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ABSTRACT

Olbricht, Gayla R. Ph.D., Purdue University, August 2010. Incorporating Genome
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Major Professors: R.W. Doerge and Bruce A. Craig.

A wealth of information and technologies are currently available for the genome-

wide investigation of many types of biological phenomena. Genomic annotation

databases provide information about the DNA sequence of a particular organism and

give locations of different types of genomic elements, such as the exons and introns of

genes. Microarrays are a powerful type of technology that make use of DNA sequence

information to investigate different types of biological phenomena on a genome-wide

level. Tiling arrays are a unique type of microarray that provide unbiased, high-

density coverage of a genomic region, making them well suited for many applications,

such as the mapping of transcription and the profiling of epigenetic mechanisms that

can occur anywhere in the genome. Epigenetic mechanisms, such as DNA methyla-

tion and histone modifications, are important for understanding heritable changes in

genome function that cannot be explained by a change in the DNA sequence alone.

In this work, statistical approaches for both gene expression and DNA methyla-

tion tiling array data are investigated. The proposed methods take advantage of the

genomic annotation that are available and that to date have not been effectively uti-

lized in current statistical methods. For gene expression data, an initial bioinformatic

step, prior to differential expression analysis, is proposed for the purpose of filtering

out probes that are biologically irrelevant. For DNA methylation data, a hidden

Markov model, which allows for different transition probabilities between gene and

intergenic regions is developed in an effort to improve the predicted locations of DNA

methylation across the genome. These methods are investigated through simulation

studies and real data analyses.
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1. INTRODUCTION

1.1 Basics of Genetics

Understanding the factors that influence observable characteristics (phenotypes)

of an organism is an important and complex task that has profound implications in

agriculture, medicine, and many other areas of science. For example, determining

why some plants of a species endure during periods of drought while others die, or

why one identical twin develops a disease and the other does not, are just two of

the many questions that could be addressed in understanding phenotypes. Three

key components that can affect phenotype are genetic information, epigenetic modi-

fications, and environmental conditions. The first of these components is studied in

the field of genetics, which explores how hereditary information contained in deoxyri-

bonucleic acid (DNA) is organized, passed from parent to offspring, and expressed

phenotypically.

1.1.1 DNA Structure and Central Dogma of Molecular Biology

The science of genetics began with Gregor Mendel’s work on inheritance of certain

traits in the pea plant in the mid-1800s. The more recent discovery by Watson and

Crick (1953) of the structure of the genetic material, deoxyribonucleic acid (DNA),

has allowed a more detailed investigation of inheritance at the molecular level. DNA

is a biological molecule present in the cells of an organism, which contains the ge-

netic material needed to pass information from generation to generation. The DNA

molecule has a double helix structure (Watson and Crick, 1953), which consists of

two complementary strands composed of subunits called nucleotides. Each nucleotide

contains a deoxyribose sugar and a phosphate group, which form the backbone, along
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Figure 1.1. Structure of the DNA molecule. Image courtesy of Rau (2010).

with one of four nitrogenous bases: adenine (A), thymine (T), guanine (G), and cyto-

sine (C). Each base pairs via a hydrogen bond with a base on the opposite strand in

a complementary way, so that adenine always pairs with thymine and guanine always

pairs with cytosine (Figure 1.1).

In eukaryotic organisms, DNA is found in the nucleus of each cell and is subdi-

vided into units called chromosomes. Each chromosome consists of subunits of DNA

called genes. Genes contain hereditary information needed to encode proteins, the

fundamental unit of cellular function. The transfer of information from DNA to pro-

teins is described in the Central Dogma of molecular biology (Crick, 1970), which

states that DNA is transcribed to ribonucleic acid (RNA) which is translated to pro-

tein. Transcription occurs when one of the DNA strands serves as a template for

creating a special class of RNA called messenger RNA (mRNA). Messenger RNA is

a single-stranded complementary copy of the DNA strand with thymine (T) replaced

by the nitrogenous base uracil (U) and a ribose sugar rather than deoxyribose in its

backbone. During translation, mRNA produces a chain of amino acids that form a

protein.
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Genes are further broken down into subunits called exons (expression regions)

and introns (intervening regions), with intergenic regions between genes. Exons are

segments of the gene that encode parts of proteins, while introns are pieces that

separate exons but do not encode parts of proteins. During RNA splicing, introns

are removed and exons are joined together to create a mature mRNA transcript

that can be translated to a protein. Variation in this splicing process can occur via

alternative splicing in which different combinations of exons are spliced together to

create multiple forms of the mRNA transcript. Alternative splicing makes it possible

for different proteins to be produced by the same gene (Griffiths et al., 2008).

For organisms to function properly, genes must be regulated so that at a given

time and specific cell type, only a subset of the genes are actively encoding proteins

needed for a certain cellular function. Gene regulation can occur at many levels

from transcription to post-translation. However, most regulation is thought to take

place at the transcriptional level. A gene is referred to as expressed when it is active

in making protein. Since a gene must first be transcribed to mRNA before being

translated to a protein, the mRNA transcript contains the information needed to

determine which genes are being expressed in a cell. By measuring the abundance of

mRNA transcripts present for a particular gene, the expression level of that gene can

be quantified (Griffiths et al., 2008).

1.1.2 Genetic Variation

It is evident through the Central Dogma that differences in the nucleotide sequence

of genes can result in the production of different proteins, leading to phenotypic varia-

tion between individuals with different DNA sequences. The process of recombination

during meiosis is one such source of genetic variation. During meiosis, sex cells are

formed whose genetic material will be passed on to offspring upon fertilization. As

part of this process, genetic material is often exchanged during recombination between

homologous chromosomes, which contain the same genes but not necessarily the same
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version of each gene. These recombination events can lead to a unique combination

of nucleotides in the sex cells to be passed on to offspring (Griffiths et al., 2008).

Mutations are another source of genetic variation that occur when the DNA se-

quence is altered. Typically, mutations within a gene involve the alteration of one, or

a few, nucleotide base pairs. This can occur when one nucleotide base is replaced by

a different nucleotide base (substitution) or when one or more nucleotide base pairs

are added to (insertion) or removed from (deletion) the DNA sequence. Mutations

may occur for a variety of reasons, such as errors in the DNA replication process or

environmental exposures such as certain chemical agents or radiation. However, the

cell has a sophisticated set of DNA repair mechanisms in place that corrects most of

these mutations. When this mechanism fails, the severity of the effect of mutations

on the phenotype varies depending on the type of mutation, where it occurs within

the gene, and how it effects the protein products of the mutated gene. In severe cases,

mutations in sex cells can lead to inherited genetic disorders and may cause cancer

when present in somatic cells (Griffiths et al., 2008).

1.2 Epigenetics

While the field of genetics reveals how differences in DNA sequence can lead to

heritable variation in phenotype, the field of epigenetics seeks to understand heri-

tability that is not due to changes in the DNA sequence. The term “epigenetics” was

first introduced by Waddington (1942), who rooted the definition in concepts from

epigenesis to be the study of how genotypes bring about phenotypes in the develop-

mental process. Since that time, both the definition and field have evolved (Holliday,

2006; Bird, 2007; Berger et al., 2009), with the term “epigenetics” now commonly

referring to the study of heritable changes in gene function that cannot be explained

by changes in DNA sequence (Russo et al., 1996). The two main epigenetic mech-

anisms are DNA methylation and histone modifications, which involve the addition

of chemical marks to the DNA or histone proteins (Figure 1.2). (Jones and Baylin,
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Figure 1.2. Illustration of the two main epigenetic modifications:
DNA methylation and histone modifications. DNA methylation oc-
curs when a methyl (Me) group attaches to a cytosine (C) base on
the DNA molecule. Histone modifications occur when certain chem-
ical groups attach to the tails of histone proteins. Image courtesy of
Qiu (2006).
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2007). Epigenetic modifications have been shown to play a role in the regulation of

gene expression (Jaenisch and Bird, 2003; Vaillant and Paszkowski, 2007; Zilberman

et al., 2007) and have been associated with the development of cancer (Feinberg and

Vogelstein, 1983; Herman and Baylin, 2003; Feinberg and Tycko, 2004; Jones and

Baylin, 2007) and other diseases (Robertson, 2005; Shames et al., 2007). Environ-

mental factors can influence epigenetic mechanisms and one result of this interaction

has been the development of promising drugs to alter epigenetic patterns in cancerous

cells.

