take into account plasmon damping. This quantity is, however, neglected in the
Penn algorithm due to the use of the Lindhard dielectric function [7] without damping. Plasmons
in the Lindhard theory are treated as undamped electron excitations (i.e. infinite lifetime or zero
linewidth). An implementation of damping is necessary due to the finite plasmon lifetime (inverse
of plasmon damping) in real materials. The shortcoming of the Lindhard dielectric function is
solved in the Mermin dielectric function [8], which is a phenomenological modification of the
Lindhard dielectric function with including plasmon damping in a consistent manner for the fi-
nite plasmon lifetime. Recently, the drawback of the Penn algorithm has been addressed in the
Mermin—Penn algorithm [6] by using the Mermin dielectric function instead of the Lindhard di-
electric function to take plasmon damping into account. The ELF can also be determined with the
self-consistent coupled-plasmon model [5]. In this model, the Lindhard dielectric function is used
to estimate an initial damping value, which is then updated iteratively by employing the Mermin
dielectric function until the ELF is converged. Although the self-consistent ELF is determined in
both a physical and uniquely constrained way, its accuracy remains unknown.

Here we determine the ELF for lead in the framework of the time-dependent density func-
tional theory (TDDFT), using the full-potential linearized augmented plane-wave (FP-LAPW)
plus local orbitals (LO) method. In this method, the unit cell is divided into non-overlapping
muffin-tin spheres centered on the atoms and an interstitial region. Within a muffin-tin sphere, the
basic functions are represented as a sum of products of radial functions and spherical harmonics.
Outside the sphere, the basic functions are represented as plane-waves. The wave function must
be continuous and smooth at the boundary between two regions to satisfy the variational principle.
Local orbitals are introduced as additional basis functions to improve the description of semicore
states. The ab initio calculations were performed in the adiabatic local density approximation
(ALDA). The ELF for lead in the limit of zero momentum transfer have been determined both ex-
perimentally [9, 10] and theoretically [10]. These results are also included here for comparisons.

This paper is organized as follows. In Sec. II, the methodology to calculate the ELF is
outlined. In Sec. III, the ELF for zero momentum transfer is analyzed and compared with other
results; then the ELF for finite momentum transfers is presented and analyzed. In particular, the
plasmon dispersion line and width are determined and compared with experimental data. The
main results are summarized in Sec. IV.

II. COMPUTATION

The ELF is defined as the imaginary part of the reciprocal complex dielectric function
e(k,m), i.e. Im[—1/e(k, )], where hik is the momentum transfer vector, and A is the energy
loss. There are two excitation modes with respect to the critical momentum transfer vector #ik.:
(1) the collective excitation for k < k., and (ii) the single-particle excitation for k > k.. Atk = k.,
the collective excitation decays into the single-particle excitation via the Landau damping pro-
cess. Many electronic properties of materials can be described in terms of the complex dielectric
function €(k, ®), which is given by

1/e(k,w) =1+v(k)x(k, o), (D
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where v(k) = 4me? /k? is the Fourier transform of the bare Coulomb interaction, and y is the
density response function of the interacting many-electron system. Within the linear-response
formulation of TDDFT, the density-response function ) of the interacting many-electron system
is related to the density-response function Yo of the corresponding noninteracting Kohn-Sham
system through the Dyson-like equation

X=X+ X0+ fxc)X, (2)

where f is the exchange-correlation kernel that accounts for all many-body effect. Setting fy. =0
corresponds to the random phase approximation (RPA). Within the RPA theory, plasmons are un-
damped (i.e. they have infinite lifetime). However, this situation is not observed in real materials.
Beyond the RPA, the ALDA is known as the most common and simplest approximation, which
also referred to as time-dependent local-density approximation in connection with TDDFT.

Here, the ALDA kernel was used for calculations with and without local-field effects (LFE).
The calculations were performed with the EXCITING code [11], which is based on the FP-LAPW
+ LO method. The product of the muffin-tin radius and the largest reciprocal lattice vector in the
interstitial region was set to 9. The Brillouin zone was sampled with an off-center 30x30x30
k-point mesh. A lifetime broadening of 0.1 eV was employed. The generalized gradient approx-
imation [12] was used for the exchange-correlation potential. The calculations were performed
for momentum transfers along the crystal symmetry direction [111]. A possible anisotropy effect
was not investigated here. This effect is expected to be small in lead due to its face centered cubic
symmetry.

