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TENSOR TWO-LOOP SELF-ENERGY INTEGRALS

PHAN HONG KHIEM AND DO HOANG SON
Ho Chi Minh City University of Science

Abstract. Based on the technique for evaluating tensor two-loop self-energy integrals in parallel
and orthogonal spaces [1], we present a new UV subtraction procedure for a subset of integrals
which contains overall UV-divergence. The numerical and analytical results of the sun-rise integral
are discussed in comparison with other methods.

I. INTRODUCTION

High precision measurements at LHC and future colliders like ILC require an equiv-
alent accuracy in theoretical predictions. To check the validity of the Standard Model,
complex calculations dealing with huge numbers of Feynman graphs up to two-loop level
within the perturbative theory are necessary. In the last few years, there have had many
proposed techniques to calculate massive two-loop selfenergy tensor integrals. It is clear
that, up to now, there are no perfect solutions and perfect techniques for the problem.
Indeed, this is a very hard and active topic of multi-loop and multi-leg problem, a branch
of computational high energy physics. A complete review can be found in [2, 3].

In this article, we present a technique to calculate two-loop selfenergy tensor in-
tegrals with arbitrary masses in parallel/orthogonal spaces. Kreimer [1] has provided a
general and constructive method to express massive two-loop integrals in terms of finite
integrals suitable to numerical evaluations plus a set of products of one-loop integrals
contains the UV singular part. The separation of the UV-divergent part from its counter
UV-finite part can be obtained by a subtraction procedure in which subtraction terms are
provided explicitly. From the computational point of view, the method provides a simple
recipe to develop a computer program for calculating arbitrary tensor massive two-loop
integrals.

However, detailed studies on the structure of tensor two-loop self-energy integrals
which contain overall UV-divergences [4, 5] show that in order to isolate the overall UV-
divergence, the method needs to be revised to avoid the intervention of spurious IR-
divergences from the subtraction terms.

In this paper, we present in detail a new subtraction procedure which completes the
Kreimer’s method and is applicable for a subset of degenerate tensor two-loop self-energy
integrals. The new subtraction procedure is then implemented into the XLOOPS-GiNaC
program package [6] which provided an independent and a strong tool to the physics
community. To test the accuracy and the performance of the program and of the method
we present results that using XLOOPS-GiNaC to evaluate sunrise two-loop integrals in
comparison with various results of other authors when it is possible.
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Even though this paper is dedicated to the two-loop self-energy integrals, the tech-
nique is also applicable to an arbitrary two-loop tensor integral [7].

II. TENSOR TWO-LOOP SELF-ENERGY INTEGRALS AND THE

REDUCTION

A general tensor two-loop integral has the following representation

T
(2) µ1...µp ,ν1...νr

t1...tnl
;...tnl+nm ;...tnl+nm+nk

=

∫
dDl

∫
dDk

lµ1 . . . lµp

nl∏
s=1

[
(l + qs)

2 − m2
s + iρ

]ts (1)

× 1
nl+nm∏
s=nl+1

[
(l + k + qs)

2 − m2
s + iρ

]ts

× kν1 . . .kνr

nl+nm+nk∏
s=nn+nm+1

[
(k + qs)

2 − m2
s + iρ

]ts

where nl, nk, nm are the numbers of propagators which carry the loop momenta l, k or
l + k respectively. qs and ms are external momenta and masses of particles involved.

It is believed that, beyond the one-loop level, the result of a general massive integral
may not be expressible in terms of polylogarithms [8, 9]. To integrate an integral such as
the one in Eq. (1), one introduces a set of proper subtraction terms to separate the singular
parts (UV or IR singularities) into analytically solvable integrals and finite integrals which
then can be integrated numerically.