1.2.1 DNA Methylation

DNA methylation is a type of epigenetic modification that typically occurs when

a methyl group (CH3) attaches to cytosine (C) on the DNA molecule (Figure 1.2).

In bacteria, adenine (A) can be methylated as well, but cytosine methylation is the

most common form of DNA methylation. The addition of this chemical group to

DNA does not alter the DNA sequence itself, but can have a profound impact on

gene function. In 1975, two papers appeared in the literature, which suggested a

potential relationship between DNA methylation and gene expression (Riggs, 1975;

Holliday and Pugh, 1975). Since that time, research into this chemical mark have

flourished, particularly with advances in technology in the 1990s that allow for wide-

scale studies.

DNA methylation occurs in most studied organisms, with the exception of the bud-

ding yeast, Saccharomyces cerevisiae, and the nematode worm, Caenorhabditis ele-

gans, and is limited to embryonic development in the fruit fly, Drosophila melanogaster

(Bird, 2002; Suzuki and Bird, 2008). In mammals, DNA methylation typically oc-

curs when a cytosine (C) is followed by a guanine (G) in the 5′ − 3′ direction of the

DNA sequence. This is denoted CpG, to represent the fact that cytosine and guanine

are linked together by phosphate on one of the DNA strands (Li and Bird, 2007).

DNA methylation is established by a family of de novo DNA methyltransferase en-
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zymes (DNMT3) and is maintained during DNA replication by a maintenance DNA

methyltransferase (DNMT1). At some locations, known as CpG islands, the number

of CpG sites given GC content in a region of certain length is higher than expected.

CpG islands have been shown to occur upstream of many genes and are typically

unmethylated (Law and Jacobsen, 2010).

In plants, DNA methylation occurs at both CpG locations and in CpNpG and

CpNpN sequence contexts (where N is one of the nucleotide bases A, C or T). CpG

and CpNpG locations are called symmetric since, due to complementary base pair-

ing, DNA methylation can occur on both strands at those sites; whereas CpNpN

sites are asymmetric since DNA methylation can only occur on one of the strands in

that context. The DOMAINS REARRANGED METHYLTRANSFERASE enzyme

family (DRM) serves to establish DNA methylation and is similar to the DNMT3

enzyme family in mammals. CpG methylation is mostly maintained by the DNA

METHYLTRANSFERASE1 (MET1), which is similar to DNMT1 in mammals, but

is supplemented by the DECREASE IN DNA METHYLATION1 (DDM1) and HI-

STONE DEACETYLASE6 (HDA6) genes. Maintenance of CpNpG methylation is

conducted by a plant-specific methyltransferase, CHROMOMETHYLASE3 (CMT3),

and CpNpN methylation is maintained by enzymes in the DRM family (Chan et al.,

2005; Law and Jacobsen, 2010).

DNA methylation plays an important role in many different biological processes,

including genomic imprinting, X chromosome inactivation, embryonic development,

and silencing of transposable elements (Bird, 2002; Gehring and Henikoff, 2007;

Slotkin and Martienssen, 2007; Kim et al., 2009; Finnegan, 2010). In plants, DNA

methylation is important for genome stability and plant development (Gehring and

Henikoff, 2007; Finnegan, 2010). In humans, many diseases have been linked to DNA

methylation (Robertson, 2005; Shames et al., 2007). In particular, Feinberg and Vo-

gelstein (1983) introduced the first evidence, which connected DNA methylation to

the development of cancer. Since that time, researchers have shown that a global

loss of DNA methylation (hypomethylation) accompanied with a targeted gain of
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methylation (hypermethylation) at CpG islands in promoter regions are characteris-

tic patterns in cancerous cells (Herman and Baylin, 2003; Feinberg and Tycko, 2004;

Jones and Baylin, 2007; Shames et al., 2007).

1.2.2 Histone Modifications

In eukaryotes, chromosomes are packaged and condensed in the cell via chromatin,

a combination of DNA and histone proteins. The basic unit of chromatin is the nu-

cleosome, which contains 147 base pairs of DNA wrapped around a histone octamer.

Changes to chromatin structure can regulate gene expression since transcriptional

access to the DNA is limited by the chromatin packaging. One way chromatin can

be altered is through post-translational modifications of the histone proteins. The

four core histones present in chromatin are: H2A, H2B, H3, and H4. These histones

are organized in the octamer so that their amino tails protrude from the nucleosome,

allowing the possibility of the attachment of chemical groups such as acetyl, methyl,

phosphate, and ubiquitin (Figure 1.2) (Kouzarides, 2007; Griffiths et al., 2008; Mar-

gueron and Reinberg, 2010). Such chemical modifications to histone proteins were

identified by Allfrey et al. (1964), who postulated that histone modifications play a

role in transcription. However, evidence for such a relationship was scarce until the

1990s when the first histone acetyltransferase (HAT) enzyme was identified, revealing

a mechanism by which histone acetylation could arise in the cell (Brownwell et al.,

1996). Since that time, understanding the role of histone modifications in gene reg-

ulation and other cellular processes has thrived (Kuo and Allis, 1998; Berger, 2002;

Kouzarides and Berger, 2007).

Many relationships between histone modifications and gene activation, or repres-

sion, have been identified. For example, methylation of histone H3 at lysines K4 and

K36 (denoted H3mK4 and H3mK36) activates transcription, whereas methylation of

histone H3 at lysines K9 and K27 (H3mK9 and H3mK27) represses transcription

(Kouzarides and Berger, 2007). Acetylation and phosphorylation have been shown
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to play a role not only in gene regulation, but also in DNA repair and chromosome

condensation (Kouzarides, 2007). Like DNA methylation, global changes in histone

modifications have been shown to be associated with cancer. For example, loss of

acetylation and methylation at certain lysines on histone H4 are a common pattern

in cancerous cells (Jones and Baylin, 2007). More recently, researchers have begun

investigating the relationship between histone modifications and DNA methylation,

both for cancer research and, more generally, to obtain a better understanding of

how these epigenetic mechanisms may work together in cellular processes (Cedar and

Bergman, 2009).

1.3 Genomics and Epigenomics

An organism’s complete set of genetic material (DNA) is called a genome. In the

1990s, advances in technology made it possible to move from localized genetic and

epigenetic studies to genome-wide investigations. The sequencing (i.e., identifying the

order of DNA base pairs) of entire genomes became a feasible task, with Hemophilus

influenza being the first free-living organism to be sequenced (Fleischmann et al.,

1995). Along with genome sequencing came the possibility of annotating the genome

by identifying genes (broken down into exons and introns) and other important ge-

nomic units, such as transposable elements (Stein, 2001).

