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Abstract. Possible contributions to neutrinoless double beta (ββ)0ν decay in the economical
3-3-1 model are discussed. We show that the (ββ)0ν decay in this model is due to both sources—
Majorana 〈Mν 〉L and Dirac 〈Mν 〉D neutrino masses. If the mixing angle between charged gauge
bosons, the standard model W and bilepton Y is in range of the ratio of neutrino masses
〈Mν〉L/〈Mν〉D, then both the Majorana and Dirac masses simultaneously give contributions dom-
inant to the decay. As results, constraints on the bilepton mass are also given.

I. INTRODUCTION

In the standard model (SM) of strong and electroweak interactions, the neutrinos are
strictly massless due to absence of right-handed chiral states (νR) and requirement of
SU(2)L ⊗ U(1)Y gauge invariance and renormalizability. Recent experimental results of
SuperKamiokande Collaboration [1], KamLAND [2] and SNO [3] confirm that the neutri-
nos have tiny masses and oscillate, this implies that the SM must be extended. Among
beyond-SM extensions, the models based on SU(3)C⊗SU(3)L⊗U(1)X (3-3-1) gauge group
[4, 5] have some intriguing features: First, they can give partial explanation of the genera-
tion number problem. Second, the third quark generation has to be different from the first
two, so this leads to possible explanation of why top quark is uncharacteristically heavy.

In one of 3-3-1 models three lepton triplets are of the form (νL, lL, ν
c
R) and the scalar

sector is minimal with just two Higgs triplets, hence it has been called the economical
3-3-1 model [6]. The general Higgs sector is very simple and consists of three physical
scalars (two neutral and one charged) and eight Goldstone bosons—the needed number
for massive gauge bosons [7]. The model is consistent and possesses key properties: (i)
There are three quite different scales of vacuum expectation values (VEVs): u ∼ O(1) GeV,
v ≈ 246 GeV, and ω ∼ O(1) TeV; (ii) There exist two types of Yukawa couplings with
very different strengths, the lepton-number conserving (LNC) h’s and the lepton-number
violating (LNV) s’s, satisfying s � h. The resulting model yields interesting physical
phenomenologies due to mixings in the Higgs [7], gauge [8] and quark [9] sectors.

Despite present experimental advances in neutrino physics, we have not yet known if the
neutrinos are Dirac or Majorana particles. If the neutrinos are Majorana ones, the mass
terms violate lepton number by two units, which may result in important consequences in
particle physics and cosmology. A crucial process that will help in determining neutrino
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nature is the neutrinoless double beta (ββ)0ν decay [10]. It is also a typical process which
requires violation of the lepton number, although it could say nothing about the value of
the mass. This is because although right-handed currents and/or scalar bosons may affect
the decay rate, it has been shown that whatever the mechanism of this decay is a non-
vanishing neutrino mass [11]. In some models (ββ)0ν decay can proceed with arbitrary
small neutrino mass via scalar boson exchange [12].

The mechanism involving a trilinear interaction of the scalar bosons was proposed in
Ref. [13] in the context of model with SU(2)⊗U(1) symmetry with doublets and a triplet of
scalar bosons. However, since in these types of models there is no large mass scale [14], the
contribution of the trilinear interaction is, in fact, negligible. In general, in models with
that symmetry, a fine tuning is needed if we want the trilinear terms to give important
contributions to the (ββ)0ν decay [15]. It was shown in Ref. [16, 17] that in 3-3-1 models,
which has a rich Higgs bosons sector, there are new many contributions to the (ββ)0ν decay.
In recent work [18], authors showed that the implementation of spontaneous breaking of
the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino
decay with Majoron emission and generates a bunch of new contributions to the (ββ)0ν

decay.
In an earlier work [19] we have analyzed the neutrino masses in the economical 3-3-1

model. The masses of neutrinos are given by three different sources widely ranging over
the mass scales including the GUT’s and the small VEV u of spontaneous lepton breaking.
With a finite renormalization in mass, the spectrum of neutrino masses is neat and can
fit the data. In this work, we will discuss possible contributions to the (ββ)0ν decay in
the considering model. We show that in contradiction with previous analysis, the (ββ)0ν

decay arises from two different sources, which require both the non-vanishing Majorana
and Dirac neutrino masses. If the mixing angle between the charged gauge bosons is
in range of the ratio of neutrino masses 〈Mν〉L/〈Mν〉D, both the Majorana and Dirac
masses simultaneously give dominant contributions to the decay. Based on the results,
the constraints on the bilepton mass are also given.

