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Paragraph 1 - Introduction

The purpose of this paper is to provide an introduction to Adaptive Resonance Theory (ART) 
by examining ART-1, the first member of the family of ART neural networks. The only 
prerequisite knowledge in the area of neural networks necessary for understanding this paper is 
backpropagation [Hinton86]. For an easy introduction to neural networks see [Freeman91], for 
a more in depth overview of the field see [Hertz91].

Many interesting problems concern the classification of data. For example, say we want to 
classify animals according to certain characteristics described by a set of parameters. We might 
have a dog, a cat and an owl. Some characteristics might be "number of legs", "can fly", "has 
fur" and "is a carnivore". With these characteristics we would hope that the cat and the dog are 
classified together and the owl separately. In this paper an algorithm which performs this 
mapping is called a clustering algorithm. A clustering algorithm takes as input a set of input 
vectors and gives as output a set of clusters and a mapping of each input vector to a cluster. Input 
vectors which are close to each other according to a specific similarity measure should be 
mapped to the same cluster. Clusters can be labelled to indicate a particular semantic meaning 
pertaining to all input vectors mapped to that cluster. The cat and the dog might be classified in 
a cluster labelled "mammals" and the owl in "birds". However one could also choose "pets" as 
label for the cluster with the cat and the dog and "winged animal" for the other. Clusters are 
usually internally represented using prototype vectors which are vectors indicating a certain 
similarity between the input vectors which are mapped to a cluster. In the above example the 
first cluster might have prototype vector (4 legs,can’t fly,has fur,is a carnivore) and the second 
might have prototype vector (2 legs,can fly,doesn’t have fur,is a carnivore).

In paragraph 2 the argument will be made that many popular neural networks such as 
backpropagation have drawbacks making them less suitable to solving these kinds of 
classification problems. This will be the motivation for introducing ART.
In paragraph 3 the sequential algorithm underlying the ART-1 network is given along with 
another sequential clustering algorithm with which it is compared.
Paragraph 4 will introduce competitive networks, show how to extend them to ART networks, 
and examine the ART architecture in detail.
Paragraph 5 will mention some other members of the ART family including many references 
for further reading.

Paragraph 2 - Motivation

For example, say we want to categorize the vectors within a certain input environment. At a 
certain point in time we start training a backpropagation network with N vectors.  When train-
ing is completed these N vectors will be correctly classified and hopefully other vectors within 
this input environment will also be because of generalization. However, as the input environ-
ment changes in time the accuracy of the backpropagation network will rapidly decrease 
because the weights are fixed thus preventing the network from adapting to the changing envi-
ronment. This algorithm is not plastic. An algorithm is plastic if it retains the potential to adapt 
to new input vectors indefinitely. 

To overcome this problem the network can be retrained on the new input vector (or the last 
few). The network will adapt to any changes in the input environment (remain plastic) but this 
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will cause a rapid decrease in the accuracy with which it categorizes the old input vectors 
because old information is lost. This algorithm is not stable. An algorithm is stable if it pre-
serves previously learned knowledge.

This conflict between stability and plasticity  is called the stability-plasticity dilemma 
[Carpenter87a]. The problem can be posed as follows:
• How can a learning system be designed to remain plastic, or adaptive, in response to signif-

icant events and yet remain stable in response to irrelevant events?
• How does the system know how to switch between its stable and its plastic modes to 

achieve stability without rigidity and plasticity without chaos?
• In particular, how can it preserve its previously learned knowledge while continuing to 

learn new things?
• And, what prevents the new learning from washing away the memories of prior learning?
Most existing algorithms are either stable but not capable of forming new clusters, or plastic 
but unstable. 

The above method using backpropagation could be adapted by retraining the network on the 
entire set of input vectors each time a new input vector is presented. This however would be 
extremely inefficient and thus its use would be precluded in any practical application. The 
problem with this method is that it is not incremental.

What we need is a network which itself is incremental thus making it unnecessary to retrain the 
network on the entire set of input vectors. As we will see in an example in paragraph 3 some 
incremental networks are unstable.

ART was specifically designed to overcome the stability-plasticity dilemma [Grossberg76b]. 
The ART-1 neural network was designed to overcome this dilemma for binary input vectors 
[Carpenter87a], ART-2 for continuous ones as well [Carpenter87b]. In this paper we will fur-
ther confine ourselves to discussing ART-1.

