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Abstract. We have used the Monte Carlo method based on successive reflections and ray tracing
to calculate the average normal directional effective emissivities of isothermal cylindrical-inner-
cone cavities for various geometrical parameters. A simplified specular-directional diffuse reflec-
tion model was applied in our calculations for cavities working in the infrared spectral range.
Our results are in good agreement comparing with what obtained by other authors. The algorithm
developed by us has an advantage in simplicity and time saving of calculations. It can be used in
blackbody cavity design considerations, especially in the cylindrical-inner-cone cases.
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I. INTRODUCTION

The blackbody cavities as artificial sources of radiation are often used for the calibration
of radiation thermometers, thermal imagers and radiometers. In case of on-field operating instru-
ments, limited size and weight of cavities are important requirements of a radiation source [1].
Cavities having cylindrical - inner - cone geometry are usually considered in practice. They pro-
vide moderately collimated beam with high and uniform effective emissivities with compact geo-
metrical dimensions [1, 2].

The directional spectral effective emissivities are the primary radiation characteristics of a
blackbody cavity. Commonly, for a non-isothermal cavity with reference temperature T0, its local
directional effective emissivity can be represented in the form [3]:

εe(
−→
ξ ,−→ω ,λ ,Tξ ,T0) = εe(

−→
ξ ,−→ω ,λ )+∆εe(

−→
ξ ,−→ω ,λ ,Tξ ,T0) (1)

where
−→
ξ is position vector of an unit area of cavity wall having local temperature Tξ , −→ω is its

radiation direction at wavelength λ , and T0 is reference temperature of a blackbody determined by
Plancks law. In Eq. (1), the term εe(

−→
ξ ,−→ω ,λ ) is the amount of effective emissivity for isothermal

condition which does not depend on cavity temperature, and the term ∆εe(
−→
ξ ,−→ω ,λ ,Tξ ,T0) is the

non-isothermal addition in the total value of local directional effective emissivity [3, 4].
Calculation methods of radiation characteristics are mostly used to investgate blackbody

cavities. As shown in Eq. (1), to determine effective emissivities of cavities, the calculations of
effective emissivities for isothermal conditions, εe(

−→
ξ ,−→ω ,λ ) , are an indispensable step.

The effective emissivity depends on the cavity geometry and its intrinsic surface emissiv-
ity [3–5]. The quantitative relationship between the cavity effective emissivity and its structure
should be investigated at design stage to evaluate the quality of the blackbody being designed. For
this purpose, calculated effective emissivity values of isothermal cavities can be used. The the-
oretical methods for calculating effective emissivities involve the resolution of complex integral
equations describing radiative exchange process in blackbody cavities [2, 5]. For cavities having
non-standard geometrical configuration, these methods are difficult to apply.

Nowadays, the Monte Carlo simulation method is most flexible that can be applied to cal-
culations of effective emissivity for blackbody cavities. Based on probabilistic approach to the
radiative phenomena and the law of large number, the Monte Carlo method allows to define the
parameters of a stochastic model of interested system. This method offers the possibilities to
investigate the radiation characteristics of cavities with any geometry [4–6].

In this paper, we have proposed an algorithm of Monte Carlo simulation method for calcu-
lation of directional, including normal, effective emissivities of isothermal cylindrical-inner-cone
cavities. The method is based on the successive reflection ray-tracing using statistical weight
approach. A simplified specular-directional diffuse reflectance model of cavity surfaces was em-
ployed during simulation. The relationship between directional effective emissivities and various
cavity parameters, together with different values of optical property of cavity walls, has been stud-
ied. Our results are compared with the results obtained by other authors.
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II. METHODOLOGY

II.1. Background
Inner walls of blackbody cavities are opaque by nature, and according to the generalized

Kirchhoff’s law and the reciprocity theorem, the average directional effective emissivity of a cavity
in isothermal conditions can be expressed as follows [3, 4, 7]:

εe(
−→
ω ,λ ) = 1−ρe(

−→
ω ,λ ) = αe(−−→ω ,λ ) (2)

In Eq. (2), ρe(
−→
ω ,λ ) is the directional spectral effective reflectivity, −→ω is the direction of obser-

vation, which coincides with the direction of radiation, and αe(−−→ω ,λ ) is directional effective
absorptivity of cavity. The later can be evaluated by the number of successive multiple reflections
of irradiation inside cavities. The lager the maximum number of successive reflection of incident
radiation inside the cavity, the higher its effective absorptivity can be achieved.