For two-loop self-energy integrals, there are four non-trivial topologies shown in
Fig.(1), which are not able to be reduced to another topologies or to products of one-loop
ones

Different to the Passarino-Veltman’s reduction technique, we are going to evaluate
Feynman integrals which are associated with diagrams in Fig.(1) by working in a specific
frame of reference where the momentum of the incoming particle has only one none van-
ishing component 1. In such a frame of reference, for example a space-like particle with
q2 > 0, one can parameterize

qµ = (q0,~0) (2)

with ~0 is the null-vector in D − 1 dimension space.

1Note that, we can always find down such frame of references if the external momentum qµ is space-
like or time-like. If the external momenta is light-like, q2 = 0, the integral cannot be directly calculated
using parallel and orthogonal technique. For this special case, the integral can be evaluated by reducing
to scalar integrals [10] that in turn can be evaluated using various techniques such as in [11–14].
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Fig. 1. The non-trivial two-loop self-energy topologies.

In this frame of reference, the components of loop momenta in the parallel and
orthogonal spaces spanned by the external momentum qµ can be defined by

l0 =
l · q√

q2
, k0 =

k · q√
q2

,

lµ⊥ = lµ − l · q
q2

qµ = (0,~l⊥); (3)

kµ
⊥ = kµ − k · q

q2
qµ = (0, ~k⊥)

with ~l⊥ and ~k⊥ are D − 1 dimension vectors in the perpendicular sub-space to qµ. 2

2For the time-like cases where q2 < 0 we can process in a similar manner after rearranging the
indices.
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In terms of the new variables, the integrals which are associated with topologies in
Fig.(1) can be rewritten respectively in the form

T a =

∫
dDl

∫
dDk

lp0

0 lp⊥⊥ kr0

0 kr⊥
⊥ zpz

[(l + q)2 − m2
1]

t1 [l2 − m2
2]

t2
× (4)

× 1

[(l + k)2 − m2
3]

t3 [(k − q)2 − m2
4]

t4 [k2 − m2
5]

t5
,

T (b) =

∫
dDl

∫
dDk

lp0

0 lp⊥⊥ kr0

0 kr⊥
⊥ zpz

[(l + q)2 − m2
1]

t1 [l2 − m2
2]

t2[(l + k)2 − m2
3]

t3 [k2 − m2
4]

t4
, (5)

T (c) =

∫
dDl

∫
dDk

lp0

0 lp⊥⊥ kr0

0 kr⊥
⊥ zpz

[(l + q)2 − m2
1]

t1 [(l + k)2 − m2
2]

t2 [k2 − m2
3]

t3
, (6)

T (d) =

∫
dDl

∫
dDk

lp0

0 lp⊥⊥ kr0

0 kr⊥
⊥ zpz

[l2 − m2
1]

t1 [l2 − m2
2]

t2

1

[(l + k)2 − m2
3]

t3 [k2 − m2
4]

t4
(7)

where z is the cosine of the angle between ~l⊥ and ~k⊥. The variables p0, p⊥, r0, r⊥, pz are
non-negative integers and ti are positive integers. Detailed discussions on the transfor-
mation of the standard tensor integrals, as in Eq. (1), to a parallel and orthogonal space
representation can be found in [4, 15]. Here and to the rest of the paper, we will call the
integrals in Eq. (4) to Eq. (7) tensor integrals in the parallel and orthogonal representation

or simply tensor integrals if there is any confuse.
Working in this representation has a big advantage in performing tensor reduction

[4,16–18]. The other advantage is that we can find out a two-dimensional representation for
the finite part of the integral directly by using the residuum theorem without performing
the Feynman parametrisation.

It is worth to note here that the non-negative integers p0, p⊥, r0, r⊥, pz are not
Lorentz indices. They are exponents of the real variables l0, l⊥, k0, k⊥ and z respectively.
In general, p⊥ and r⊥ can be odd or even due to the fact that the denominators of the
integrands in Eq. (4) to Eq. (7) are not symmetric either in l⊥ or in k⊥ separately. However,

since T
(2) µ1...µp,ν1...νr

t1...tnl
;...tnl+nm ;...tnl+nm+nk

is even when the signs of l and k are changed at the same

time, thus one has other constraints:

• The integrals with odd (p⊥ + r⊥) vanish.
• pz must be smaller than or equal to min{p⊥, r⊥}.
• Both (p⊥ − pz) and (r⊥ − pz) are even.