ART-1 is an unsupervised neural network. It is unsupervised in the sense that it establishes the 
clusters without external interference.

Paragraph 3 - Concepts

We can study some properties of a neural network by examining its sequential counterpart 
without being distracted by its architecture. To gain insight into what ART-1 does, as opposed 
to how it does it, an algorithmic description will be presented in this chapter.

First of all let us clarify what is meant by an incremental clustering algorithm by presenting an 
algorithm shell for this purpose.

CLUSTER - A clustering algorithm shell with incremental update of prototype vectors and a var-
iable number of clusters

Step 1 - Initialisation
• Start with no cluster prototype vectors

Step 2 - Apply new input vector
• Let I := [next input vector]
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Step 3 - Find the closest cluster prototype vector (if any)
• Let P := [closest prototype vector]

Step 4 - Check if P is too far from I
• If P is too far from I, or if there are no cluster prototype vectors yet, then create a new cluster, with 

prototype vector equal to I; output the index of this cluster; goto step 2

Step 5 - Update the matched prototype vector
• Update P by moving it closer to I
• Output P’s index
• Goto step 2

To obtain an actual algorithm it is necessary to define "closest", "too far" and "move closer to".
A possible instantiation of CLUSTER is one using the Euclidean distance measure.

CLUSTER-EUCLIDEAN - An instantiation of CLUSTER using a Euclidean distance measure

Step 1 - Initialisation
• Start with no cluster prototype vectors

Step 2 - Apply new input vector

• Let I =  := [next input vector]

Step 3 - Find the closest cluster prototype vector (if any)

• Find the P =  to minimize d(P,I) = 

Step 4 - Check if P is too far from I
• If d(P,I) > , or if there are no cluster prototype vectors yet, then create a new cluster, with prototype 

vector equal to I; output the index of this cluster; goto step 2

Step 5 - Update the matched prototype vector

• Let P := 
• Output P’s index
• Goto step 2

This instantiation is, however, unstable in the sense that the prototype vectors can cycle indefi-
nitely during repetitive presentation of a finite sequence of input vectors [see fig.1]. Also, dif-
ferent prototype vectors may have infinitesimal differences. Both problems are solved in the 
ART-1 algorithm. 

I1 I2 … In ), , ,(

P1 P2 … Pn ), , ,( Px Ix–( )
2

x 1=

n

∑

θ
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Fig.1   Snapshots of Cluster-Euclidean (see Appendix) for =1, =0.2 (radius of circle of input vectors 
is 1) after a) 10 input vectors b) 40 input vectors and c) 200 input vectors. The squares represent the 
input vectors (numbered in their order of presentation in a), the circles the traces of the prototype vec-
tors. After the second input vector has been presented there are (and continue to be) precisely two pro-
totype vectors, moving counter-clockwise, and eventually reaching a limit-cycle.

ART-1 Clustering Algorithm

Note:  = bitwise AND of vectors v and w;  = [magnitude of u] = # of 1’s in u

Step 1 - Initialisation

• Initialise the vigilance parameter  so 
• Initialise the set P of prototype vectors to {}

Step 2 - Apply new input vector
• Let I:=[next input vector]
• Let P’:=P be the set of candidate prototype vectors

Step 3 - Find the closest prototype vector from P’

• Find the i which maximizes 

Step 3’ - Check if I is closer to  or to (1,1, ..., 1) 

• If  then create a new cluster  equal to I; ; output j ; goto step 2

Step 4 - Check if  is too far from I

• If   then  ; if P’ is empty goto step 2 otherwise goto step 3

Step 5 - Update the matched prototype vector

• Let  ; output i ; goto step 2

The  acts as a tie-breaker, favouring larger magnitude prototype vectors when multiple
prototype vectors are subsets of the input vector. This compensates for the fact that prototype
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vectors can only move in one direction. The vigilance parameter defines the class sizes. When 
it is small it produces large classes. As it gets larger, the vigilance of the network increases, and
finer classes are the result. When equal to one, the prototype vectors have to match the input 
vectors perfectly. In this situation every input vector produces a new class equal to itself. Also 
notice that in step 4 a form of contrast enhancement is performed. This means that clusters 
represented by a smaller magnitude prototype vector have a smaller variance of the vectors 
mapped to that cluster.