In real situations, an intermediate surface of an opaque cavity may interact with the radia-
tion resulting in partial reflection and absorption by that surface. According to the conservation
laws of energy, after k times of successively reflections from surfaces of a cavity, the energy of
reflected rays can be expressed as:

Er(k) = E×ρ
k (3)

where Er(k) is the energy of the reflected ray after k times of reflections within the cavity (k
=1,2,3,...), E is the initial energy of the incident ray, and ρ is the cavity surface reflectivity. If k is
large enough, Er(k)→ 0, or the initial ray is considered to be totally absorbed within the cavity.

Fig. 1. A simplified directional diffuse reflection model.

The Monte Carlo simulation method based on probabilistic approach can be used to calcu-
late radiation characteristics of an isothermal cavity [3, 7]. Such method includes tracing random
propagation of rays within a cavity to estimate the probability of certain events (e.g., absorption
of irradiated ray inside cavity or its escape from the cavity after a certain combination of succes-
sive reflections). In general, ray tracing between opaque surfaces can be reduced to a consecutive
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search of intersection points of the ray being traced with those surfaces. It is easily implemented
by solving the following system of equations [3]:{−→

ξ =
−→
ξ0 +

−→
ω t,

Φ(
−→
ξ ) = 0

(4)

where t is parameter,
−→
ξ0 is position vector of starting point of a ray, −→ω is unit direction vector of

the ray,
−→
ξ is position vector of intersection point, and Φ(

−→
ξ ) = 0 is equation describing a surface.

In Monte Carlo simulation method, instead of energy, a statistical weight ϖ is assigned
to each initially generated ray. If such ray entered cavity through aperture, it suffered multiple
reflection during interaction with cavity inner surfaces. After k times of reflections, the statistical
weight of that ray will be as ϖ(k) = ϖ .ρk. The trajectory of a traced ray is ended in two cases:
i) If the statistical weight ϖ(k) of a traced ray became negligible (smaller than the pre-specified
uncertainty of calculations) and such ray was referred to totally absorbed by cavity [3], and ii) if
the traced ray escaped from the cavity after reflections. The statistical weight of each ray after its
travel inside the cavity with k-time reflections is lost in an amount of [1-ϖ(k)].

Suppose that a radiation in direction −→ω consisting of N rays entered a cavity. The effective
absorptivity of that cavity can be expressed by the total loss of statistical weights of all rays as
follows:

αe(
−→
ω ,λ ) =

1
N

N

∑
i=1

m

∑
k=1

[1−ϖi(k)], (5)

where i = 1,2, . . . ,N is index of the i-th initial ray; k = 1,2, . . . ,m is the number of reflections the
i-th ray undergone during its life. If the conditions of Eq. (2) were held, one can get the effective
emissivity of a cavity by the relations: αe(−−→ω ,λ ) = εe(

−→
ω ,λ ).

The reflection from real-world surfaces is specular-diffuse resulting in arbitrary angular dis-
tribution of reflected radiation rays. This distribution is often characterized with the Bi-directional
Distribution Function (BRDF), describing the dependence of radiation scattering on irradiation
and reflection directions of radiation. The reflection models used for Monte Carlo radiation calcu-
lation usually consists of linear combination of specular and diffuse components [3, 6, 8].

fr(
−→
ω i,
−→
ω r,λ ) = kr,d . fr,d(

−→
ω i,
−→
ω r,λ )+ kr.s. fr,s(

−→
ω i,
−→
ω r,λ ), (6)

where fr is the BRDF of a surface; fr,d ; fr,s are BRDF of diffuse and specular reflection com-
ponents, accordingly; kr,d ;kr,s are non-negative coefficients, kr,d + kr,s= 1,; −→ω i,