In general, the integrals in Eq. (4) to Eq. (7) can be degenerate. However, by a simple
reduction, we will prove that all the integrals will be reduced to a sum of none-degenerate
integrals and degenerate integrals of the form T (c). It means that the degenerate problem
stays only in the sunrise integral, the Eq. (6).

To have a closer look at this reduction, let us consider the reduction of the integral
in Eq. (4).
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II.1. Tensor reduction

We first rewrite the integral in Eq. (4) in the following form

T (a)(q2) =

∫
dDl

∫
dDk

lp0

0 lp⊥⊥ kr0

0 kr⊥
⊥ zpz

P t1
1 (l + q) P t2

2 (l) P t3
3 (l + k) P t4

4 (k − q) P t5
5 (k)

(8)

with

P1(l + q) = (l + q)2 − m2
1 + i ρ,

P2(l) = l2 − m2
2 + i ρ,

P3(l + k) = (l + k)2 − m2
3 + i ρ, (9)

P4(k − q) = (k − q)2 − m2
4 + i ρ,

P5(k) = k2 − m2
5 + i ρ.

We can always remove the variable z in the numerator by inserting

l⊥ k⊥ z =
1

2

[
−P3 + (l0 + k0)

2 − l2⊥ − k2
⊥ − m2

3 − i ρ
]

(10)

into the numerator of the integral in Eq. (8). After expanding recursively, one obtains
only three basics integrals of the form

J0 =

∫
dDl

∫
dDk

1

P t1
1 (l + q) P t2

2 (l) P t3
3 (l + k) P t4

4 (k − q) P t5
5 (k)

(11)

J1 =

∫
dDl

∫
dDk

kr0

0

P t1
1 (l + q) P t2

2 (l) P t3
3 (l + k) P t4

4 (k)
(12)

J2 =

∫
dDl

∫
dDk

lp0

0 kr0

0

P t1
1 (l + q) P t2

2 (l + k) P t3
3 (k)

(13)

The integral J0 is finite so that one can perform a numerical integration directly. A
two-fold representation for the numerical integration is discussed in [16]. The topology
of two-point diagrams with three propagators is called sunrise topology. Its associated
integrals, such as T (c) or J2, are called sunrise integrals. By the same procedure, the two
other tensor integrals which are associated with topologies (b) and (c) can also be reduced
to expressions containing J1, J2 and products of one-loop functions.

II.2. Power counting and degenerate integrals

In order to construct the subtraction terms for the integral J1, J2, let us define some
notations.

Let w denotes the overall degree of UV-divergence and wl, wk, wlk are degrees of
UV-sub-divergences. By power counting, for J1 we define

wl = 2(t1 + t2 + t3)− D > 0,

wk = 2(t3 + t4) − D − r0, (14)

wlk = 2(t1 + t2 + t4)− D − r0

w =
1

2
(wl + wk + wlk − D).



102 TENSOR TWO-LOOP SELF-ENERGY INTEGRALS

and for J2

wl = 2(t1 + t2)− D − p0,

wk = 2(t2 + t3)− D − r0, (15)

wlk = 2(t1 + t3)− D − p0 − r0

w =
1

2
(wl + wk + wlk − D).

The condition for UV-finite of an integral is that all of its degrees of UV-divergence are
positive. We call an UV-divergent integral degenerate if it is truly overall UV-divergent.
By power counting, an integral is degenerate if

wl + wk + wlk ≤ D. (16)

Otherwise, the integral is said non-degenerate. The method for evaluating a non-degenerate
integral is presented in detailed in [1] which we will not review in this paper. From now
on, we will consider only the degenerate integrals. It is clear that from the power counting
condition, J0 is finite and can then be integrated numerically in two-dimension space and
was discussed in detailed in [5, 16].