When implementing this algorithm it is necessary to deal with the restriction of limited mem-
ory resources. The following algorithm allocates a fixed amount of memory to work on, 
assuming that this will be enough. This corresponds to how the actual ART-1 network works. 
It has two major drawbacks. First of all one may not always know beforehand the maximum 
number of different clusters. And secondly, if this maximum is known, but very high, one may 
not want to allocate all the memory resources before they are really needed. To overcome both 
problems it is possible to begin with a small fixed amount of memory and whenever there is a 
shortage of unused prototype vectors to allocate another portion of memory.

ART-1 Network Algorithm

Step 1 - Initialisation
• Initialise N to the total number of clusters

• Initialise the vigilance parameter  so 

• Let 

• Initialise the set P of prototype vectors to 

Step 2 - Apply new input vector
• Let I:=[next input vector]
• Let P’:=P be the set of candidate prototype vectors

Step 3 - Find the closest prototype vector from P’

• Find the i which maximizes 

Step 4 - Check if  is too far from I

• If  then  ; if P’ is empty goto step 2 otherwise goto step 3

Step 5 - Update the matched prototype vector

• Let  ; output i ; goto step 2

Though ART-1 is unsupervised it can sometimes be useful to add a limited amount of 
supervision by allowing the vigilance parameter to be changed externally. When for example 
the granularity of the clusters is not fine enough one can dynamically increase the vigilance 
parameter.
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Paragraph 4 - Mechanics

The network algorithm presented in the previous chapter describes the dynamic behaviour of 
the ART-1 neural network. The different steps correspond with phases that can be distinguished 
when examining the behaviour of the network. In this chapter a closer look at these phases will 
be taken. Two inherent aspects of neural networks are that they are continuous and parallel: 
continuous in the sense that the activations of the nodes and the weights of the connections 
change continuously in time, parallel in the sense that these changes occur concurrently.

A class of neural networks often used for clustering is the class of competitive networks. First 
a particular competitive network will be described. After that the ART-1 network, which is in 
essence an extension of this competitive network, will be introduced.

Competitive Network

A competitive network consists of two layers of nodes, the input layer F1 and the output layer 
F2. F1 is fully connected with F2 via weighted bottom-up connections called pathways. The set 
of pathways with corresponding weights is called an adaptive filter, adaptive because the 
weights can be changed dynamically to adapt to new input vectors. Patterns of activation of F1 
and F2 nodes are called short term memory (STM) traces because they only exist during a sin-
gle presentation of an input vector. The weights in the adaptive filter encode the long term 
memory (LTM) traces. LTM traces are equivalent to the prototype vectors in the previously 
discussed clustering algorithms.

An input pattern that is presented to the network generates an activity pattern X at the F1 layer. 
The F1 activity pattern X is the normalized input pattern (eq.1), see [Grossberg76a] for how 
this can be implemented. This pattern is transformed by the weights in the pathways from F1 to 
F2. Each F2 node receives as input pattern X multiplied by the weights in the pathways to that 
node (eq.2) which comprise the prototype vector corresponding to that node. The output node 
for which the dot product of the input vector and the prototype is largest represents the cluster 
which best matches the input vector. The F2 layer is a competitive layer. Every node in this 
layer has inhibiting connections to the other nodes. As a result only the node with the largest 
input has an output. Finally the weights in the pathways are changed to accommodate the new 
input vector (eq.3).  is a parameter which determines the speed of learning.

I1 Ii IM
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F1

F2

STM ACTIVITY PATTERN (Y)
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xj
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It can be shown, through explicit counterexamples, that this network is not stable, see 
[Carpenter87a]. This network thus clearly does not overcome the stability-plasticity dilemma. 
As mentioned in paragraph 2, ART was specifically designed in response to this problem.

A competitive network similar to the one just described can be augmented to obtain ART-1. A 
top-down adaptive filter and various components which modulate the working of the network 
are added.

ART-1 Network

The ART-1 network self-organizes and self-stabilizes its recognition codes in response to arbi-
trary orderings of arbitrarily many and arbitrarily complex binary input patterns. In this para-
graph a description of the ART-1 network will be given by following the phases which can be 
distinguished during the processing of a specific input pattern.