−→
ω r are incident,

perfect reflection radiation directions, and surface normal vectors, respectively (see Fig. 1). The
BRDF should satisfy the reciprocal principle and energy conservation law in order to closely ap-
proximate the physical nature of radiation reflection [6], i.e.

fr(
−→
ω i,
−→
ω r,λ ) = fr(

−→
ω r,
−→
ω i,λ );

∫
Ωr

fr(
−→
ω i,
−→
ω r,λ )(

−→
ω r,
−→n )d−→ω r ≤ 1,∀−→ω i, (7)

In Eq. (7), ρ(−→ω i,λ ) =
∫

Ωr
fr(
−→
ω i,
−→
ω r,λ )(

−→
ω r,
−→n )d−→ω r is the total hemispherical reflectivity of a

surface.
It is known that the angular distribution of the reflected radiation depends on the surface

roughness, and for long wavelengths, surfaces become more specular.In this case, the surface
reflection of radiation can be described as specular - directional diffuse, i.e. the reflected rays tend
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to be distributed around the perfect specular direction−→ω r within solid angles,Ωr, forming a certain
symmetric lobe (Fig. 1) [6, 8, 9].

II.2. Simulation algorithm development
We have considered a cylindrical-inner-cone cavity geometry with length L, radius R, half-

angle of inner cone ϕ . A diaphragm with radius r is placed at the aperture that helps to form
a moderately collimated radiation beam along axial direction (with some angular divergence β ).
Suppose that the cavities satisfied the conditions: i) The cavities were designed to work in the
infrared spectral range and were in the isothermal condition, and ii) The inner surfaces of cavities
were opaque, their optical characteristics were uniform everywhere in the cavities and the surface
emissivity were given as εw.

Fig. 2. A cylindrical-inner-cone geometry.

A simulation algorithm based on Monte Carlo method was developed to compute the
isothermal normal effective emissivity of such cavities, based on the following considerations:

- The total cavity surface reflectivity, ρw = 1− εw, is represented as a linear combination
of specular and diffuse components, and the angular distributions of reflected radiations can be
characterized by Eq. (6).

- The effective emissivity for investigated cavities can be determined as in Eq. (2)
As the cylindrical-inner-cone cavity is rotationally symmetrical, we can compute its direc-

tional effective emissivity in the plane consisting of initial ray (Fig. 2). All calculation results
obtained in this plane are being true for the rest ones of cavity. In this case, the surface equations
Φ(
−→
ξ ) = 0 in Eq. (4) become the equations of lines on the plane of interest. Consequently, the

BRDF of cavity surfaces depends on incident and reflection angles, θi and θr (Fig. 1), on investi-
gated plane only, instead of solid ones. Since we are interested in calculation of cavity effective
radiation characteristics in the normal direction within the small range of wavelengths, the cavity
surfaces can be considered to be grey in the spectral range of interest. This 2-dimensional model
leads to simplicity in calculation and computational saving.
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Based on the above assumptions, we employed a simplified version of Phong’s reflection
model [9] to describe the radiation reflection behavior of the cavity surfaces. The BRDF of such
model is described by Eq. (6). Then, the diffuse BRDF is independent of incident angles and is
defined as

fr,d =
1
π

(8)

And the specular-like BRDF is expressed as:

fr,s(
−→
ω i,
−→
ω r) =

υ +2
2π

.
(−→ω r.

−→
ω s)

υ

(−→ω i.
−→n )

(9)

or

fr,s(θi,θr) =
υ +2

2π
.
cosυ(θs)

cosθi
(10)

where θi and θr are the incident and the perfect specular reflection angles, accordingly; θs is the
angle between the perfect specular and specular-like reflection directions, −→ω r and −→ω s, respec-
tively; −→n is the normal vector of the surface at the point of interaction; the power υ characterizes
the shape of reflection lobe on the investigated plane (the larger υ , the sharper the reflection lobe)
(Fig. 1).