In this paper, we consider only the case where wlk > 0. In this condition, J1 is non-
degenerate with any positive value of r0 and the only degenerate integral is of the type
J2. The integral J1 is also be integrated with a suitable subtraction terms as in [4, 5, 16].
To complete the calculation, we have to consider the case where wlk ≤ 0. However this
problem will be discussed separately in another paper.

To close this section, we conclude that only integrals of type J2 can be degenerate.
This type of integrals is the main interest of this paper. In the next section, we start to
construct the subtraction terms for the degenerate integral J2 with a condition wlk > 0.

II.3. The degenerate integral J2 and its subtraction terms

In this section, we consider the integral J2 introduced in Eq. (13) which appeared
as a result of the tensor reduction

J2 =

∫
dDl dDk J p0,r0

2 {ti}
(i = 1, 2, 3)

with the condition
wlk = 2(t1 + t3) − D − p0 − r0 > 0. (17)

Let us rewrite the integrand

J p0,r0

2 {ti}
=

lp0

0 kr0

0

P t1
1 (l + q) P t2

2 (l + k) P t3
3 (k)

(18)

where

P1(l + q) = (l + q)2 − m2
1 + iρ,

P2(l + k) = (l + k)2 − m2
2 + iρ, (19)

P3(k) = k2 − m2
3 + iρ.

By power counting, if wl ≥ 2t2 or wk ≥ 2t2 the integral is non-degenerate and one
can evaluate by the same procedure as described in [1].
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We now suppose that wl ≤ 0, wk ≤ 0 and w ≤ 0 3. In order to remove all divergences,
one needs subtraction terms to remove the overall-, the l- and the k-sub-divergences. The
trick is to use a massive subtraction term to increase the degree of l-sub-divergence to 2t2
and isolate the overall divergence in a scalar two-loop vacuum integral T (d) (see Eq. (7))
which is integrable [11–14]. The k-sub-divergence is still subtracted off by the massless
subtraction term as in [1]. We define subtraction terms

Lxl :=

(
1 − P t1

1

P
t1
1

)xl

= 1 + Lxl

0 , (20)

Kxk :=

(
1 − P t2

2 P3t3

P̃ t2
2 P̃ t3

3

)xk

= 1 + Kxk
0

where

P 1 := l2 − m2
1 + iρ, P̃2 := (l + k)2, P̃3 := k2,

Lxl

0 =

xl∑

n=1

(
xl

n

)
(−1)n

(
P t1

1

P
t1
1

)n

,

Kxk

0 =

xk∑

n=1

(
xk

n

)
(−1)n

(
P t2

2 P t3
3

P̃ t2
2 P̃ t3

3

)n

.

xl and xk are chosen such that

xl + wl = 2t2, xk + wk = 1.

In contrast to K, the subtraction term L is constructed by a massive propagator 1/P 1 that
allows one to choose xl big enough to make the whole integral finite without introducing
an IR-divergence. This is the main difference to [1]. Using subtraction terms L and K,
the integral can be rewritten as follows

J2 =

∫
d4l d4k J p0,r0

2 {t1}
Lxl Kxk −

∫
dDl dDk J p0,r0

2 {ti}
Lxl

0 (21)

−
∫

dDl dDk J p0,r0

2 {ti}
Lxl

0 Kxk

0 −
∫

dDl dDk J p0,r0

2 {ti}
Kxk

0 .

The first term on the right-hand side of Eq. (21) is finite; so it can be integrated numerically
in D = 4 dimensions. The last two terms are massless k-integrals which can be reduced
to the integral

J̃1 =

∫
dDldDk

lp0

0 kr0

0

P t1
1 (l + q)P̃ t2

2 (l + k)P̃ t3
3 (k)

(22)

where ti ∈ N and p0 and r0 are non-negative integers. The integral J̃1 will be solved in
the next section.