The rest of this paper is organized as follows: In Section II we give a brief review of
the economical 3-3-1 model, in which a new bound of the mixing angle is given from Z
decay into neutrinos, which violates the lepton number. Section III is devoted to detailed
analysis of the possible contributions to the (ββ)0ν decay. We summarize our results and
make conclusions in the last section - Sec. IV.

II. A REVIEW OF THE MODEL

The particle content in this model which is anomaly free is given as follows [6]

ψaL = (νaL, laL, (νaR)c)T ∼ (3,−1/3), laR ∼ (1,−1), a = 1, 2, 3,

Q1L = (u1L, d1L, UL)T ∼ (3, 1/3) , QαL = (dαL,−uαL, DαL)T ∼ (3∗, 0), α = 2, 3,
uaR ∼ (1, 2/3) , daR ∼ (1,−1/3) , UR ∼ (1, 2/3) , DαR ∼ (1,−1/3) , (1)

where the values in the parentheses denote quantum numbers based on the (SU(3)L,U(1)X)
symmetry. Unlike the usual 3-3-1 model with right-handed neutrinos, where the third fam-
ily of quarks should be discriminating, in the model under consideration the first family
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has to be different from the two others [9]. The electric charge operator in this case takes
a form

Q = T3 −
1√
3
T8 +X, (2)

where Ti (i = 1, 2, ..., 8) and X , respectively, stand for SU(3)L and U(1)X charges. The
electric charges of the exotic quarks U and Dα are the same as of the usual quarks, i.e.,
qU = 2/3, qDα = −1/3.

The spontaneous symmetry breaking in this model is obtained by two stages:

SU(3)L ⊗ U(1)X → SU(2)L ⊗ U(1)Y → U(1)Q. (3)

The first stage is achieved by a Higgs scalar triplet with a VEV given by

χ =
(
χ0

1, χ
−
2 , χ

0
3

)T ∼ (3,−1/3) , 〈χ〉 =
1√
2

(u, 0, ω)T . (4)

The last stage is achieved by another Higgs scalar triplet needed with the VEV as follows

φ =
(
φ+

1 , φ
0
2, φ

+
3

)T ∼ (3, 2/3) , 〈φ〉 =
1√
2

(0, v, 0)T . (5)

The Yukawa interactions which induce masses for the fermions can be written in the
most general form:

LY = LLNC + LLNV , (6)
in which, each part is defined by

LLNC = hUQ̄1LχUR + hD
αβQ̄αLχ

∗DβR

+hl
abψ̄aLφlbR + hν

abεpmn(ψ̄c
aL)p(ψbL)m(φ)n

+hd
aQ̄1LφdaR + hu

αaQ̄αLφ
∗uaR +H.c., (7)

LLNV = suaQ̄1LχuaR + sdαaQ̄αLχ
∗daR

+sDα Q̄1LφDαR + sUα Q̄αLφ
∗UR +H.c., (8)

where p, m and n stand for SU(3)L indices.
The VEV ω gives mass for the exotic quarks U , Dα and the new gauge bosons Z ′, X, Y ,

while the VEVs u and v give mass for all the ordinary fermions and gauge bosons [9, 19].
To keep a consistency with the effective theory, the VEVs in this model have to satisfy
the constraint

u2 � v2 � ω2. (9)
In addition we can derive v ≈ vweak = 246 GeV and |u| ≤ 2.46 GeV from the mass of W
boson and the ρ parameter [6], respectively. From atomic parity violation in cesium, the
bound for the mass of new natural gauge boson is given byMZ′ > 564 GeV (ω > 1400 GeV)
[8]. From the analysis on quark masses, higher values for ω can be required, for example,
up to 10 TeV [9].