F1 nodes are supraliminally activated (that is, sufficiently activated to generate output) if they 
receive a signal from at least two out of three possible input sources. The three are bottom-up 
input, top-down input and attentional gain control input. If a F1 node receives input from only 
one of these sources it is subliminally activated. This is called the 2/3 rule.

After the presentation of an input vector a parallel search is initiated. This is called the 
hypothesis testing cycle:

ATTENTIONAL
SUBSYSTEM

ORIENTING
SUBSYSTEM

+
+ +

+

+ +

+ +

+ +
-

-

STM F2

STM F1

STM
RESET
WAVE

GAIN
CONTROL

GAIN
CONTROL

INPUT
PATTERN

LTM

LTM

A

 
 

 
 

Two layers, F1 and F2, of the attentional sub-
system encode patterns of activation in the 
STM traces. Bottom-up and top-down path-
ways between F1 and F2 contain LTM traces 
which multiply the signals in these pathways. 
The remainder of the circuit modulates these 
STM and LTM processes.

+ +

+ -
AF1

F2

S

T

X

Y

0110101

0010

I = 0110101

1. Input pattern I generates the STM activity pattern X at 
F1 and activates both F1’s gain control and the orient-
ing subsystem A. Pattern X both inhibits A and gener-
ates the bottom-up signal pattern S which is 
transformed by the adaptive filter into the input pattern 
T. F2 is designed as a competitive network, only the 
node which receives the largest total input is activated 
("winner-take-all"). This is step 3 of the network algo-
rithm.
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The parallel search, or hypothesis testing cycle, repeats automatically at a very fast rate until 
one of three possibilities occurs: (1) a F2 node is chosen whose top-down expectation 
approximately matches input I; (2) a previously uncommitted F2 node is selected; or (3) the 
entire capacity of the system is used and input I cannot be accommodated. Until one of these 
outcomes prevails, essentially no learning occurs because all the STM computations of the 
hypothesis testing cycle proceed so quickly that the more slowly varying LTM traces in the 
bottom-up and top-down adaptive filters cannot change in response to them. Significant 
learning (step 5 of the network algorithm) in response to an input pattern occurs only after the 
cycle that it generates comes to an end and the system is in a resonant state.

The above description does not tell us how the components work. There are various ways to 
implement these. Guidelines in the form of mathematical equations are to be found in 

+ +

-
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0100001

0010
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+
 
 
 
 
 

2. Pattern Y at F2 generates the top-down signal pattern 
U which is transformed by the top-down adaptive filter 
into the expectation pattern V. Pattern Y also inhibits 
F1’s gain control. As a result only those F1 nodes that 
represent bits in the intersection of the input pattern I 
and the expectation pattern V remain supraliminally 
activated. If V mismatches I this results in a decrease 
in the total inhibition from F1 to A.
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3. If the mismatch is severe enough (step 4 of the net-
work algorithm) A can no longer be prevented from 
releasing a nonspecific arousal wave to F2. This resets 

the active node at F2. The vigilance parameter  deter-
mines how much mismatch will be tolerated.

ρ

 
 
 
 
 + +
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A

I = 0110101

F1
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T

X

Y
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1000

+

4. After the F2 node is inhibited its top-down expectation 
is eliminated and X can be reinstated at F1. The cycle 
then begins again. X once again generates input pattern 
T to F2, but a different node is activated. The previ-
ously chosen F2 node remains inhibited until F2’s gain 
control is disengaged by removal of the input pattern.
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[Carpenter87a]. A possible implementation is the one used in SNNS, the Stuttgart Neural 
Network Simulator (available via FTP from the Internet) which is further described in 
[Herrmann92].

Paragraph 5 - Adaptations

Since the introduction of ART-1 many adaptations have been made by Grossberg and Carpenter 
and more recently by various other researchers in the field of neural networks. About one year 
after ART-1 Grossberg and Carpenter introduced  a variant which could handle continuous 
input vectors which they called ART-2. Since then they have introduced adaptations such as: 
ART-3 [Carpenter90], ART-2a [Carpenter91a], ARTMAP [Carpenter91b], Fuzzy ART 
[Carpenter91c] and Fuzzy ARTMAP [Carpenter92].

