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Abstract. In this work, the path-integral effective potential (PIEP) method has been applied to re-study the temperature
dependence of extended X-ray absorption fine structure (EXAFS) cumulants of materials. Using the trial density matrix
and effective potential expression, we derived the analytical expressions of the first three EXAFS cumulants in the first
shell of materials. The cumulant relation is also calculated to determine the temperature range in which the PIEP
method could be applied. Our results are compared with available experimental data as well as with those calculated
by the first-order perturbation approach in anharmonic Einstein model and the reasonable agreements are achieved.
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I. INTRODUCTION

On the determination of the local structures of materials, the extended X-ray Absorption
Fine Structure (EXAFS) spectroscopy is one of powerful techniques. The EXAFS data can be
theoretically analyzed by means of the cumulant expansion method [1]. There are several ap-
proaches used to study the temperature dependence of anharmonic EXAFS cumulants such as
perturbation approach in Einstein model [2] and Debye model [3], and statistical moment method
[4]. However, most of these methods still can not be valid at very high temperature due to the
strong anharmonic contributions. Recently, the path-integral effective potential (PIEP) method
has been efficiently used to theoretically study thermodynamic properties of materials [5–8]. This
method has included the anharmonic contributions as well as the quantum effects.

In present paper, in order to expose the efficiency of PIEP on studying the thermodynamic
properties of materials, we are going to re-investigate the EXAFS cumulants of diatomic Br2 by
PIEP in the wide range of temperature from 0 to 800 K. Our calculations for the first three EXAFS
cumulants are going to be compared with the results of the first-order perturbation theory (PT) and
experimental data when possible.
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II. FORMALISM

In this section, we firstly briefly report the results of the PIEP method that have been estab-
lished by Cuccoli [5], Yokoyama [6,7] and Miyanaga et. al. [8]. In the quantum statistical physics,
the average of a physical quantity 〈A〉 can be calculated by

〈A〉= 1
Z

∫
dxρ (x)A(x) (1)

where ρ (x) is the density matrix and Z is the partition function.
In the PIEP theory, the trial Euclidean action A0 [x(u)] is assumed as the harmonic action

with the trial density matrix for two-body case has the form as

ρ0 (x̄)∼=
√

µ

2π h̄2
β

e−βVe f f (x̄) 1√
2πα (x̄)

∫
∞

−∞

dxe−
(x−x̄)2

2α(x̄) (2)

where β = 1
/

kBT , kB is the Boltzmann constant, x̄ = 1
β h̄

∫ β h̄
0 dux(u) is the average path; α (x̄),

A0 [x(u)] and Ve f f (x̄) are, respectively, the pure quantum fluctuation, trial Euclidean action and
effective potential, which are correspondingly defined as follows

α (x̄) =
h̄

2µω (x̄)

(
coth f (x̄)− 1

f (x̄)

)
, f (x̄) =

β h̄ω (x̄)
2

(3)

A0 [x(u)] =
∫

β h̄

0
du
[

1
2

µ ẋ2 +
1
2

µω
2 (x)x2 +w(x̄)

]
, (4)

Ve f f (x̄) = w(x̄)+
1
β

ln
sinh f (x̄)

f (x̄)
(5)

The variational parameters w(x̄) and ω2 (x) can be optimized by using the Jensen-Feynman
inequality [6, 7] as

F 6 F0 +
1

β h̄
〈A−A0〉0 , (6)

where F and F0 are the true and trial free energies of system.
The expressions of w(x̄) and ω2 (x) have been reported in [8] as

ω
2 = ω

2
0 +12

k4

µ
α−6

k3

µ
x̄+12

k4

µ
x̄2 (7)

w =
k0

2
x̄2− k3x̄3 + k4

(
x̄4−3α

2) (8)

here, k0, k3 and k4 are the harmonic, third-order and fourth-order force constants, respectively,
which describe the interatomic potential V (r) between two-body system as

V (r)≈ 1
2

k0 (r− r0)
2− k3 (r− r0)

3 + k4 (r− r0)
4 . (9)



42 APPLICATION OF PATH-INTEGRAL FOR STUDYING EXAFS CUMULANTS

Thus, the first three EXAFS cumulants of materials within the effective-potential approxi-
mation now can be determined as follows

σ
(1) =〈r− r0〉 ∼=

1
Z0

∫
x̄ρ0 (x̄)dx̄

σ
2 =σ

(2) =

〈(
r− r0−σ

(1)
)2
〉
∼=

1
Z0

∫
x̄2

ρ0 (x̄)dx̄−
[
σ
(1)
]2

σ
(3) =

〈(
r− r0−σ

(1)
)3
〉
∼=

1
Z0

∫
x̄3

ρ0 (x̄)dx̄−3σ
(1)