The Yukawa couplings of (7) possess an extra global symmetry [20] not broken by v, ω
but by u. From these couplings, one can find the following lepton symmetry L as in Table
1 (only the fields with nonzero L are listed; all other ones have vanishing L). Here L is
broken by u which is behind L(χ0

1) = 2, i.e., u is a kind of the SLB scale [21].
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Table 1. Nonzero lepton number L of the model particles.

Field νaL laL,R νc
aR χ0

1 χ−2 φ+
3 UL,R DαL,R

L 1 1 −1 2 2 −2 −2 2

It is interesting that the exotic quarks also carry the lepton number; therefore, this L
obviously does not commute with the gauge symmetry. One can then construct a new
conserved charge L through L by making a linear combination L = xT3 + yT8 + LI .
Applying L on a lepton triplet, the coefficients will be determined

L =
4√
3
T8 + LI. (10)

Another useful conserved charge B exactly not broken by u, v and ω is usual baryon
number B = BI . Both the charges L and B for the fermion and Higgs multiplets are listed
in Table 2.

Table 2. B and L charges of the model multiplets.

Multiplet χ φ Q1L QαL uaR daR UR DαR ψaL laR

B-charge 0 0 1
3

1
3

1
3

1
3

1
3

1
3 0 0

L-charge 4
3 −2

3 −2
3

2
3 0 0 −2 2 1

3 1

Let us note that the Yukawa couplings of (8) conserve B, however, violate L with ±2
units which implies that these interactions are much smaller than the first ones [9]:

sua, s
d
αa, s

D
α , s

U
α � hU , hD

αβ, h
d
a, h

u
αa. (11)

A consequence of u 6= 0 is that the standard model gauge boson W ′ and bilepton Y ′

mix

LCG
mass =

g2

4
(W ′−, Y ′−)

(
u2 + v2 uω
uω ω2 + v2

) (
W ′+

Y ′+

)
.

Physical charged gauge bosons are given by

W = cos θ W ′ + sin θ Y ′,

Y = − sin θ W ′ + cos θ Y ′, (12)

where the mixing angle is
tan θ =

u

ω
. (13)

There exist LNV terms in the charged currents proportional to sin θ

HCC =
g√
2

(
Jµ+

W W−
µ + Jµ+

Y Y −
µ +H.c.

)
(14)
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with

Jµ+
W = cθ

(
laLγ

µνaL + daLγ
µuaL

)

−sθ
(
laLγ

µνc
aR + d1Lγ

µUL +DαLγ
µuαL

)
, (15)

Jµ+
Y = cθ

(
laLγ

µνc
aR + d1Lγ

µUL +DαLγ
µuαL

)

+sθ
(
laLγ

µνaL + daLγ
µuaL

)
. (16)

As in Ref. [6], the constraint on the W − Y mixing angle θ from the W width is given
by sin θ ≤ 0.08. However, in the following we will show that a more stricter bound can
obtain from the invisible Z width through the unnormal neutral current of LNV:

LNC
unnormal = −gt2θgkV (ν)

cW
(νaLγ

µνc
aR + u1Lγ

µUL

−DαLγ
µdαL

)
Zk

µ +H.c., (17)

where the neutrino coupling constants (gkV , k = 1, 2) are given by

g1V (νL) '
cϕ − sϕ

√
4c2W − 1

2
, (18)

g2V (νL) '
sϕ + cϕ

√
4c2W − 1

2
. (19)

Let us note that the LNV interactions mediated by neutral gauge bosons Z1 and Z2 exist
only in the neutrino and exotic quark sectors.

The interactions in (17) for the neutrinos lead to additional invisible-decay modes for
the Z boson. For each generation of lepton, the corresponding invisible-decay width gets
approximation:

ΓνLνR
' 1

2
t22θΓ

SM
νLνL

, (20)

where ΓSM
νLνL

= GF M3
Z

12π
√

2
is the SM prediction for the decay rate of Z into a pair of neutrinos;

ϕ and θ take small values. The experimental data for the total invisible neutrino decay
modes give us [22]

Γexp
invi = (2.994± 0.012)ΓSM

νLνL
. (21)

From (20) and (21) we get an upper limit for the mixing angle

tθ ≤ 0.03, (22)

which is smaller than that given in Ref. [6].
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III. THE NEUTRINOLESS DOUBLE BETA DECAY