The Human Genome Project is the first major effort to sequence and identify all

genes in the human genome. The first draft was released in 2001 by private (Venter

et al., 2001) and public (International Human Genome Sequencing Consortium, 2001)

projects, with updates in following years. Genome projects for over 1100 organisms,

including many model organisms such as the fruit fly Drosophila melanogaster, the

model plant Arabidopsis thaliana, and the mouse Mus musculus, have been completed

as of September 2009 (GOLD: Genomes OnLine Database v 3.0, 2010; Liolios et al.,

2010).
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The massive amount of data obtained from genome projects ushered in the es-

tablishment of online biological databases to store and make information publicly

available. Databases such as Genbank (National Center for Biotechnology Informa-

tion, 2010; Benson et al., 2008) store nucleotide sequence data for all organisms, while

the Genomes OnLine Database (GOLD: Genomes OnLine Database v 3.0, 2010; Li-

olios et al., 2010) and other databases collect information from multiple sources to

store in a common, searchable location. Genomic annotation databases are often

maintained separately for different organisms, such as The Arabidopisis Information

Resource (TAIR) for Arabidopsis thaliana, FlyBase for Drosophila melanogaster, and

Ensembl for human, mouse, and many other vertebrates. In addition to identify-

ing gene locations and other genomic elements, these genomic annotation databases

also give information about gene function (Stein, 2001). Information from genome

projects made possible the study of functional genomics, which seeks to learn the

function, expression, and interaction of gene products. One major area of functional

genomics research involves the investigation of gene expression under certain condi-

tions. The coupling of data from genome projects and the development of microarray

technology has allowed the measurement of gene expression levels for all known genes

in a genome (Griffiths et al., 2008).

More recently, unique designs of microarrays have also allowed the possibility of

epigenomic studies, in which locations of epigenetic modifications are identified across

whole genomes. This is a complex task since, unlike the DNA sequence, epigenetic

modifications are variable between cell types and over time within an individual or-

ganism (Suzuki and Bird, 2008). The first genome-wide DNA methylation map was

completed in the model plant Arabidopsis thaliana (Zhang et al., 2006). However,

many epigenome projects have been initiated, such as the Human Epigenome Project,

which has the goal of studying DNA methylation patterns in major human tissues, and

the Alliance for the Human Epigenome and Disease (AHEAD) project, which investi-

gates DNA methylation and specific histone modifications in specific tissues specified

by the Human Epigenomic Task Force (Jones and Martienssen, 2006; AHEAD, 2008).
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The importance of these epigenomic studies is to make connections between genomic

annotation and locations of epigenetic modifications to identify patterns across the

genome. Examining the distribution of epigenetic modifications across the genome

can help researchers make connections between the fields of genetics and epigenetics

for the purpose of gaining a better understanding of their effect on phenotypes.

1.4 Microarray Technology and Applications

As genome projects were starting to thrive in the late 1990s and early 2000s,

making it possible to obtain whole-genome sequences and gene locations for many

organisms, a technology called a microarray was developed (Schena et al., 1995)

that enhanced genome-wide investigations. Microarrays require knowledge of DNA

sequence information for the development of single-stranded probes, which are placed

on a microarray chip and have the potential to bind to a single-stranded mRNA or

DNA sample via complementary base pair binding. The first common application of

microarrays was the study of mRNA transcript abundance (i.e., gene expression level)

to determine which genes are active in making proteins in a given sample (Schena

et al., 1995; Lashkari et al., 1997). Thousands of genes (often all known genes in an

organism’s genome) can be represented on one microarray chip and investigated in

a single experiment. From gene expression microarray technology, a different type

of microarray, known as a tiling array, evolved with probes that cover the whole

genome not just gene regions. This whole-genome coverage of tiling arrays made it

possible to use microarray technology to study epigenetic modifications, which can

occur anywhere in the genome (in genes and intergenic regions) (Mockler and Ecker,

2005).

1.4.1 Gene Expression Microarrays and Differential Expression Studies

Gene expression microarrays are designed to measure mRNA transcription levels

of thousands of annotated genes on a single array. A common goal of gene expression
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microarray experiments is differential expression analysis. In such studies, transcrip-

tion levels of all genes represented on the array are measured and compared between

different conditions of interest (e.g., treatment vs. control) to obtain a set of genes

that exhibit statistically significant different expression levels between conditions.

Such studies can help determine which genes are important for different biological

processes and diseases.

While different gene expression arrays have been developed, a commonly used ar-

ray platform for gene expression studies are oligonucleotide arrays commercially pro-

duced by Affymetrix R© (Lockhart et al., 1996; Lipshutz et al., 1999). For AffymetrixR©

gene expression arrays (GeneChips), 25 base long DNA probes from a reference

genome are selected from annotated genes of a specific organism and placed as targets

on the microarray. An mRNA sample collected from that organism is then amplified,

labeled with a fluorescent dye, and hybridized to the array through complementary

base pair binding. Two types of probes represent each sequence, a perfect match

(PM) probe which matches all 25 bases of the reference sequence and a mismatch

(MM) probe, designed to measure non-specific binding, which differs at the 13th base.

After hybridization, mRNA transcription levels for each probe are measured in the

form of a quantitative intensity reading and can be used to indicate which genes are

active in making proteins in that sample (Figure 1.3). Note that one dye is used in

Affymetrix GeneChips R©, so one array per mRNA sample is required.

The selection of probes is an important component for the success of microarray

technology. Since the goal is to measure transcription levels of known genes, it is

imperative that probes on the array correspond to exons of genes where transcrip-

tion, and thus hybridization of the mRNA sample to probes, is expected to occur.

Typically, on an AffymetrixR© gene expression array, genes are represented by 11-20

probes (called a probe set) that cover exons of genes and are chosen for their optimal

hybridization quality (AffymetrixR© Technical Note, 2007). Figure 1.4 gives an ex-

ample of probes covering a genomic region for a typical AffymetrixR© gene expression

microarray.
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Actual strand =25 base pairs

6.5 million locations on each GeneChip® array

Millions of DNA strands

built up on each location

RNA fragments with flourescent tags from sample to be tested

RNA fragment hybridizes with DNA on GeneChip® array

Figure 1.3. The top figure shows one feature on an Affymetrix
GeneChip R© microarray. Each feature contains millions of copies of
a DNA probe that is 25 bases in length. The bottom figure shows
hybridization of an mRNA sample to the array. Fluorescent label-
ing allows the calculation of a numerical intensity reading which rep-
resents the amount of transcription (gene expression) taking place
per gene. Image courtesy of AffymetrixR© Image Library (2009),
www.affymetrix.com.



14

 

INTERGENIC INTERGENICINTRON EXONEXON

GENE

3’5’

25 bases

Probes

Figure 1.4. Example of probes covering a genomic region on an
Affymetrix R© gene expression microarray. The 25 base long probes
cover exons of genes and can be overlapping. Each gene is typically
represented by 11-20 probes.

One alternative to AffymetrixR© arrays for studying gene expression is custom-

designed spotted cDNA microarrays (Schena et al., 1995). These arrays are similar

to AffymetrixR© arrays in that they rely on target sequences placed on the array and

complementary base pairing for hybridization. However, instead of representing each

gene by a set of short oligonucleotide probes, the probes on these arrays represent

complementary DNA (cDNA) of whole genes or expressed sequence tags (ESTs) that

represent the gene. Sequences for the probes can be isolated and amplified via poly-

merase chain reaction (PCR), then purified and printed on the microarray chip by a

robot. These probes are typically longer than the AffymetrixR© oligonucleotide probes,

as they depend on the length of the gene or EST. Typically, for spotted cDNA arrays,

an mRNA sample is collected, converted to cDNA, and then labeled with one of two

fluorescent dyes (Cy3 - green or Cy5 - red). A second mRNA sample (e.g., one treat-

ment and one control sample) undergoes the same preparation, but is labeled with

the other dye. The samples are mixed and hybridized to the same array. Intensity

readings for each dye give the mRNA transcript levels. Genes with a high red or

green reading mean that gene was expressed more in one of the samples; whereas

genes with yellow spots indicate the expression level was similar for the two samples

and black spots are genes which were not expressed in either sample (Schena et al.,

1995; Duggan et al., 1999). These arrays are often useful for smaller-scale studies in
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Figure 1.5. Example of probes covering a genomic region on an
Affymetrix R© tiling array. Probes are systematically placed from one
end of the region to the other without regard for genomic annotation.
As a result, exons and introns of genes, as well as intergenic regions,
are covered by probes. In this example, probes are 25 bases in length
with an average gap of 10 bases between probes.

which scientists are interested in specific genes or regions of the genome, since they

can select which genomic sequences to place as targets on the array.