The probabilistic approach in Monte Carlo method leads to the need of describing the dis-
tributions of radiation by some probability density functions (PDF) for the appropriate random
variables. In the case of hemispherical reflectance, the integrand function in Eq. (7) is replaced
by a PDF, p(θi,θr) = fr(θi,θr)cosθr. And using the reciprocal principle, we can also write as
p(θi,θr) = fr(θi,θr)cosθi. Modeling an arbitrary PDF is usually based on generation of pseudo-
random series of floating-point numbers, uniformly distributed on the [0,1] interval. There are five
such numbers; ξ ,b,n,δ and s that are used for our simulation. Their meanings are described later
in this paper.

In Fig. 2, we suppose that −→ω is the viewing direction through the aperture of the cavity
and it is nearly parallel to the cavity longitudinal axis. The initial radiation in the direction −→ω
is generated at the aperture section. This simulated radiation is considered to consist of a rather
large number, N, of rays. To ensure a statistical error less than 10−4, all simulations should be
performed with N ≥ 106 [3, 6].

Simulation process includes a set of iterations of rays and the total number of iterations is
N. The initial ray equation is defined by using the two pseudo-random numbers ξ [0,1] and b[0,1],
where ξ is assigned to the position of the starting point, y0, of a ray on the aperture section, its
coordinate is sampled within the range of [−R,R]; b is assigned to the divergence angle of initially
entering ray, that is sampled within the range of [−β ,β ]. The equation of an initial ray is defined
as:

ax+by+ c = 0;(a2 +b2 6= 0) (11)

with a = tanβ ;b =−1;c = [y0−L tanβ ] in our case.
Initially, a statistical weight ϖ0 = 1 is assigned for each simulated ray. Next, this ray is

traced by searching its intersection point with any surface of cavity. To do this we have to solve
the Eq. (4) with Φ(

−→
ξ ) = 0 is being the equation of intersected line between a plane consisting

initial ray and a surface of cavity. This equation of line is easily found by 2 given points lying on
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it. The coefficients in this equation depend on cavity geometrical parameters such as L,R,ϕ . In
our case, there are 5 such equations of cavity border sides that must be found.

Two straight lines described by equations ax+by+c = 0 and Ax+By+C = 0,(aB−Ab 6=
0), will intersect each other at the unique point having a co-ordinate

x =
bC− cB
aB−Ab

;y =
cA−Ca
aB−Ab

(12)

A line that passes through 2 points ((x1,y1) and (x2,y2) will be intersected with a line
described by general equation Eq. (11) if the following condition is held:

(ax1 +by1 + c).(ax2 +by2 + c)< 0 (13)

These conditions should be evaluated to determine exactly which side of cavity will interact with
the traced ray.

Since the interaction points of a ray and a certain cavity surface, including diaphragm, are
found, the ray tracing is continued after the direction of reflected ray was sampled by appropriate
PDFs. In this 2-D simulation model, the reflection is defined as follows:

- Reflected ray is in the same plane of incident one as shown on Fig. 2. The incident angles,
θi, are determined by solving line equations (Eqs. (4), (11), (12)); θr = θi, and θs are chosen
empirically (Fig. 1).

- The type of reflection (diffuse or specular) is determined by a pseudo-random number
η [0,1]: in the case of 0≤ η < kr,d , the reflection is chosen as diffuse, otherwise, when kr,d ≤ η <
kr,d + kr,s = 1, it is specular.

- A direction of diffusely reflected ray is determined by using a pseudo-random number
σ [0,1], that is assigned to hemisphere angle, [0,π], and is sampled according to the diffuse PDF,
pd = 1

π
.cosθi. Similarly, a direction of specularly - like reflected ray within the reflection lobe is

found by applying a pseudo-random number s [0,1], that is assigned to the lobe angle, [−θs,θs],
which is sampled by specular PDF, ps =

υ+2
2π

.cosυ(θs), υ also is chosen empirically. After that,
the equations of reflected rays are determined to continue their tracing inside cavity until rays
stopped.