The interactions that lead to the (ββ)0ν decay involve hadrons and leptons. For the
case of the standard contribution, its amplitude can be written as [18]

M(ββ)0ν
=

g4

4m4
W

Mh
µνuγ

µPL
q/+mν

q2 −m2
ν

γνPRv (23)

with Mh
µν carrying the hadronic information of the process and PR,L = (1±γ5)

2 . In the
presence of neutrino mixing and considering that m2

ν � q2, we can write

M(ββ)0ν
= A(ββ)0ν

Mh
µνuPRγ

µγνv, (24)

where

A(ββ)0ν
=

g4〈Mν〉
4m4

W 〈q2〉
(25)

is the strength of effective coupling of the standard contribution. For the case of three
neutrino species 〈Mν〉 =

∑
U2

eimν is the effective neutrino mass which we use as reference
value 0.2 eV and 〈q2〉 is the average of the transferred squared four-momentum.

The contributions to the (ββ)0ν decay in our model coming from the charged gauge
bosons W− and Y − dominate the process. As the (ββ)0ν decay has not been experi-
mentally detected yet, the analysis we do here is to obtain the new contributions and to
compare them with the standard one [11, 17]. For the standard contribution as depicted
in Fig. 1.a), its effective coupling takes the form

A(ββ)0ν
(1.a) =

g4〈Mν〉L
4m4

W 〈q2〉
c4θ, (26)

where ML is the Majorana mass. The first new contribution involves only W− as of
the standard one, but now interacts with two charged currents Jµ and Jc

µ as depicted in
Fig. (1.b). It is to be noted that in this case the Dirac mass gives the contribution to the
effective coupling

A(ββ)0ν
(1.b) =

g4〈Mν〉D
4m4

W 〈q2〉
c3θsθ , (27)

where MD is the Dirac mass.
From Eqs. (26) and (27) we see that the LNV in the (ββ)0ν decay arises from two

different sources identified by the non-vanishing Majorana and Dirac mass terms, respec-
tively. In Fig. (1.a) the LNV is due to the Majorana mass, while that in Fig. (1.b) is by
the LNV coupling of W boson to the charged current (the term is proportional to sin θ).
In comparing both effective couplings, we obtain the ratio

A(ββ)0ν
(1.b)

A(ββ)0ν
(1.a)

=
〈Mν〉D
〈Mν〉L

tan θ (28)

From (28) we see that the relevance of this contribution depends on angle θ and also the
ratio between 〈Mν〉D and 〈Mν〉L. It is worth noting that if 〈Mν〉D.tθ ∼ 〈Mν〉L then both
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dL

dL

eL

eL

uL

uL

cθ

cθ

cθ

cθW−

W−

νL

νL

×mL

(a)

dL uL

dL uL

W−

W−

eL

eL

νR

νL

×mD

cθ

cθ

cθ

-sθ

(b)

Fig. 1. Contribution of the SM bosons to the (ββ)0ν decay.

Majorana and Dirac masses simultaneously give the dominant contributions to the (ββ)0ν

decay.

dL uL

dL uL

Y −

W−

eL

eL

νL

νL

×mL

cθ

sθ

cθ

sθ

(a)

dL uL

dL uL

Y −

W−

eL

eL

νR

νL

×mD

cθ

sθ

cθ

cθ

(b)

Fig. 2. Contribution of both the W and Y to the (ββ)0ν decay.

Next, we consider contributions that involve both W− and Y −. It involves the two
currents Jµ and Jc

µ interacting with W and Y , as depicted in Fig. (2.a) for 〈Mν〉L and
Fig.(2.b) for 〈Mν〉D. The effective couplings in this case are

A(ββ)0ν
(2.a) =

g4〈Mν〉Lc2θs2θ
4m2

Wm
2
Y 〈q2〉

, (29)

and

A(ββ)0ν
(2.b) =

g4〈Mν〉Dc3θsθ
4m2

Wm
2
Y 〈q2〉

. (30)
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From (29) and (30) we see that the case with the Majorana mass gives the contribution
to the (ββ)0ν much smaller than the Dirac one. Comparing with the standard effective
coupling, we get the ratios