1.4.2 Tiling Arrays and Applications

Tiling microarrays work in a similar fashion as gene expression arrays, in that

DNA probes are selected from a reference genome and placed as targets on the array

for hybridization with a sample of genetic material (mRNA or DNA). However, the

key difference between the gene expression microarray and the tiling microarray is in

the probe selection process. Tiling arrays are designed to cover entire genomic regions

(e.g., chromosomes or whole genomes) by systematically selecting probes from one

end of the region to the other without regard to genome annotation. These probes,

often called tiles for tiling arrays, are not specifically designed to optimize the study

of gene expression, but rather to provide a dense, unbiased coverage of the genomic

region. As with gene expression arrays, both AffymetrixR© and spotted cDNA arrays

are available. Figure 1.5 shows an example of probes covering a genomic region for

a typical AffymetrixR© tiling array. AffymetrixR© tiling array probes are typically 25
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bases in length, but the spacing or overlap between these probes differs by organism.

Because they cover entire regions rather than just exons of genes, tiling arrays can

be used for a variety of applications. They are particularly well-suited for studying

epigenetic modifications that may occur anywhere in the genome (Mockler and Ecker,

2005).

Differential Expression Studies

While gene expression arrays have been used to study differential gene expression

for many years, relatively few studies have focused on using tiling arrays for differential

expression analysis (Ghosh et al., 2007; Naouar et al., 2009; Zeller et al., 2009). Many

studies have used tiling arrays to study transcription, however their focus has been on

transcript mapping, where regions of transcription are identified through statistical

models (Kapranov et al., 2002; Yamada et al., 2003; Bertone et al., 2004; Kampa

et al., 2004; Schadt et al., 2004; Huber et al., 2006). Tiling arrays are well-suited

for this purpose since their dense coverage can lead to the identification of novel

transcripts and can improve genome annotation. While new regions of transcription

or transcript variants will continue to be found, making use of the current genome

annotation to obtain differential expression results for known genes is a common

practical need for researchers. This type of analysis can be achieved with both gene

expression and tiling arrays. However, there is a large difference in genomic coverage

between these arrays since tiling arrays cover the whole genome and gene expression

arrays cover exons of genes. While this extra information on the tiling array is

important for epigenetic tiling array applications, only the probes in exons of genes

are of primary interest when the goal is studying differential expression of known

genes. Thus, knowing where probes are located with respect to genome annotation

and keeping only biologically relevant probes for a statistical analysis is an essential

step for differential expression studies with tiling arrays.
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DNA Methylation Profiling

A key to better understanding DNA methylation is to develop genome-wide pro-

files for different cell types by identifying all locations of DNA methylation in a

genomic region. Tiling arrays enable such investigations due to their dense, unbi-

ased genomic coverage and they have been successfully employed to evaluate DNA

methylation status in many large-scale studies (Lippman et al., 2004; Zhang et al.,

2006; Zilberman et al., 2007). In order to detect DNA methylation status of indi-

vidual probes represented on the array, genomic DNA samples must be prepared in

a certain way before hybridization to the tiling array (e.g., Figure 1.6). Genomic

DNA collected from one individual is split into two samples and sheared into similar

sizes. In one of these samples, a treatment such as bisulfite conversion, digestion

with a methylation sensitive restriction enzyme such as McrBC, or methylcytosine

immunoprecipitation is applied to separate methylated from unmethylated DNA. No

treatment is applied to the other sample, which serves as a control since it is repre-

sentative of the total genomic DNA with both methylated and unmethylated DNA

retained. Double-stranded DNA from both the treated sample (which will consist

of only methylated or unmethylated DNA) and the untreated sample are separated

to single-stranded DNA and hybridized to tiling arrays (Weber et al., 2005; Keshet

et al., 2006; Schumacher et al., 2006; Beck and Rakyan, 2008; Estecio and Issa, 2009).

Hybridization intensities between the treated and untreated samples are compared

for each probe via a statistical model to estimate whether the probe is methylated

or not. Typically, these results are then visually connected to genomic annotation

to gain an understanding of the distribution of DNA methylation across the genomic

region.

Histone Modification Studies

Tiling arrays can also be used to study histone modifications through a technique

called ChIP-chip (chromatin immunoprecipitation combined with microarray chips).
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Collect DNA sample from 

an individual

Genomic DNA fragments
=Methyl group

Split sample in two

Untreated:  Input DNA
Retains Methylation

Apply Chemical Trt (e.g. McrBC)
to Remove Methylated DNA

Treated:  Methylation 
Depleted DNA

Figure 1.6. Illustration of DNA sample preparation technique for
DNA methylation profiling studies with tiling arrays. In this example,
DNA from one individual is split in two and sheared into similar sizes.
Treatment by digestion with a methylation restriction enzyme (e.g.
McrBC) is employed in one sample to remove methylated DNA. No
treatment is applied to the other sample, which retains both methy-
lated and unmethylated DNA. Single-stranded DNA from both of
these samples is then hybridized to tiling arrays. AffymetrixR© mi-
croarray images courtesy of AffymetrixR© Image Library (2009)
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Chromatin immunoprecipitation investigates the interaction between DNA and pro-

teins. During the immunoprecipitation process, it is possible to isolate DNA that is

linked to a specific protein (e.g., DNA that is wrapped around a histone protein with

a certain chemical attachment) using a protein-specific antibody. Similar to the DNA

profiling sample preparation, a control (untreated) sample and the immunoprecipi-

tated sample are then hybridized to tiling arrays. Comparing hybridization intensities

between these two samples via a statistical model gives estimates for which probes

are enriched or depleted of that protein (Buck and Lieb, 2004).

1.5 Genomic Annotation and Tiling Array Experiments

Tiling arrays have enabled researchers to investigate both gene expression and

epigenetic modifications on a genome-wide scale. Although probe selection without

regard to genome annotation is an essential design component of tiling arrays, the

knowledge of which probes belong to which genomic regions can provide valuable

information in statistical analysis. In differential expression studies, for example, an-

notation information can be used to select biologically relevant probes by retaining

probes that cover exons and filtering out probes that correspond to introns and in-

tergenic regions. In DNA methylation profiling studies, neighboring probes are likely

to be correlated and often DNA methylation patterns based on genomic annotation

are identified after a statistical analysis is complete. Incorporating information from

both neighboring probes and genomic annotation into statistical methods may help

improve prediction of probe DNA methylation status, and is the focus of this disser-

tation. Specifically, the use of genomic annotation information in statistical methods

for both differential expression analysis and DNA methylation profiling with tiling

arrays is explored.
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2. GENOMIC ANNOTATION OF TILING ARRAYS

A key feature offered by tiling arrays is unbiased, wide-scale genomic coverage. This

feature allows for the study of epigenetic modifications and other biological phenom-

ena that were not possible to investigate with gene expression arrays. Although

selecting probes without regard to genome annotation provides this unbiased cover-

age, it is often of interest to connect results from tiling array experiments to genome

annotation for interpretation after a statistical analysis is complete. The genomic po-

sition and sequence of probes is often provided in a data file containing information

about the array platform. However, information about which probes correspond to

exons, introns, or intergenic regions is not always given (Figure 2.1).

Online genome annotation databases can be employed to obtain the location of

exon and intron regions of known genes for specific organisms. These data can be

linked to probe position information to determine which genomic element each probe

represents (Figure 2.2). Connecting probes to genomic annotation not only aids in

interpretation of tiling array data results, but also enables the possibility of incorpo-

rating genomic annotation information into statistical methods. This work investi-

 

Probes

3’5’

Intergenic?  Exon/Intron of Gene? 