- The statistical weight of traced ray after k times of reflections is reduced to

ϖ(k) = ϖ0.ρ
k
w ∏

i, j
pd(i)ps( j) (14)

with i = 0, . . . ,m; j = 0, . . . , l; m+ l = k; and k=1,2,. . .
The iteration of a ray (or the trajectory of a traced ray) is ended if the reflected ray inter-

sected with aperture to escape the cavity or its statistical weight ϖ(k) became less than a negligible
pre-defined value, τ , or traced ray has been considered to be totally absorbed within cavity after k
times of reflections. After termination of each ray, its statistical weight is tallied. Summing up all
the losses of statistical weights of rays after their existence inside the cavity, we can compute the
normal effective absorptivity, αe(−−→ω ), of cavities by using Eq. (5). Taking into account that all
the conditions for Eq. (2) are held, finally we get the normal effective emissivities of isothermal
cylindrical-inner-cone cavities by relation αe(−−→ω ) = εe(

−→
ω ).
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III. RESULTS AND DISCUSSION

The developed Monte Carlo simulation algorithm is implemented in LabView environment.
This software tool has been applied to cylindrical-inner-cone cavities designing works with the
purpose of their use as radiation sources in the infrared imaging calibration. The effective direc-
tional emissivities have been calculated for isothermal cavities with specular-diffuse walls in our
work.

In order to validate our model, we have compared our results with those of J.Wang et.al [10].
In their work, the radiation characteristics of diffuse isothermal cavities have been calculated, us-
ing the STEEP3 blackbody emissivity modeling program. By analyzing the history of inverse
emitting rays and using uniform specular-diffuse (USD) reflection model in the Monte Carlo sim-
ulation algorithm, the authors have evaluated the spectral and directional effective emissivities,
including normal average ones, of a cylindrical-inner-cone cavity. This cavity had the parameters:
ϕ = 60o, L/R = 6 and its wall emissivities,εw, was set to 0.7,0.8 and 0.9 , respectively, in their
calculations. Note that, the USD reflection model is expressed as the sum of perfect specular and
perfect diffuse (Lambertian) components.

The comparison of results is shown in Table 1. Our results were obtained for cavity
with geometrical parameters similar to [9] and without diaphragm (r = R), using a simplified
2-dimensional, specular directional-diffuse reflection model. The model parameters were chosen
empirically (β = 1.5o,kr,d = 0.3,θs = 10.0o,τ = 0.001,υ = 1). In our calculation, the normal
effective emissivity of such cavity was calculated with the same set of wall emissivity values, as
in [?]. The total number of generated rays in each simulation, N, is 106, in our calculations.

Table 1. Average normal effective emissivities comparison for a cylindrical-inner-cone
cavity with ϕ = 60o , L/R = 6, and r/R =1.

Wall emissivities, (εw)
Average normal effective emissivities, (εe,n)

J.Wangs results (2013) Our results
0.7 0.99125 0.991084 (σ = 2.62E-05)
0.8 0.99475 0.994903 (σ = 1.79E-05)
0.9 0.99757 0.997723 (σ = 1.44E-05)

As shown in Table 1, our results have a good convergence with the standard deviations of
10−5 (with the number of simulations equal to 20), and they are in good agreement with those of
J.Wang et.al, with the uncertainty in the range of 0.01% in average. The differences between our
and J.Wangs results may be explained by the fact that instead of USD reflection model as used
in [10], the 2-dimension directional diffuse one was applied in our calculations. In contrast, our
method has an advantage: use of such model leads to considerable simplicity and time saving in
our calculations.

We have used our self-programmed LabView code to evaluate the relationship of various
parameters of cavity and its average normal effective emissivities. The restriction L ≥ 2R/ tanϕ

[3], was applied to cavity geometry to ensure that a viewing solid angle from any point on the
aperture could entirely enclose the conical base of the cavity.