3If wk > 0 (or wl > 0) we need only massive subtraction terms for the l- (or the k-) integral.
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The second term of Eq. (21) is the tensor vacuum two-loop integral and has the
form

∫
dDl dDk

lp0

0 kr0

0[
l2 − m2

1 + iρ
]t1 [(l + k)2 − m2

2 + iρ
]t2 [k2 − m2

3 + iρ
]t3 (23)

=

∫
dDl dDk

lµ1 . . . lµp0kν1 . . .kνr0

[
l2 − m2

1 + iρ
]t1 [(l + k)2 − m2

2 + iρ
]t2 [k2 − m2

3 + iρ
]t3 ×

×
qµ1

. . . qµp0
qν1

. . . qνr0

qr0+p0
.

An analytical solution of this integral with t1 = t2 = t3 = 1 can be found in [12]. A
closed analytical solution of a vacuum two-loop integral with arbitrary t1, t2 and t3 can
be obtained by integration by part and can be found in [13,14]. In this paper, we present
another approach in calculating this integral. By using the decomposition in Lorentz
covariant terms and then contracting with the external momenta qµi

, the above integral
is decomposed into massive vacuum integrals of the form

∫
dDl dDk

(l2)n(l · k)m(k2)p

[
l2 − m2

1 + iρ
]t1 [(l + k)2 − m2

2 + iρ
]t2 [k2 − m2

3 + iρ
]t3 (24)

where n, m, p are non-negative integer numbers. The integral is then reduced to products
of one-loop integrals and (two-loop ) scalar massive vacuum integrals of the form

S{t1,t2,t3} = (25)
∫

dDl dDk
1

[
l2 − m2

1 + iρ
]t1 [(l + k)2 − m2

2 + iρ
]t2 [k2 − m2

3 + iρ
]t3 .

An efficient recursion relation to reduce Eq. (23) to Eq. (25) and the analytical solution
of the massive vacuum integrals S{t1,t2,t3} is presented in [11–13]

In the section II.5, we present another approach to solve the massive vacuum inte-
gral, which is more flexible from the computational point of view. But let us come back

to the solution of the integral J̃1.

II.4. The integral J̃1

This section is dedicated to the analytical solution of the integrals J̃1 which appears
in Eq. (22). We first write the integral more explicitly

J̃1 =

∫
dDldDk

lp0

0 kr0

0

P t1
1 (l + q) [(l + k)2]t2 [k2]t3

(26)
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We can think of the integral over k as a one-loop two-point integral with massless particles
and “external” momentum l with explicite sulution

∫
dDk

kr0

0[
(l + k)2

]t3
[k2]t4

= (27)

=
i (−1)D/2(π)D/2

Γ(t3)Γ(t4)

[r0]/2∑

j=0

r0! (−l0)
r0−2j (l2

)j+D/2−t3−t4

(r0 − 2j)! j! 22j
×

× Γ(t4 + t4 − D/2− j)B(D/2− t4 + r0 − j, D/2− t3 + j)

with [r0] = r0 if r0 is even, and [r0] = r0 − 1 if r0 is odd and B is the usual beta function
defined by

B(x, y) =
Γ(x) Γ(y)

Γ(x + y)
. (28)

Substituting the right-hand side of Eq. (27) into Eq. (26), one ends up with three-
point one-loop integrals of the form

K
∫

dDl
l
p′0
0

(l2)α P t1
1 (l + q)

(29)

where α is an integer when D = 4, and K is a coefficient which depends on D, t3, t4 and
r0.