Figure 2.1. Example of a genomic region without genome annotation
information. Genomic locations of tiling array probes are known, but
information about whether probes correspond to exons, introns, or
intergenic regions is unknown.
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Probes

INTERGENIC INTERGENICINTRON EXONEXON

GENE

3’5’

Figure 2.2. Example of a genomic region after connecting tiling array
probes to genome annotation information. Both the genomic locations
of tiling array probes and the genomic elements the probes represent is
known. In this example, information about which probes correspond
to exons, introns, or intergenic regions is given.

gates the benefits of utilizing genome annotation in differential expression and DNA

methylation tiling array data analysis.

2.1 Genomic Annotation and Differential Expression Analysis

Recall that differential expression studies aim to identify a set of genes with sta-

tistically significant different expression levels between conditions of interest (e.g.,

treatment vs. control). Ideally, statistical testing is performed on a gene level for

all annotated genes represented on the array. However, without genomic annotation

information, it is unknown which tiling array probes correspond to exons of genes

(Figure 2.1), where transcript accumulation is typically expected to occur. Testing

for differential expression between conditions is therefore limited to testing each of

the probes on the tiling array individually.

Probe level testing is problematic for many reasons. Probe level tests make it

challenging for scientists to obtain practical results that can be interpreted on a

gene level. For instance, if some probes are identified as significantly different for

a particular gene and other probes are not, it is difficult to draw conclusions about

differential expression for that gene. Furthermore, whole-genome tiling arrays often

contain millions of probes. Testing on a probe level greatly increases the well known
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Probes used in Analysis

Probes not used in Analysis  

INTERGENIC INTERGENICINTRON EXONEXON

GENE

3’5’

Figure 2.3. Example of selecting biologically relevant tiling array
probes for differential expression analysis using genome annotation
information. Red probes correspond to exons of genes and are re-
tained for differential expression analysis; whereas light grey probes
cover introns and intergenic regions and are filtered out before anal-
ysis. The set of red probes for this gene are considered to be a probe
set.

statistical challenge of multiple testing since the magnitude of the number of tests

increases from the thousands (number of genes) to the millions (number of probes).

Many of these probes are not even of primary interest since they correspond to introns

or intergenic regions. These issues can be resolved by connecting tiling array probes to

genomic annotation and using biologically relevant probes for differential expression

analysis. Selection is made by retaining probes covering exons and filtering out probes

corresponding to introns and intergenic regions. The resulting data have the same

format as gene expression arrays with each gene containing multiple probes in exons

of genes to form a probe set (Figure 2.3).

2.2 Genomic Annotation and DNA Methylation Profiling

In DNA methylation profiling studies with tiling arrays, statistical methods are

employed to determine whether each probe is methylated or not. Since DNA methy-

lation can occur anywhere in the genome at certain cytosine sites, all of the probes are

biologically relevant and methylation status of each individual probe estimated. It is

common in such studies to connect estimated probe methylation status to genomic
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Figure 2.4. Example of linking genomic annotation to DNA methyla-
tion analysis results (Zhang et al., 2006). A euchromatic region (left),
a heterochromatic region (middle), and the FWA (late flowering mu-
tant) locus of chromosome four of Arabidopsis thaliana are shown.
The top two tracks give locations of repetitive elements and siRNAs.
The seven tracks below that give DNA methylation and gene expres-
sion results for three different types of Arabidopsis (WT, ddc, and
met1). The bottom track shows where genes are located. Results are
compared visually and summarized by genomic element across the re-
gion to identify DNA methylation patterns. Image courtesy of Zhang
et al. (2006).

annotation after the analysis is complete (Figure 2.4). Patterns of DNA methylation

are then investigated according to different types of genomic elements.

Different organisms show different overall methylation patterns. Mammals of-

ten exhibit a global pattern, where DNA methylation is found at most CpG sites

throughout the genome, with the exception of CpG islands which are typically un-

methylated. Some plants, such as maize, have high levels of DNA methylation, but

others such as the model plant Arabidopsis thaliana display a mosaic DNA methyla-

tion pattern, where regions of dense methylation are interspersed with unmethylated

regions (Figure 2.5) (Suzuki and Bird, 2008).

Arabidopsis thaliana was the first organism for which a genome-wide map of DNA

methylation was constructed (Zhang et al., 2006; Zilberman et al., 2007), with almost
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Methylated DNA

Unmethylated DNA

Transposon

Gene

Mosaic DNA Methylation
(Plants, for example, Arabidopsis thaliana)

Figure 2.5. Example of mosaic DNA methylation. As defined by
Suzuki and Bird (2008), mosaic methylation occurs when densely
methylated regions (grey) are interspersed with unmethylated or less
densely methylated regions (yellow). In this example genes (arrows)
are either heavily methylated or completely unmethylated, and trans-
posons (red) are methylated.

20% of the genome exhibiting dense methylation. These studies suggest that dense

DNA methylation typically occurs in transposons, which are targeted for methylation

by an RNA-mediated defense mechanism, and inactive heterochromatin, including

the darkly stained region on chromosome 4 known as the heterochromatic knob. In

addition, over 30% of all genes are densely methylated in their transcribed regions,

with transcription not generally suppressed by this gene body methylation (Zhang

et al., 2006; Zilberman et al., 2007; Suzuki and Bird, 2008). The pattern of longer

regions of DNA methylation in certain genomic regions (e.g., transposons, gene bod-

ies) interspersed with unmethylated or less densely methylated regions, suggests that

incorporating genome annotation information into statistical methods used to de-

tect locations of DNA methylation in Arabidopsis (and other organisms with similar

patterns) may be valuable.

2.3 Arabidopsis thaliana Tiling Arrays

Arabidopsis thaliana is a small mustard plant that serves as the model organism for

plants. Due to its short life cycle (six weeks) and small size, it is an ideal organism for

lab experiments (Meinke et al., 1998). Arabidopsis thaliana also has a small genome
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size with five chromosomes and around 30,000 genes (The Arabidopsis Information

Resource (TAIR), 2008).

Arabidopsis thaliana research has been at the forefront of the fields of genomics

and epigenomics. It was the first plant (and third multi-cellular organism) to be

fully sequenced (The Arabidopsis Genome Initiative, 2000), and the first gene ex-

pression microarray was based upon Arabidopsis thaliana DNA sequences (Schena

et al., 1995). Genome annotation information is stored at the The Arabidopsis In-

formation Resource (TAIR) (2008) website (www.arabidopsis.org), with updates to

gene structures made 1-2 times per year. In epigenomics research, it was the first

organism for which a genome-wide DNA methylation study was conducted (Zhang

et al., 2006). In this work, two different tiling arrays (a custom-designed cDNA array

and an AffymetrixR© array) developed forArabidopsis thaliana are used as motivating

examples to show how genomic annotation information can be incorporated into sta-

tistical methods for differential expression and DNA methylation studies. A summary

of the design and genomic annotation of these two arrays is given in this chapter.

2.3.1 Custom-designed Chromosome 4 Tiling Array

Lippman et al. (2004) custom-designed a cDNA spotted tiling array to investi-

gate gene expression, DNA methylation, and certain histone modifications of a het-

erochromatic knob (hk4S) on chromosome four of Arabidopsis thaliana. Heterochro-

matin is highly condensed chromatin that is less accessible for transcription than

its counterpart, euchromatin. Heterochromatin is known to contain repetitive DNA

and transposons, and heterochromatic DNA is often heavily methylated (Martienssen

and Colot, 2001). Although heterochromatin is typically found at centromeres and

telomeres, sometimes regions of heterochromatin are present in other parts of the

chromosome called “knobs” (Grewal and Jia, 2007). In Arabidopsis, one of these

heterochromatic knobs is found on the short arm of chromosome 4 (hk4S).
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Custom-designed Chromosome 4 Tiling Array
Arabidopsis thaliana

Genes

71.6%

Intergenic 

28.4%

Figure 2.6. Percentage of probes mapping to genes and intergenic
regions on the Lippman et al. (2004) custom-designed tiling array
for the chromosome 4 heterochromatic knob (hk4S) in Arabidopsis
thaliana.