Fig. 3 demonstrates relations εe,no f (ϕ) for a cavity with the same set of cavity parameters
(L/R=6, r/R = 1) and three values of wall emissivity, εw = 0.7, 0.8 and 0.9, respectively.
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Fig. 3. Normal effective emissivity, εe,n, as a function of inner cone half angle,ϕ , for
various values of wall emissivity, εw (in the case of isothermal cavity with parameters
L/R=6, r/R=1).

With the defined set of geometrical parametersWith the defined set of geometrical parame-
ters, the highest values of the normal effective emissivity of cavity, εe,n, are obtained in the ranges
of 20˚< ϕ < 40˚ and 55˚< ϕ < 70˚ for all εw. For the lower and higher values of ϕ , the values of
effective emissivities εe,n strongly depend on the wall emissivity: For the same half angle ϕ , the
higher value of εwis the higher value of εe,n can be obtained. In particular, for εw=0.9, the values
of εe,n are relatively highest among three cases and seem to be independent of the cone angles, ϕ ,
in the range of interest.

In Fig. 4, the curves demonstrating relations between εe,n and ratio L/R with given εw = 0.7
for various half angles, ϕ = 30˚, 45˚ and 60˚ were plotted. With ϕ = 60˚, the ratio L/R> 6 should
be chosen to have εe,n > 0.99. In the case of ϕ = 30˚, cavities can be designed with a reasonable
short overall length (L/R ≥ 3) ensuring high effective emissivity. The angle ϕ = 45o may be not
a good choice for cavity construction design with lower values of wall emissivity: if εw = 0.7, the
highest value of εe,n does not exceed 0.99 even though the values of L/R are high. The rest curves
in Fig.4 show the relations between εe,n and ratio L/R with given ϕ = 60 ˚ for εw=0.7, 0.8 and
0.9, respectively. The ratio L/R can be reduced if the cavity walls have higher intrinsic emissivity.
A cavity could be designed with L/R ≥2 if the wall emissivity, εw, is equal to 0.9 (ϕ = 60 ˚ ). In
contrast, the ratio L/R greater than 6 must be chosen, if εw = 0.7 for the same ϕ = 60 ˚ . There are
critical values of L/R for each set of ϕ and εw. The values of L/R larger than those critical ones
may not lead to improvement of expected effective emissivities of cavities in question.

The relation between ratio R/r and calculated values of εe,n in the case of a cavity with L/R
=6, ϕ = 60o for εw=0.7, 0.8, and 0.9, was demonstrated in Fig. 5, respectively. The directional
effective emissivities becomes higher with increasing R/r. In other words, cavities having smaller
diaphragm radius, , give higher effective emissivity, εe,n , with the same wall emissivity.
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Fig. 4. Normal effective emissivity, εe,n , in relation with L/R ratio.

Fig. 5. Normal effective emissivities, εe , in relation with R/r ratio (in the case of L/R = 6, ϕ = 60˚).

It is easy to have the high effective emisivity for a certain set of cavity geometrical param-
eters, if high values of wall emissivities, εw, were chosen. The surface reflection property can
be empirically tailored by setting appropriate θs and υ in Eq. (10). Taking that into account, our
algorithm can be a helpful tool in engineering design of blackbody cavities.
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IV. CONCLUSION

We have developed an algorithm based on Monte Carlo simulation and ray tracing methods
to evaluate the average normal directional effective emissivity of cylindrical-inner-cone cavities,
used as radiation sources for infrared imaging calibration. The simplified directional-diffuse re-
flection model was applied in our calculations for cavities working in the infrared spectral range
under isothermal condition.

Our self-programmed LabView code has an advantage in simplicity and time saving of
calculations. The relationships between normal effective emissivity, εe,n, and various cavity ge-
ometrical parameters for some set of wall emissivities values were carried out. Our results are
in good agreement with those of other authors. It is evident that the software tool developed by
us can be used in blackbody cavity design considerations, especially in the cylindrical-inner-cone
cases.
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