Because the l-integral is still UV-divergent, one can not set D = 4, so α is in general
a non-integer number. To calculate this kind of integral, we will use another approach
rather than in [1] by employing the hypergeometric functions. Using the same reduction
procedure as in the previous sections, the integral in Eq. (29) can be reduced to the form

L =

∫
dDl

(l2)n

[(l + q)2 − m2
1 + iρ]t[l2]α

(30)

where α is a non-integer number. Now, using Feynman parametrisation and after shifting
the momentum, one obtains

L =

n∑

j1=0

j1∑

j2=0

C

∫ 1

0
dx xa−1(1− x)a′−1 [(z − iρ)− x]−b1 (31)

with j2 is even, z = m2

q2 , a = α and

a′ =

(
j1 + n − α +

D − j2

2

)
, b1 = −

(
n − j1 − t − α +

D + j2

2

)
(32)
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and

C = i

(
n
j1

)(
j1

j2

)
(2)j2 πD/2 (−1)n−j1+

3j2
2

−t−α (q2)n−t−α+D/2 (33)

× B(t + α − n + j1 − j2+D
2 , n − j1 + j2+D

2 )

B(t, α)

Γ(D/2)Γ(j2/2 + 1/2)

Γ(D/2 + j2/2)
.

With the help of a good mathematical handbook, the integral over x in Eq. (31) can be
integrated in terms of hypergeometric functions

L =

n∑

j1=0

j1∑

j2=0

C (z − iρ)−b1 B(a, a′) 2F1

(
a, b1, a + a′,

1

z − iρ

)
. (34)

For the scalar sunrise integral, this result is in agreement with [19]. For the general tensor
case, an expansion method (at the pole D = 4) for the hypergeometric functions 2F1 is
presented in [20]. From the computational point of view, the expression Eq. (34) is ready
to be evaluated with the help of nested sums as introduced in [20].

II.5. The massive vacuum integral S{t1,t2,t3}

To calculate the massive vacuum integral S{t1,t2,t3}, it is sufficient to consider the
special case t1 = t2 = t3 = 1. If t1 > 1 (or t2 or t3 > 1) then the integral can be evaluated
as in a non-degenerate case. Let us consider the integral

S{1,1,1} =

∫
dDl dDk

1

P1 P2 P3

with

P1 = l2 − m2
1 + iρ, P2 = (l + k)2 − m2

2 + iρ, P3 = k2 − m2
3 + iρ.

By a simple transformation one obtains

S{1,1,1} =

∫
dDl dDk

m2
1

P1 P̃1 P2 P3

+

∫
dDl dDk

m2
2

P̃1 P2 P̃2 P3

+

∫
dDl dDk

1

P̃1 P̃2 P3

with

P̃1 = l2, P̃2 = (l + k)2. (35)

The first two terms of Eq. (35) are actually non-degenerate integrals which can be evaluated
by the method in [1]. The last term which contains the overall divergence is now isolated

in a simple integral J̃1 (see section II.4) which can be integrated analytically.
Having discussed the analytical solution of the divergent terms, in order to complete

the calculation, one needs to find numerical solutions of the integrals which appear in the
finite term of Eq. (21). The method of the calculation is presented in detail in [16]. In the
next paragraphs, we will present a two-dimension representation of the finite part which
can be evaluated numerically by computer programs such as VEGAS [21] or ParInt [22].
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A two-dimension integral representation can be obtained by integrate over the variables
l⊥, k⊥ and z and finally results in the following form

∫
d4l

∫
d4k J p0 r0

2 {ti}
Lxl Kxk =

∫ ∞

−∞
dl0

∫ ∞

−∞
dk0

xk∑

n1=0

xl∑

n2=0

(
xk

n1

)(
xl

n2

)
×

× (−1)n1+n2 lp0

0 kr0

0 J
n1,n2

2 (36)

with

J
n1,n2

2 = 8π2

∫ ∞

0

dl⊥ dk⊥

∫ 1

−1

dz l2⊥ k2
⊥

(
P t1

1

)n2−1 (
P t2

2 P t3
3

)n1−1

P t1
1 P t2

2 P t3
3 (P

t1
1 )n2

(
P̃ t2

2 P̃ t3
3

)n1
. (37)

Here, we write the integrals in terms of variables in the parallel and orthogonal space
explicitly. The integrals J2 are well defined. Further, J2 can be decomposed into a sum
of integrals of the form

Ĵ2 = 8π2

∫ ∞

0
dl⊥dk⊥

∫ 1

−1
dz

l2⊥ k2
⊥

P t1
1 (l + q) P t2

2 (l + k) P t3
3 (k)

. (38)

Integrating this integral by using the residuum theorem one obtains [4, 16].