The Lippman et al. (2004) tiling array contains 1722 unique probes. Of these,

1407 probes cover a 1.5-megabase (Mb) region centered on hk4S with representation

of a small euchromatic region on both sides of the knob. Each probe is replicated two

to four times on the array. Recall that spotted cDNA array probes are often longer

than AffymetrixR© probes and, on this array, the average probe length is 995 bases

with an average gap of 56 bases between probes (although many probes overlap).

Connecting the probes to genomic annotation reveals that a majority of the probes

(71.6%) lie in gene regions (Figure 2.6), with an average of three probes representing

each gene. A set of 680 probes from the euchromatic region can be used as controls,

as they are less likely to be methylated than probes in the heterochromatic knob.

2.3.2 AffymetrixR© Whole Genome Tiling Array

The Arabidopsis Affymetrix R© Tiling Array 1.0F/R is a whole genome tiling array

that has been used in many different types of studies since its release in 2006 (e.g.,

Zhang et al. (2008); Hazen et al. (2009); Naouar et al. (2009); Zeller et al. (2009))
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Table 2.1
Number of tiling array perfect match (PM) probes per chromosome
on the Affymetrix R© whole genome tiling array.

Chromosome Number of PM probes

1 779,303

2 507,749

3 600,472

4 469,660

5 682,807

TOTAL 3,039,991

and was the technology used for the first genome-wide DNA methylation profiling

study (Zhang et al., 2006). The Arabidopsis Affymetrix R© Tiling Array 1.0F/R covers

the entire Arabidopsis genome by placing 25 base probes along non-repetitive regions

with an average gap (and no overlap) of 10 bases between probes. Probe sequences

are based on version 5 of The Institute for Genome Research (TIGR) Arabidopsis

database which was completed in 2004 (AffymetrixR© Package Insert, 2006). Note

that TIGR hosted the online genome annotation database for Arabidopsis before it

begun being maintained by TAIR, starting in 2005.

There are 3,039,991 tiling array probes covering the five Arabidopsis chromosomes.

Table 2.1 gives the number of perfect match (PM) probes on each of the five chro-

mosomes. Approximately 0.4% (∼ 12,000) of these probes are repetitive since their

sequence is represented at more than one genomic location. However, none of the

probes are repeated on their own chromosome.

Tiling array probes are mapped to their genomic annotation by using data from

the The Arabidopsis Information Resource (TAIR) (2008) website (www.arabidopsis.

org). Each probe is mapped to an exon, intron, or intergenic region of the TAIR8

genome. For a probe to be considered part of an exon, it must overlap with at

least one base of an exon. Since genes can have alternative isoforms, only TAIR8
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Affymetrix Whole GenomeTiling Array
Arabidopsis thaliana

Exons

45.4%

Intergenic 

40.3%

Introns

14.3% 

Figure 2.7. Percentage of probes mapping to exons, introns, and
intergenic regions on the AffymetrixR© whole genome tiling array for
Arabidopsis thaliana.

representative gene models are used in the mapping. A large percentage of probes

(45.4%) correspond to exons of genes, while 14.3% correspond to introns and 40.3%

are in intergenic regions (Figure 2.7). Since some genes overlap, there are a small

number of probes (0.4%) that correspond to more than one gene. There are 31,391

genes represented by probes in exons, averaging 44 probes per gene and covering 95%

of TAIR8 genes.



29

3. USING GENOMIC ANNOTATION FOR DIFFERENTIAL

EXPRESSION ANALYSIS WITH TILING ARRAYS

Gene expression can be studied using both gene expression and tiling microarrays.

Understanding the design differences between these arrays is essential for developing

statistical methods to test for differential expression between conditions. Recall that

gene expression arrays cover exons of genes, while tiling arrays cover whole genomic

regions without regard to annotation. As described in Chapter 2, tiling array probes

can be connected to their genomic annotation to identify biologically relevant probes

for a differential expression analysis. This is accomplished by filtering out probes

inside introns and intergenic regions and retaining probes covering exons. This initial

bioinformatic step yields tiling array data in the same form as gene expression array

data, with multiple probes corresponding to a probe set for each gene.

Statistical issues for differential expression analysis using gene expression arrays

have been thoroughly investigated (e.g., Kerr et al. (2000); Wolfinger et al. (2001);

Bolstad et al. (2003); Irizarry et al. (2003); Smyth (2004)) and many analysis methods

are available through statistical packages such as R/Bioconductor (R Core Develop-

ment Team, 2009; Gentleman et al., 2004). With tiling and gene expression array

data in the same form, statistical methodology developed for gene expression arrays

can also be employed to conduct gene level tests for tiling arrays. Here, real data from

an Arabidopsis thaliana experiment, where the same mRNA samples are hybridized

to both AffymetrixR© gene expression and tiling arrays, are used to compare the two

array types and demonstrate the application of genomic annotation to tiling array

data. Note that the work in this chapter has been described previously in Olbricht

et al. (2009) and parts of the chapter are taken from that text1.

1The contents of this chapter are adapted from a previous publication (Olbricht et al., 2009). Some
sections are taken verbatim from Olbricht et al. (2009) while others have been revised or paraphrased.
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3.1 Comparison of AffymetrixR© Gene Expression and Tiling Arrays

A comparison of AffymetrixR© gene expression (ATH1 array) and tiling array de-

signs for Arabidopsis thaliana highlights some potential advantages and disadvantages

of each array type for differential expression analysis. Note that both arrays use 25

base probes, however there is a magnitude of difference in genomic coverage on the

two arrays. On the ATH1 array, there are 251,078 probes which correspond to 22,810

probe sets. Some probe sets correspond to more than one gene resulting in coverage

of 23,087 (70%) of TAIR8 genes. In comparison, recall that the AffymetrixR© Ara-

bidopsis tiling array contains 3,039,991 probes which cover 31,391 (95%) of TAIR8

genes. There are 22,850 TAIR8 genes that are present on both arrays.

One potential advantage of tiling arrays is that they provide more genomic cov-

erage per gene than gene expression arrays. AffymetrixR© Arabidopsis tiling arrays

average 44 probes per gene compared to an average of 11 probes per gene for ATH1

arrays. However, ATH1 arrays have a potential advantage in the probe selection pro-

cess, since probes on that array are selected for optimal hybridization quality/ability

for gene expression; whereas tiling array probes are not designed specifically to opti-

mize the study of gene expression.

In addition to providing more dense coverage, tiling array annotation can be based

on the most current genome version. Although the sequences of the AffymetrixR©

Arabidopsis tiling array probes are based on the TIGRv5 genome version, it is possible

(due to their dense coverage) that as more up-to-date annotation becomes available

tiling arrays will have probes covering newly discovered genes. Gene expression arrays,

however, must be based on the annotation available when the array is made. If new

genes are discovered, a new array platform must be made to investigate them. For

Arabidopsis, the ATH1 array is based on known genes available as of December 2001

in The Institute for Genome Research (TIGR) database (AffymetrixR© Data Sheet,

2004), and any information from more recent genome versions is not incorporated in

the design. This accounts for the difference between the 23,087 genes represented on
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the ATH1 array and the 31,391 genes represented on the AffymetrixR© Arabidopsis

tiling array. This said, there is one convenient aspect of the ATH1 array that is

not available for the AffymetrixR© tiling array, namely the availability of a file from

Affymetrix R© that connects probes on the array to their corresponding probe sets.

The TAIR website (www.arabidopsis.org) provides additional data that links probe

sets to genes in the current genome annotation version, but this annotation is not

readily provided by AffymetrixR© for tiling arrays.

