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Abstract. The physical properties of a relativistic model for complex scalar field at finite density
are studied. It is shown that the boson is condensed when the critical chemical potential is equal
to the boson mass in vacuum and the system undergoes the phase transition from normal to
superconducting states. The latter state is signaled by the manifestations of the Meissner effect and
the Abrikosov vortices in the presence of an electromagnetic field. Moreover, the boson condensate
is separated by a topologically stable domain wall.

I. INTRODUCTION

It is known that the evolution of modern physics always links closely with scalar
fields. They appear in a lot of physical theories. Scalar fields play the role of order
parameters in the Landau theory of phase transition [1], in the Ginzburg-Landau theory
of superconductivity [2]. Fundamental scalar fields are necessarily present in all unification
theories: from the Standard Model of particles to the Grand Unification Model [3,4], here
scalar fields describe the Higgs bosons. In superstring theory scalar field emerges in the
form of dilaton and in Cosmology scalar fields are needed in the inflation theory [5, 6].
However, all the above mentioned theories of scalar fields have been considered in vacuum
only. It is expected that in medium these fields manifest many other interesting features
which are absent in vacuum. In effect, it is well known that the condensation of kaons and
charged pions in dense matter and compact stars has been the interesting subject since long
ago [7–10]. Bose-condensed states are expected to be found in the interior of compact stars
with density around 3ρ0, where ρ0 is normal nuclear density. Until now we are aware of
only few points in the T −ρ plane, namely, the vacuum (T = 0, ρ = 0) and nuclear matter
(T = 0, ρ = ρ0 = 0.17fm−3). Therefore, there are much experimental and theoretical
efforts to get information about other regions. In recent years experimental studies are
carried out through observing the matter produced in heavy-ion collisions at intermediate
energies, in particular, the nuclear reactions induced by radioactive beams which offer a
new opportunity to consider the isospin degree of freedom of asymmetric nuclear matter.
As a consequence, the theoretical researches of Quantum Chromodynamics (QCD) at finite
baryon density and isospin chemical potential are intensively implemented. It was shown
that in the color-flavor-locked phase kaon condensation occurs at high baryon density and
low temperature [11] and the lattice simulation of QCD at finite isospin chemical potential
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[12–14] proved that there manifests the Bose-Einstein condensation of charged pions at
high isospin density and low temperature. In this connection, investigating simplified
models of strongly interacting matter, such as the Nambu-Jona-Lasinio model [15–18], the
linear sigma model [19–21], the chiral perturbation theory [22–25] etc., is very important
for the understanding of matter states under different conditions. In this respect, in this
paper we focus on studying a simple relativistic model of complex scalar fields at finite
density and zero temperature, whose Lagrangian reads:

L =(∂α + iµδ0α)φ∗(∂α − iµδ0α)φ − V0 (1)

V0 =m2φ∗φ +
λ

2
(φ∗φ)2.

in which µ is the chemical potential.
This paper is organized as follows. In Section II the physical properties of the system

are studied in detail.The conclusion and outlook are given in Section III.

II. PHYSICAL PROPERTIES

1. Spontaneous symmetry breaking and Goldstone theorem

Equation (1) can be rewritten more explicitly,

L =∂αφ∗∂αφ + iµ(φ∗∂0φ − φ∂0φ
∗) − V (2)

V =(m2 − µ2)φ∗φ +
λ

2
(φ∗φ)2

Suppose that φ develops the expectation value u in the ground state and in the tree
approximation it is determined by the minimum of V

(m2 − µ2)u + λu3 = 0 (3)

which produces a vanishing solution u =0 and two non-trivial solutions

u± = ±

√

µ2 − m2

λ
(4)

Eq. (4) tells that u is real only if µ2 > m2.
Hence, the ground state M is degenerate, consisting of two disconnected points

u+, and, u−. It is conventional to choose the vacuum state corresponding to u+, then the
symmetry group U(1) is spontaneously broken. Physically, this means that the boson
is condensed in a sufficiently dense matter and u2 is exactly the density of the boson
condensate. It is worth to note that Eq. (3) can be understood as the minimum condition
for φ = ueiα with u = u+. So, in reality the ground state M is a circle S1. Next let us
check whether the Goldstone theorem is preserved or not. For this goal, let us expand

φ =u + φ1 + iφ2,

φ∗ =u + φ1 − iφ2.
(5)

Here for simplicity the symbol u is used to denote u+ from now on.
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Inserting (5) into Eqs. (2) it is obtained the new expression for the Lagrangian:

L =
∑

i=1,2

(∂αφi)
2 − 2µ(φ1∂0φ2 − φ2∂0φ1) + (µ2 − m2 − 3λu2)φ2

1+(µ2 − m2 − λu2)φ2
2

−
λ

2
(φ4

1 + φ4
2 + 2φ2

1φ
2
2 + 4uφ3

1 + 4uφ1φ
2
2 − u4)

which gives immediately the inverse propagator at tree level

iD−1(ω,
−→
k ) =

(

A11 A12

A21 A22

)

,

A11 = ω2 −
−→
k 2 + µ2 − m2 − 3λu2,

A12 = −A21 = 2iµω,

A22 = ω2 −
−→
k 2 + µ2 − m2 − λu2.