Ĵ2 = −4π4 ln(w1 + w2 + w3) (39)

where

w2
1 = (l0 + q0)

2 − m2
1 + iρ,

w2
2 = (l0 + k0)

2 − m2
2 + iρ, (40)

w2
3 = k2

0 − m2
3 + iρ.

This result completes the method of integration for a degenerate tensor two-loop
self-energy integral.

III. SUN-RISE INTEGRAL AND NUMERICAL DISCUSSIONS

The method of of integration for a degenerate tensor two-loop self-energy integral
was implemented successfully in the program package XLOOPS-GiNaC.4 In this section,
we present the results of calculating the sunrise integral 5 using the program package
XLOOPS-GiNaC. The results are then compared with the results of the existing results
[14, 19, 23, 24].

The result of XLOOPS-GiNaC consists of two parts. One part is evaluated an-
alytically in terms of the one-loop and/or hypergeometric functions. The other one is
evaluated numerically by using Monte Carlo or Quasi-Monte Carlo methods with the help
of the routines Vegas [21] or ParInt [22].

In the following, the sum of the analytical value and of the average of the result of
the numerical integration will be called the main value. The error of Vegas (or ParInt)

4http://wwwthep.physik.uni-mainz.de/~xloops
5Also called sunset integral
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will be called the error.

We first calculate the finite integral T123N and compare our results with the results
of [24]. The finite integral T123N is defined by

T123N(p2; m2
1, m

2
2, m

2
3) := T123(p

2; m2
1, m

2
2, m

2
3)− T123(p

2; m2
1, 0, m2

3)

− T123(p
2; 0, m2

2, m
2
3) + T123(p

2; 0, 0, m2
3) (41)

with

T123(p
2; m2

1, m
2
2, m

2
3) = (42)

∫
dDl dDk

1

[(l + p)2 − m2
1 + iρ][(l + k)2 − m2

2 + iρ][k2 − m2
3 + iρ]

.

In Tables 1 and 2 we show the results of XLOOPS-GiNaC and the results of [24] for small
and large p2 with different values for the masses. For the p2-values above the threshold
(large p2), we also have a non-zero imaginary part, which is shown in the last two columns
of Table 2. Each result in the table is calculated in less than one minute by XLOOPS-
GiNaC on a computer with Athlon 1.6 GHz CPU and 512 MB RAM. As seen in the tables,
the differences are of order 10−3. The accuracy can be improved by increasing the number
of iterations of Vegas and so the time of calculation also increases.

Table 1. Comparison for small p2 of the real part of the subtracted sunrise in-
tegral T123N . In each box, in the first entry we show the value of Table 1 of [24]
(small p2 series expansion). The second entry is our result with its numerical error
in the last column.

p2 m1 m2 m3 Re T123N Error
100 3 4 20 −6.01715

−6.02022 ± 0.00167
150 3 4 20 −6.39036

−6.38877 ± 0.00017
150 5 5 25 −14.5339

−14.5780 ± 0.00326
200 5 5 25 −15.0523

−15.0542 ± 0.00192

For a complete calculation of a sunrise integral, we compare the result of XLOOPS-
GiNaC with the result of [14,23]. We will follow the conventions of [14] where the sunrise
integral is defined by

F0(D, m2
1, m

2
2, m

2
3, p

2) = (43)

µ8−2D

((2π)D−2)2

∫
dDk1

∫
dDk2

1

(k2
1 + m2

1)(k
2
2 + m2

2)((p− k1 − k2)2 + m2
3)
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Table 2. Comparison for large p2 of the real and imaginary part of the subtracted
sunrise integral T123N . In each box, in the first entry we show the value of Table 2
of [24] (large p2 series expansion). The second entry is our result with its numerical
error in the next column.