σ
2−
[
σ
(1)
]3

(10)

where Z0 is the trial partition function.
Using these above results, we can calculate the first three EXAFS cumulants of Br2 numer-

ically.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

In this section, the derived results are applied to numerically calculate the EXAFS cumu-
lants of diatomic Br2. The force constants of Br2 have been proposed as in [6, 9]: the harmonic
force constant k0 = 2.459.10−8(N/Å), the third and fourth order force constants k3 = 1.756.10−8

(N/Å2) and k4 = 1.058.10−8(N/Å3).
In the Figs. 1-3, we present the PIEP as well as first-order PT calculations for the first

three EXAFS cumulants of diatomic Br2 as the functions of temperature T . As it can be seen
from the Figs. 2 & 3, the PIEP results are very good in agreement with the available experimen-
tal EXAFS data [10] and in Figs. 1 & 2, at low temperature T ≤ 300 K the PIEP results are
in consistent with those of PT calculations. At low temperature, these results contain the values
σ
(1)
0 = 0.280.10−2(Å) and σ

(2)
0 = 0.131.10−2 (Å2) which correspond to the zero-point vibrations

of the first and second order EXAFS cumulants of diatomic Br2. It denotes that the quantum effects
have been included in these evaluations. At temperature T > 300K, the present PIEP determina-
tions are greater than those of PT calculations. It is because of the increasing of anharmonicity
when temperature increases. In the first order PT with Eintein model, it assumes that all atoms
vibrate with the same frequency ωE for all temperature range which corresponds to the neglection
of the anharmonicity at high temperature. Moreover, by fitting method, we confirm that the σ (1)

and σ (2)in PT calculations are proportion to T at high temperature (about T > 300 K) while the
results of PIEP are not really linear to T (seemly proportion to T 2). Our fitting parameters at
T > 400 K of PIEP and PT approaches are shown in Table 1.

We show the third EXAFS cumulant of Br2 in Fig. 3. At the temperature T > 100 K, the
similar trends are still observed as in Figs. 1&2. However, there is a strange behavior of PIEP σ (3)

at T ¡ 100 K: It decreases little by little to zero at T = 0 K limit which means that in this case, the
zero-point vibration (or quantum fluctuation) has been neglected. There are some reasons which
can simply explain this difference: (1) the one-dimensional calculation for diatomic Br2; (2) the
vibrational properties tends to be harmonic at 0 K [7]. This result implies that, the PT method
should be used instead of PIEP in evaluating EXAFS σ (3) of Br2 at low temperature. In order to
cross-check this conclusion, we make a calculation of the cumulant relation σ (1)σ2

/
σ (3)which

can be considered as the cumulant investigation standard for Br2 in the temperature range 0 –
800 K. Results of PIEP as well as first-order PT approach are showed in the Fig. 4. The values
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Fig. 1. Temperature-dependence of the first 

EXAFS cumulant of Br2. 
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Fig. 2. Temperature-dependence of the second 

EXAFS cumulant of Br2. 
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Fig. 2. Temperature-dependence of the second
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Fig. 3. Temperature-dependence of the third 

EXAFS cumulant of Br2. 
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Fig. 4. Temperature-dependence of the cumulant relation 
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Fig. 4. Temperature-dependence of the cumulant
relation σ (1)σ2

/
σ (3) of Br2.

of cumulant relation of these two methods little by little reduce to the constant value of 1/2 at
temperature about 700 K. Furthermore, at temperature below 100 K, the cumulant relation in
PIEP model reach very-high value which does not satisfy the condition obtained from experiment
[11] before. This result denotes that PIEP method is not suitable for evaluating the third order
EXAFS cumulant at low temperature. At temperature T > 100 K, the third EXAFS cumulant σ (3)

calculated by PIEP as well as PT trends to proportion to the square of temperature T 2. We display
the fitting parameters of PIEP and PT results in Table 1.

IV. CONCLUSIONS

In this work, the PIEP approach has been applied to study the temperature dependence
of EXAFS cumulants of diatomic materials. Using this trial density matrix expression, we have
performed numerical calculations of first three EXAFS cumulants for diatomic Br2. Our results
are in agreement with available experimental data as well as with those calculated by the first-
order perturbation approach. This research has pointed out the potential of PIEP method on study
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Table 1. Results of fitting PIEP and PT calculations (in temperature range T > 400 K)
as functions σ (n) = a0 +a1T +a2T 2, n = 1, 2, 3.

σ (1) (PT ) σ (2) (PT ) σ (3) (PT ) σ (1) (PIEP) σ (2) (PIEP) σ (3) (PIEP)
a0 7.41.10−4 3.46.10−4 4.61.10−7 1.11.10−3 5.28.10−4 7.91.10−6

a1 1.14.10−5 5.33.10−6 -1.04.10−9 1.01.10−5 4.69.10−6 -3.90.10−8

a2 0 0 1.36.10−10 1.70.10−9 9.87.10−10 1.97.10−10

thermodynamic and mechanical properties of materials such as thermal expansion, bulk modulus,
mean-square fluctuation...
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