(6)

Taking into account Eq.(2a) A11and A22 are simplified to

A11 = ω2 −
−→
k 2 − 2λu2, A22 = ω2 −

−→
k 2.

we deduce

iD−1(ω,
−→
k ) =

(

ω2 −
−→
k 2 − 2λu2 2iµω

−2iµω ω2 −
−→
k 2

)

Then the spectrum is defined by (4), namely, detD−1(k) = 0 yielding a gapless mode

ω2 ≈

√

λu2

λu2 + 2µ2

∣

∣

∣

−→
k
∣

∣

∣

−→
k →0
−→ 0.

Hence the Goldstone theorem is realized in broken phase. Due to the criteria for
superfluidity of Landau [1] the condensate becomes superfluid in broken phase and the
speed of sound in the condensate is given by

C =

√

λu2

λu2 + 2µ2

2. Meissner Effect

Let us now consider the system in the external electromagnetic field. The La-
grangian (2) is replaced by:

L = (∂0 + iµ + ieA0)φ
∗(∂0 − iµ− ieA0)φ− (∇+ ie

−→
A)φ∗(∇− ie

−→
A )φ− V −

1

4
F νµFµν (7)

For µ > m the U(1) symmetry is spontaneously broken and let u2 be the density of
the boson condensate. We decompose

φ = u + χ, φ∗ = u + χ∗ (8)



100 TRAN HUU PHAT AND BUI THI PHUONG THUY

Substituting (8) into (7) and then varying the resulting Lagrangian with respect to
the electromagnetic potentials Aµ we arrive at the equations of the electromagnetic field
in the condensate medium

(−e2u2)Aµ = jµ (9)

in which jµ is the supercurrent,

jµ = ie(χ∂µχ∗ − χ∗∂µχ) + ieu(∂µχ∗ − ∂µχ) − e2u(χ∗ + χ)Aµ − e2χ∗χAµ

Eqs.(9) proves that the photon can only propagates inside the condensate to a depth
l ≈ ~

mph.c
, here mph is the mass of photon,mph = eu. This is the Meissner effect which

indicates that the boson condensate is a superconductor. It is very interesting to remark
that the superconducting state occurs only when µ > µcritic = m.

3. Abrikosov Vortices

To proceed to the magnetic vortices emerging in the presence of electromagnetic
field we look for the radially symmetric solutions with finite energy per unit length in the
cylindrical coordinates(ρ, θ, z). For convenience let us choose the gauge condition A0 = 0
and consider the static case when φ is time independent, we have then

E/L =

∫

dxdy

{

[

(Dkφ)∗ (Dkφ) +
λ

2
(φ∗φ − u2)2

]

+

−→
B 2

8π2

}

(10)

where Dk = ∂k − ieAk, k = 1, 2,
−→
B = curl

−→
A.

In order for (10) to be finite we ask that when ρ = R → ∞

|φ| → u, (11)

|Dkφ| → 0. (12)

It is evident that (11) establishes the map from M∞ {ρ = R → ∞} to the ground state
manifold M, that is the map:S1 → S1 that possesses non-trivial groupπ1(S

1), π1(S
1) = Z.

Accordingly, there are an infinite number of vortices, which are called the Abrikosov
vortices. Starting from Eqs.(9) we accept the following ansatz

φ = uf(ρ)einθ(x),

Aµ =
n

e
a(ρ)∂µθ(x).

(13)

The boundary conditions for (13) usually read

f(0) = a(0) = 0,

f(∞) = a(∞) = 1.
(14)

Eqs.(13) and (14) provide with the quantization of magnetic flux passing through a
surface

∫

P

−→
B.d−→σ =

∮

C

−→
Ad

−→
l = nΦ0, n = 1, 2, 3, ...

Φ0 = ~c
e

is the unit flux quantum.
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Another approach to the vortex problem was formulated in the Ref.[26]. Now we
make use of it to consider the Abrikosov vortices taking place in the model (1). To this
end, let us introduce the unit vector

na =
φa

|φ|
, a = 1, 2. (15)

Next it is easily proved that the electromagnetic potentials appearing in Eq.(7) can
be expressed as follows

Aµ =
~c

2ie
.

1

φ∗φ
(φ∗∂µφ − φ∂µφ∗) (16)

Indeed, from

Diφ = ∂iφ − i e
~c

Aiφ
(Diφ)∗ = ∂iφ

∗ + i e
~c

Aiφ
∗

we deduce

Ai =
~c

2ie
.