p2 m1 m2 m3 Re T123N Vegas Error Im T123N Vegas Error
80 2 3 2 0.58743 −11.2628

0.58585 ± 0.00048 −11.2632 ± 0.0002
100 2 3 4 −0.32864 −11.8459

−0.32028 ± 0.00118 −11.8460 ± 0.0002
150 3 4 4 −1.26795 −26.4912

−1.21248 ± 0.00140 −26.4912 ± 0.0005
200 2 3 4 1.69608 −6.02417

1.69549 ± 0.00022 −6.02412 ± 0.0001
250 4 4 4 2.64395 −27.6090

2.65248 ± 0.00893 −27.6098 ± 0.0006

where

µ = m1 + m2 + m3. (44)

The integral Fj(D, m2
1, m

2
2, m

2
3, p

2) can be parametrized by

F0(D, m2
1, m

2
2, m

2
3, p

2) = (45)

C2(D)

{
1

(D − 4)2
F

(−2)
0 +

1

(D − 4)
F

(−1)
0 + F

(0)
0

}

with

C(D) = (2
√

π)4−DΓ(3 − D/2). (46)

For the divergent terms we obtain

F
(−2)
0 = −1

8

3∑

i=1

m2
i , (47)

F
(−1)
0 =

1

8

{
−p2

4
+

3

2

3∑

i=1

m2
i −

3∑

i=1

m2
i ln

(
m2

i

µ2

)}
(48)

which is in agreement with the results of [14,23]. Note that our result differs with the one

of [14] by a minus sign in the term
p2

4 of F
(−1)
0 . This is due to the fact that in [14] the

integral is evaluated in Euclidian space.
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Table 3. Comparison for the sunrise integral. The masses (in GeV) are m1 = 1,
m2 = 9, m3 = 200 and µ = m1 + m2 + m3. Results in columns A are reproduced
from [14]. The results of XLOOPS-GiNaC and their errors are shown in column
B and C, respectively.

p2
r A B C

−1 −0.279454902855371 −0.279819 ±6.6E-4
−0.99 −0.2798928396415(5) −0.280351 ±0.9E-4
p2

ps3,r −0.280281633048667 −0.280442 ±4.4E-4

−0.9 −0.2836780811878(5) −0.283169 ±5.6E-4
p2

ps2,r −0.286233415451605 −0.285265 ±16.3E-4

−0.825 −0.2866587055221(5) −0.281268 ±4.2E-4
p2

ps1,r −0.286906928933491 −0.286141 ±5.7E-4

−0.8 −0.2876221116285(5) −0.288281 ±5.4E-4
−0.1 −0.3101507246241(3) −0.310516 ±1.9E-4
0 −0.312816604092084 −0.312800 ±0.1E-4

In table 3 we present the numerical values of
F

(0)
0

µ2 as a function of
p2

µ2 . The

abbreviations which are used in the table are

p2
ps1,r =

(m1 − m2 − m3)
2

µ2
,

p2
ps2,r =

(m1 − m2 + m3)
2

µ2
, (49)

p2
ps3,r =

(m1 + m2 − m3)
2

µ2
.

In column A we show the results of [14] using differential equation techniques. The results
of XLOOPS-GiNaC and their errors are shown in columns B and C. The difference of the
results is of order 10−3 where we use 105 × 10 iterations per integration for Vegas.

IV. CONCLUSIONS

We have shown that with an extension of the method in [1], a subset of degen-
erate two-loop self-energy integral can be reduced to finite integral representations and
UV-divergent analytic expressions in a similar manner as in non-degenerate cases. The
complete method provides a general algorithm of evaluating an arbitrary two-loop self-
energy integral which can be easily implemented into a computer program.

It is worth to note that to obtain a stable numerical result, our method needs not to
consider different kinematic regions of the integrals such as below or above the threshold
or around the pseudo-thresholds.

Even though the finite part of integrals is evaluated numerically in terms of two-
dimensions integrals, we are still able to obtain a good accuracy in a reasonable compu-
tation time.
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