3.2 Statistical Methods

A common goal of a differential expression study based on annotated genes is to

determine for each gene whether or not there is a significant difference in expression

levels between conditions (e.g., treatment vs. control). Whereas this is a common

application of gene expression arrays, it is only with the availability of genomic an-

notation for tiling arrays that it is possible to conduct gene level tests for differential

expression. After filtering out introns and intergenic tiling array probes, AffymetrixR©

gene expression and tiling arrays have data for each gene in the form of probe sets

and thus the same statistical model can be applied to both array types. This results

in 31,391 and 22,810 probe set level tests for the tiling and ATH1 array, respectively.

Drawing from the literature for gene expression arrays, the following differential

expression analysis can be conducted for either array type. Note that these methods

are only one possibility of the many options available for statistically testing differ-

ential expression. First, the perfect match (PM) intensities are pre-processed using a

robust multi-array analysis (RMA) background correction (Irizarry et al., 2003) and

a quantile normalization (Bolstad et al., 2003), setting the distribution of all arrays to

be equal. An analysis of variance (ANOVA) model is performed to detect probe sets

which are differentially expressed between two treatment groups using the natural

log of the background corrected, normalized PM intensities as the gene expression

level. The ANOVA model (3.1) fit for each probe set is similar to the two-step ap-
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proach employed by Wolfinger et al. (2001) and extended by Chu et al. (2002) for

Affymetrix R© arrays is:

yijk = µ + Ti + Pj + (TP )ij + εijk (3.1)

where i = 1, 2; j = 1, ..., p; k = 1, ..., n; and yijk is the gene expression level for the kth

replicate of probe Pj under treatment Ti, µ is the average gene expression level over

all probes, treatments, and replicates, T and P are the treatment and probe main

effects, TP is the interaction between treatment and probe, and εijk are independent

errors that are normally distributed with mean 0 and variance σ2.

To determine if there are statistically significant differences in expression between

two treatment groups, the following hypotheses are tested for each probe set:

Ho : T1 − T2 = 0 vs. Ha : T1 − T2 6= 0. (3.2)

The test statistic is:
y1.. − y2..
√

2∗MSE
np

∼ t2p(n−1) under Ho (3.3)

where the mean squared error (MSE) and the number of probes (p) from model (3.1)

will differ for each probe set.

Testing for differential expression at each probe set results in thousands of hy-

potheses tests that are conducted simultaneously in a single experiment. For a single

test, the probability of a Type I error (i.e., a false positive declaring a gene is differ-

entially expressed when it truly is not) is controlled by setting the significance level

(α). However, when all tests are considered together, the chance of at least one false

positive increases with the number of independent tests being performed. This issue

is known as the multiple testing problem and several procedures have been developed

to control different variations of the Type I error rate for a set of simultaneous tests

while also considering the power of the tests. In this work, two approaches are em-

ployed to adjust for multiple testing. The Holm adjustment controls the familywise

error rate, which is the probability of making at least one false discovery among the

probe set level tests (Holm, 1979). Benjamini and Hochberg’s method controls the
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false discovery rate (FDR), which bounds the expected rate of false discoveries (Ben-

jamini and Hochberg, 1995). Holm’s procedure is more conservative than that of the

FDR approach.

3.3 Analysis of Arabidopsis thaliana Data

Data from an Arabidopsis thaliana study are used to demonstrate the application

of tiling arrays for studying differential expression, as well as to compare tiling and

gene expression array results. In this study, an overexpressing Arabidopsis line of

the MTF gene (Myb4) is compared to wild-type Columbia (Col-0) Arabidopsis. The

MTF gene is a myb transcription factor that, when mutated, can increase the plant’s

susceptibility to allowing the transfer of foreign DNA from Agrobacterium to the

plant (Gelvin, 2003). Gene expression is measured by hybridizing the same mRNA

samples from the root tissue of both Arabidopsis sample types to both AffymetrixR©

ATH1 and tiling arrays. Three biological replicates of each of the two sample types

are used, yielding a total of 6 arrays of each type. The goal is to identify differentially

expressed genes between Col-0 and Myb4.

Since the same biological samples are hybridized to both array types, discrepan-

cies in results should be due to technological differences between the arrays or other

experimental factors, such as RNA degradation, rather than due to biological differ-

ences in the samples. The same ANOVA model (3.1) is applied to data from both

array types where the treatment effect is the sample type (Col-0, Myb4). The hy-

potheses for differential expression between the two sample types (3.2) are tested via

test statistic (3.3) for each probe set, where n=3 and p can differ for each probe set.

The FDR and Holm’s procedures identified 4228 and 660 significant differentially

expressed probe sets, respectively, on the ATH1 array at α=0.05 (Figure 3.1, top).

On the tiling array, FDR/Holm’s identified 2285 and 510 probe sets that exhibited

significant differential expression (Figure 3.1, bottom). Figure 3.1 shows the average

log fold change of each probe set for both arrays. A positive log fold change indicates
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Figure 3.1. The top figure shows the mean log fold change vs. probe
set number for the ATH1 array. The bottom figure shows the mean
log fold change vs. gene number for the tiling array. The gene num-
bers are ordered by chromosomal position for the tiling array, while
probe set numbers for the ATH1 array do not correspond to genomic
order since one probe set can represent more than one gene. For both
graphs, probe sets that are not significant are grey, probe sets signifi-
cant with FDR only are in blue, and probe sets significant with both
FDR and Holm’s are in red. The numbers in the legend correspond
to the number of probe sets in each of the three groups.
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up-regulation in Col-0 compared to Myb4 and a negative log fold change is indicative

of down-regulation in the Col-0 sample. Note that probe sets in the ATH1 graph

(Figure 3.1, top) are not ordered since some probe sets correspond to more than one

gene; whereas each probe set on the tiling array corresponds to one gene and can

be ordered by the gene’s position on the chromosome (Figure 3.1, bottom). The

tiling array identified almost half as many differentially expressed probe sets using

the FDR procedure as the ATH1 array, with the majority of significant probe sets

demonstrating up-regulation and a loss of down-regulation compared to the ATH1

results.

To compare the results of differential expression in terms of genes rather than

probe sets, the 22,850 genes that are present on both arrays are investigated. While

many of the same significant differentially expressed genes are identified using both

array types (1046 with FDR), there are also many genes uniquely identified as signif-

icant on one array but not the other (Figure 3.2). To investigate the discrepancies in

the array results, one option is to look at the similarity of the mean log fold change

for genes represented on both arrays. If both arrays are performing similarly at the

gene level, the average log fold change for a particular gene will be similar on both

arrays (since the same biological samples were used) and thus follow a 45◦ line if

plotted against each other (Figure 3.2). FDR significant genes on both arrays (blue

points) are clearly further from zero and tend to follow the 45◦ line, with more of

those genes having a positive log fold change (and hence up-regulated in Col-0) on

both arrays. Points in the upper left and lower right quadrant are genes that differ

in the sign of their log fold change between arrays. For example, genes in the lower

right quadrant have a positive log fold change in the tiling array, but a negative log

fold change in the ATH1 array. Investigating the significant points in this quadrant

can help explain why many more down-regulated genes are identified in the ATH1

analysis than in the tiling analysis.

Two other quantities in addition to the mean log fold change affect the significance

of a gene. The number of probes (p) and the mean squared error (MSE) per probe
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Figure 3.2. Mean log fold change for genes represented on both the
ATH1 and tiling arrays. FDR results are in grey (non-significant),
orange (significant with ATH1 only), green (significant with tiling
only), and blue (significant in both) points. The numbers in the
legend correspond to the number of genes in each of the four groups.
The 45◦ line is for comparison purposes.

set also affect the test statistic (3.3) for differential expression. The tiling array has

an average of 44 probes per gene, giving it an advantage over the ATH1 array which

has an average of 11 probes per probe set. The tiling array, however, also has a larger

average MSE (0.884) per probe set than the ATH1 array (0.256). This reduction in

variation may be due to the optimal probe selection process in ATH1 arrays.

In summary, several genes are identified as differentially expressed using both

arrays and may be of interest for further study. However, even though the same

biological samples are hybridized to both array types and the same statistical analysis

is used to test for differential expression, there are many discrepancies in the results.