III. RESULTS AND DISCUSSION

Figure 1 shows the ELF of lead for
zero momentum transfer. Such an ELF is Wemer of 1. (2009) - REELS '\
typical for simple metals like aluminum, gl| % Wemeretal (2009) - DFT T
which has a single sharp plasmon peak in ——— This work - ALDA without LFE
its ELF. Here, the plasmon peak for lead
locates at 12.3 eV, with a full-width at
half maximum (FWHM) of 2 and 3 eV for 2r
the ALDA-ELFs with and without LFE, re-
spectively. This peak originates from in-
terband transitions and corresponds to the 1r
bulk plasmon, whereas the less pronounced
peak near 8 eV is responsible for the sur-
face plasmon excitation [9]. 0 b a e | ‘

The ALDA-ELFs with and without 0 2 4 6 8 10

ELF
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E V
LFE have the same peak position at 12.3 eV nergy (eV)
but differ significantly in peak amplitude. Fig. 1. Energy-loss function for zero
This is because the most-outer subshell 6p> momentum transfer.

of lead is still unfilled (up to 4 empty p-

states), and hence it is very sensitive to external perturbations. The LFE is responsible for the
appearance of dipoles and inhomogeneous electron subsystems caused by external perturbations
in the a solid. The significant discrepancy in peak amplitude is mainly due to the LFE and less
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likely to be influenced by the core polarization effect [9], which is usually described in terms of
an energy- and momentum-independent background dielectric constant. The edge-like feature at
16.7 eV corresponding to the core excitation is rather far from the plasmon peak at 12.3 eV.

The ALDA-ELF without LFE agrees well with those from measurements of reflection
electron energy loss spectroscopy (REELS) and calculations in the framework of the density-
functional theory (DFT) [10]. The REELS data were processed with a procedure eliminating
multiple scattering from measured spectra to retrieve a single-scattering loss distribution in an in-
elastic collision. The DFT calculations were performed in the RPA with the WIEN2k code [13],
which is also based on the FP-LAPW + LO method like the EXCITING code.

Entering into the region of finite momentum transfer (Fig. 2), the plasmon peak of both
ALDA-ELFs goes along the same plasmon dispersion (Fig. 3), the corresponding FWHM is shown
in Fig. 4. However, there is a difference in the change of peak high between two ALDA-ELFs.
Moving along the dispersion line, the peak high of the ALDA-ELF without LFE (Fig. 2b) is low-
ered slowly and suddenly falls to minimum at the critical momentum transfer of 0.5 bohr—!, where
a plasmon excitation decays to a single-electron excitation via the Landau damping process [14].
Meanwhile, the peak high of the ALDA-ELF with LFE (Fig. 2a) experiences two sudden changes
at the momentum transfer of 0.28 bohr~! and at the critical momentum transfer. The LFE is
responsible for this discrepancy.
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Fig. 2. Energy-loss function for finite momentum transfer.

Both ALDA-ELFs have the same plasmon dispersion relation (solid line in Fig. 3)
hQyi (k) = 7y (0) + Ena(hk)?, (3)

where 71Qp(hk) is the plasmon energy (eV) as a function of momentum transfer 7ik (bohr™1),
1Q,1(0) = 12.3 eV is the plasmon energy for k = 0 corresponding to the plasmon peak position in
Fig. 2, Ey = 27.21 eV is the Hartree energy, and o = 0.66 is the plasmon dispersion coefficient.
The plasmon energy /1€ (0) = 12.3 eV is smaller than experimental values (13.0 or 13.25 eV [9])
and the Drude plasmon energy for a free-electron gas (13.5 eV [9]). In contrast, the plasmon
dispersion coefficient & = 0.66 is almost double the experimental value (0.36 [9]) and larger than
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the theoretical value in the RPA (0.44 [9]). A possible reason for these discrepancies is that the
measurements [9] were based on polycrystals and hence the obtained results could be considered
as average values, whereas the present calculations were performed for single-crystals.

Plasmon energy (eV)

Plasmon width (eV)

Momentum transfer (1/bohr)

Fig. 4. Plasmon width (FWHM).
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Fig. 3. Plasmon dispersion.
7 T T T T
- ALDA with LFE T
ell* ALDA without LFE :
%
« *
" X*+9Hé
5r X *x o X+ ]
X + X+
$Ext s
4 - X i + 4
* * Rl S
o s +++¢+ .
3T+ Ty gt X ]
W T ey
X X X X X ot + T X 8
2 L XX % X XX x X 4
1 i i i i
0 0.1 0.2 0.3 0.4 0.5

In both calculations with and without LFE, the plasmon energy (Fig. 3) increases with
increasing momentum transfer. Meanwhile, the corresponding plasmon width (Fig. 4) reduces
slightly before increasing strongly for momentum transfers larger than 0.2 bohr~!. This linewidth
broadening effect is important for inelastic scattering of low-energy electrons.
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IV. CONCLUSION

We have determined the ELF for lead in the ALDA with and without LFE. The LFE can
be interpreted in terms of the electronic structure. The LFE significantly influences the amplitude
and FWHM of the plasmon peak, but does not play any role in the plasmon dispersion.
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