More recently various other researchers in the field of neural networks have introduced 
adaptations. For example, in 1994 Bartfai introduced a variant on ARTMAP which he called 
SMART [Bartfai94] which stands for Self-consistent Modular ART and is capable of bi-level 
clustering using two different vigilance parameters. At the moment he is working on HART 
[Bartfai95] which stands for Hierarchical ART and is capable of multi-level clustering. Another 
neural network architecture inspired by ART is CALM [Murre89] which stands for 
Categorizing And Learning Model.

A continually updated list of references to ART related publications can be found on the ART 
WWW site at http://www.wi.leidenuniv.nl/art/.
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Appendix

/* Title          : Cluster-Euclidian
   Description: This program implements a simple pattern clustering algorithm for two-dimensional
                      vectors using a Euclidian distance measure as described in [Moore89].
   Language   : ANSI-C
*/

#define BMWIDTH 320
#define BMHEIGHT 320
#define SQUARESIZE 300
#define ITER 40
#define THETA 1
#define LAMBDA 0.2
#define PI 3.141592654

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Linked list containing prototype vectors */
struct proto
{
  double x,y;
  struct proto *next;
} *protos;
unsigned char *bm;

/* Plot a prototype vector */
void plotproto(x,y,last)
double x,y;
int last;
{
  int xx=BMWIDTH/2+(int)(x*(SQUARESIZE/2)),
      yy=BMHEIGHT/2-(int)(y*(SQUARESIZE/2));
  bm[(yy-1)*BMWIDTH+xx]=255;
  bm[yy*BMWIDTH+xx-1]=255;
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  bm[yy*BMWIDTH+xx+1]=255;
  bm[(yy+1)*BMWIDTH+xx]=255;
  if (last)
    bm[yy*BMWIDTH+xx]=255;
}

/* Plot prototype vectors */
void display(last)
int last;
{
  struct proto *p;
  p=protos;
  while (p)
  {
    plotproto(p->x,p->y,last);
    p=p->next;
  }
}

/* Plot an input vector */
void plotinput(x,y)
double x,y;
{
  int xx=BMWIDTH/2+(int)(x*(SQUARESIZE/2)),
      yy=BMHEIGHT/2-(int)(y*(SQUARESIZE/2));
  bm[yy*BMWIDTH+xx]=255;
}

/* Incremental update */
void input(x,y)
double x,y;
{
  struct proto *p,*bestp;
  double dist,bestdist;

  plotinput(x,y);

  p=protos; bestp=NULL;
  while (p)
  {
    dist=sqrt((p->x-x)*(p->x-x)+(p->y-y)*(p->y-y));
    if (!bestp || dist<bestdist)
      { bestp=p; bestdist=dist; }
    p=p->next;
  }

  if (!bestp || bestdist>THETA)
  {
    p=malloc(sizeof(struct proto));
    p->x=x; p->y=y;
    p->next=protos;
    protos=p;
  }
  else
  {
    bestp->x=(1-LAMBDA)*bestp->x+LAMBDA*x;
    bestp->y=(1-LAMBDA)*bestp->y+LAMBDA*y;
  }
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}

void main()
{
  FILE *outfile;
  long i;
  double angle;
  unsigned char *p;

  bm = calloc(BMWIDTH*BMHEIGHT,1);

  protos=NULL;
  for (i=0,angle=0; i<ITER/2; i++,angle+=PI/18)
  {
    input(cos(angle),sin(angle));
    input(cos(angle+PI),sin(angle+PI));
    display(i==ITER/2-1);
  }

  /* Write bitmap to Targa file. */
  outfile = fopen("euclid.tga","wb");
  putc(0,outfile); putc(0,outfile); putc(2,outfile);
  for (i=0;i<9;i++) putc(0,outfile);
  putc(BMWIDTH%256,outfile); putc(BMWIDTH/256,outfile);
  putc(BMHEIGHT%256,outfile); putc(BMHEIGHT/256,outfile);
  putc(24,outfile); putc(32,outfile);
  for (i=0,p=bm;i<BMWIDTH*BMHEIGHT;i++,p++)
  {
    putc(*p^255,outfile);
    putc(*p^255,outfile);
    putc(*p^255,outfile);
  }
  fclose(outfile);
  free(bm);
}
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