1

φ∗φ
[(φ∗∂iφ − φ∂iφ

∗) − (φ∗Diφ − D∗

i φ
∗φ)]

It was shown [27] that the covariant part

φ∗Diφ − D∗

i φ
∗φ ∼ ∂iκ(x)

with κ(x) being a function of x. Thus this covariant part contributes nothing to the
electromagnetic tensor Fµν .

Inserting (15) into (16) it is found that

Aµ =
~c

e
εabn

a∂µnb and Fµν = ∂µAν − ∂νAµ = 2
~c

e
εab∂µna∂νn

b

Based on the preceding formulae we get the expression for magnetic field

Bi =
1

2
εijkFjk = Φ0

1

2π
εijkεab∂jn

a∂kn
b (17)

Utilizing the results of Ref.[28] Eqs.(14) turns out to be

Bi = Φ0δ
2(
−→
φ )Di

(

φ

x

)

(18)

where δ2(
−→
φ ) is the two dimensional delta function of two dimensional vector

−→
φ = (φ1, φ2)

and Di

(

φ
x

)

= 1
2εijkεab∂jφa∂kφb

Eq.(18) indicates that there exist the singular points at

φa(x, y, z) = 0, a = 1, 2. (19)

The implicit function theory states that if Di

(

φ
x

)

6= 0 the general solutions to Eq.

(19) can be expressed as

x = xi(s), y = yi(s), z = zi(s), i = 1, 2, ...M.
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representing M isolated singular strings Li with parameters. In the other hand, the theory
of delta function gives

δ2(
−→
φ ) =

M
∑

i=1

βi

∫

Li

δ3(−→x − −→x i(s))
∣

∣

∣
D
(

φ
u

)
∣

∣

∣

P

i

(20)

Here
∑

i is the planer element transversal to Li with local coordinates (u1, u2) and βi is
the Hopf index of φ-mapping.

Inserting (20) into (18) yields

Bi = Φ0

M
∑

j=1

wj

∫

Lj

dxi

ds
δ3(−→x −−→x j(s))ds (21)

where wj = βjηj, ηj = ±1 is the Brouwer degree and wj is called the winding number
taking the values ±n, n = 0, 1, 2, ....

Finally, it is not difficult to derive from (18) that the magnetic flux is quantized,

Φ =
∫

P

−→
Bd−→σ = Φ0

M
∑

j=1
wj.

4. Domain Wall

In the Section 1 we have noticed that the vacuum manifold M consists of two
disconnected points u± which are the expectation values of φ1 field, whereas 〈φ2〉 = 0.
This implies that the field φ1 would create a wall separating these two points.

Starting from the Lagrangian (1) we deduce the equation of the domain wall

φ1 + 2λφ1(φ
2 − β2) = 0

β2 =
µ2 − m2

λ

(22)

Eq. (22) admits the plain wall solution depending upon one coordinate, say, z,

φ1(z) = β tanh(z/δ) (23)

which changes from u− to u+ as z runs from −∞ to +∞. The thickness of the wall

is δ = λ−
1

2 β−1 and the surface energy density is determined as follows. At first let us
calculate the energy-momentum tensor

Tµν = ∂µφ1∂νφ1 − gµνL (24)

where gµν = diag(1,−1,−1,−1) is the metric tensor of the Minkowski space-time. Sub-
stituting (23) into (24) gives

T 0
0 = f(z), f(z) = λβ4

[

cosh
z

δ

]

−4

The surface energy density reads immediately

σ =

∫

T 0
0 dz =

4

3
λ
1/2β3



STUDY OF PHYSICAL PROPERTIES OF COMPLEX SCALAR FIELD AT FINITE DENSITY 103

It is important to remark that the domain wall is topologically stable. In effect, let
us introduce the topological current

jµ = εµν∂νφ1

which leads to the conservation of the topological charge

∂µjµ = 0

and the topological charge of the wall is

Q =
1

π

+∞
∫

−∞

dzj0 = 1.

III. CONCLUSION AND OUTLOOK

In this paper we investigated in detail a model of complex scalar field at finite
density. The main results obtained in the foregoing sections are in order:

The spontaneous symmetry breaking occurs only when µ = µcritic > m and the
Goldstone theorem is obeyed in broken phase. The boson is condensed and its condensate
turns out to be superfluid.

In addition to the above mentioned results the boson condensate behaves as a su-
perconductor under the influence of a magnetic field. This fact is signaled by the existence
of the Meissner effect and the Abrikosov votices.

After the spontaneous symmetry breaking realized there appears the domain wall
created by the real part of the complex field.

The next step is to consider the theory not only at finite density but also at finite
temperature, then we are able to deal with the phase transition of the system. This is a
very interesting research problem.
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