A(ββ)0ν
(2.b)

A(ββ)0ν
(1.a)

=
(m2

W

m2
Y

)〈Mν〉D
〈Mν〉L

tan θ, (31)

and
A(ββ)0ν

(2.a)
A(ββ)0ν

(1.a)
=

(m2
W

m2
Y

)
tan2 θ. (32)

Differing from the previous case, Eq.(31) shows that the relevance of these contributions
depends on the angle θ, the ratio 〈Mν〉D

〈Mν〉L and the bilepton mass also. Suppose that the new
contributions are smaller than the standard one, from Eq. (31) we get a lower bound for
the bilepton mass

m2
Y > m2

W

〈Mν〉D
〈Mν〉L

tan θ. (33)

Taking m2
W = 80.425GeV, tθ = 0.03, the low bounds of mass mY in range of 〈Mν〉D

〈Mν〉L ∼
102 − 103 [19] are given in Table III. It is interesting to note that from ”wrong ” muon

Table 3. The low bound of bilepton mass in range of 〈Mν 〉D

〈Mν 〉L

〈Mν〉D
〈Mν〉L

100 200 400 600 800 1000

mY (GeV ) 139.0 197.0 278.6 341.2 394.0 440.5

decay experiments one obtains a bound for the bilepton mass : mY ≥ 230GeV [27]. From
Eq. (32) we see that the order of contribution is much smaller than standard contribution,
this is due to the LNV in the (ββ)0ν decay arising from the Majorana mass term and the
LNV coupling between the bilepton Y and the charged current Jµ of ordinary quarks and
leptons. Taking mY = 139 GeV we obtain

A(ββ)0ν
(2.a)

A(ββ)0ν
(1.a)

≤ 3.0× 10−4 (34)

Now we examine the next four contributions which involve only the bileptons Y . In
Fig. (3.a) we display and example of this kind of contribution where the current Jc

µ appears
in the two vertices. The effective coupling is

A(ββ)0ν
(3.a) =

g4〈Mν〉Ls4θ
4m4

Y 〈q2〉
. (35)

For another case we have also

A(ββ)0ν
(3.b) =

g4〈Mν〉Dcθs3θ
4m4

Y 〈q2〉
. (36)
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Comparing with the standard effective coupling, we get

A(ββ)0ν
(3.a)

A(ββ)0ν
(1.a)

=
(mW

mY

)4
tan4 θ. (37)

Using the above data, the ratio gets an upper limit

A(ββ)0ν
(3.a)

A(ββ)0ν
(1.a)

≤ 9.0× 10−8, (38)

which is very small. It is easy to check that the remaining contributions are much smaller
than those with the charged W bosons. This is due to the fact that all the couplings of
the bilepton with ordinary quarks and leptons in the diagrams of Fig. (3) are LNV.

dL uL

dL uL

Y −

Y −

eL

eL

νL

νL

×mL

sθ

sθ

sθ

sθ

(a)

dL uL

dL uL

Y −

Y −

eL

eL

νL

νR

×mD

sθ

sθ

cθ

sθ

(b)

Fig. 3. Contribution of the bileptons to the (ββ)0ν decay.

IV. CONCLUSION

In this paper we have investigated the implications of spontaneous breaking of the
lepton number in the economical 3-3-1 model in the (ββ)0ν decay. We have performed a
systematic analysis of the couplings of all possible contributions of charged gauge bosons
to the decay. The result shows that, the (ββ)0ν decay mechanism in the economical 3-3-1
model requires both the non-vanishing Majorana and Dirac masses. If the mixing angle
between the charged gauge boson and bilepton is in range of the ratio of neutrino masses
〈Mν〉L and 〈Mν〉D then both the Majorana and Dirac masses simultaneously give the
dominant contributions to the decay. Based on the result, the constraints on the bilepton
mass are given. It is interesting to note that the relevance of the new contributions are
dictated by the mixing angle θ, the effective mass of neutrino and the bilepton mass. By
estimating the order of magnitude of the new contributions, we predicted that the most
robust one is that depicted in Fig. 2 whose order of magnitude is 3.0×10−4 of the standard
contribution.
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