Although differences are expected due to the design differences in the two arrays,



37

this work suggests that more research is needed to better understand the use of tiling

arrays for studying differential expression.

3.4 Summary

A common goal of gene expression studies is to identify genes that are differentially

expressed between conditions. Gene expression arrays have been widely used for this

application for many years. Coupling tiling arrays with their annotation information,

an equivalent analysis can be performed. Tiling arrays have a few advantages in this

type of analysis, as they offer more coverage per gene and cover more annotated genes.

However, because their probes are not specifically designed for the study of gene

expression, a comparison between tiling and gene expression arrays for this application

is not well understood. This is demonstrated in a real data analysis of Arabidopsis

thaliana where the same biological samples are hybridized to both array types and

the same statistical analysis performed. While the statistical model presented here is

relatively simple, it demonstrates how genomic annotation information (i.e., knowing

which probes are in exons of genes) can be used to identify biologically relevant probes

for a differential expression analysis with tiling arrays.
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4. USING GENOMIC ANNOTATION FOR DNA METHYLATION

PROFILING WITH TILING ARRAYS

Identifying locations of DNA methylation across a genome is a key step to better

understanding the role of this epigenetic mechanism. Tiling arrays allow for the

possibility of large-scale (often genome-wide) studies of DNA methylation. These

studies present many statistical challenges due to issues such as the large number

of probe-level tests (often millions), small number of replicates, dependency between

neighboring probes, and experimental noise present in the data. In a typical DNA

methylation profiling study, statistical methods are employed to determine which

probes or regions of probes are methylated. These results are then visually connected

back to genome annotation to identify patterns of DNA methylation for different

genomic elements. While investigating the distribution of DNA methylation across

the genome is helpful, it may be more meaningful to incorporate genomic annotation

into statistical methodology rather than using it after the analysis is complete. In this

chapter, current statistical methods for identifying locations of DNA methylation are

reviewed and a new approach which extends ideas from these methods to incorporate

genomic annotation information into a statistical analysis is proposed.

4.1 Current Statistical Methods

4.1.1 Review of Experimental Procedures and Independent Testing

To understand statistical methods for estimating the DNA methylation status of

tiling array probes, it is beneficial to review the experimental procedure and resulting

data structure from such studies. Recall that DNA methylation profiling experiments

involve the application of treatments such as bisulfite conversion, methylation sen-
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sitive restriction enzymes, or methylcytosine immunoprecipitation to genomic DNA

samples (Weber et al., 2005; Keshet et al., 2006; Schumacher et al., 2006; Beck and

Rakyan, 2008; Estecio and Issa, 2009). As a brief example, consider an experiment

which uses the methylation restriction enzyme McrBC to separate methylated and

unmethylated DNA (Figure 1.6). A genomic DNA sample from one individual is

split into two equal subsamples and digestion with McrBC is applied to one of the

subsamples, resulting in a methylation depleted (treated) sample. No treatment is

applied to the other subsample and thus it is representative of the total (untreated)

genomic DNA with methylation retained. These samples are then hybridized to mi-

croarrays. Statistical methods are needed to compare hybridization intensites between

the untreated and treated samples for each probe to estimate whether the probe is

methylated or not. Methylated probes are expected to have higher hybridization in-

tensities in the untreated sample than the treated sample, since the untreated sample

retains methylated DNA and the treated sample does not.

For spotted cDNA arrays, a linear model approach has been successfully applied

with an analysis of variance (ANOVA) model (Lippman et al., 2004; Martienssen

et al., 2005; Vaughn et al., 2007; Yoo and Doerge, 2009) to test for methylation

status of each probe. Recall that for spotted cDNA arrays, both the untreated and

treated samples are hybridized to the same array with different dye labels. As with

gene expression arrays, probes are usually pre-processed by performing a background

correction, normalizing for dye effects, and applying a log-transformation prior to

implementation of the statistical model. The ANOVA model (4.1) that has been

applied in previous studies and assumes a common variance for all probes is:

yijkpr = µ + Ti + Dj + Ak + Pp + TPip + DPjp + APkp + εijkpr (4.1)

where i = 1, 2; j = 1, 2; k = 1, 2, .., na; p = 1, ..., nup; r = 1, ..., np; and yijkpr

represents the background corrected, normalized, log-transformed intensity of sample

type Ti labeled with dye Dj on array Ak for probe Pp and probe replicate r. Note that

na is the number of arrays, nup is the number of unique probes, and np is the number

of replicates of probe p. The µ term is the grand mean and T,D, A, P represent the
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treatment (sample type), dye, array, and probe main effects, with TP , DP , and AP

corresponding to respective interaction effects. The errors, εijkpr, are assumed to be

independent normally distributed random variables with mean 0 and variance σ2.

The hypotheses (4.2) employed in initial studies to test for methylated probes

(Lippman et al., 2004; Martienssen et al., 2005) are:

Ho : (T1 +TP1p)− (T2 +TP2p) = 0 vs. Ha : (T1 +TP1p)− (T2 +TP2p) 6= 0 (4.2)

where T1 corresponds to the untreated sample and T2 represents the treated sample.

Although these hypotheses (4.2) were proposed and are commonly used for differential

expression analysis (Black and Doerge, 2002), DNA methylation profiling studies pose

some new issues. First, it is important to note that while conceptually the difference

between untreated and treated samples should be near 0 for unmethylated probes

(since both samples retain unmethylated DNA), the true effect of the treatment is

unknown. To account for any unexpected effect of the treatment other than removing

truly methylated DNA, a set of control probes can be chosen which are known a

priori to be unmethylated. The methylation status of probes can then be determined

relative to the control probes. Also, in differential expression analysis, a two-sided

test is conducted to indicate that probes can either remain unchanged or be up-

or down-regulated. However, for DNA methylation profiling experiments, it is of

interest to determine if DNA methylation is either present or absent (relative to

control probes) at a particular probe. Thus, a one-tailed test is more appropriate for

DNA methylation tiling array data (Yoo and Doerge, 2009).

A set of updated hypotheses (4.3) employed in Vaughn et al. (2007) and detailed

in Yoo and Doerge (2009) that address these issues specific to DNA methylation are:

Ho : (T1+TP1p)−(T2+TP2p) ≤ µ0 vs. Ha : (T1+TP1p)−(T2+TP2p) > µ0 (4.3)

where µ0=median{(T1 + TP1c) − (T2 + TP2c),∀c control probes}. The test statistic

(4.4) for testing hypotheses (4.3) at probe p is:

z∗p =
(T1 + TP1p) − (T2 + TP2p) − µ0

√

2σ̂2

nanp

∼ N(0, 1) under H0 (4.4)
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Table 4.1
Example of data from a DNA methylation AffymetrixR© tiling ar-
ray experiment. yipk represents the background corrected, normal-
ized, log-transformed intensity of the pth probe, for sample type
(untreated or treated) i, of biological replicate k, where i = 1, 2;
p = 1, ..., P ;k = 1, 2, .., n. dpk is the paired difference between the un-
treated and treated sample collected from the kth individual at probe
p.

Biological Untreated Treated Paired

Replicate (Total DNA) (Methyl Depleted) Difference

1 y1p1 y2p1 dp1 = y1p1 − y2p1

2 y1p2 y2p2 dp2 = y1p2 − y2p2

3 y1p3 y2p3 dp3 = y1p3 − y2p3

... ... ... ...

n y1pn y2pn dpn = y1pn − y2pn

where σ̂2 is the common variance estimate for all probes. Note that a per-probe

variance could also be employed, with appropriate adjustments to the test statistic

and its distribution under the null hypothesis.

Affymetrix R© DNA methylation tiling array experiments differ from spotted cDNA

arrays in that each of the two samples (untreated and treated) collected from the

same individual is hybridized to a separate array and this process is repeated for

additional biological replicates. AffymetrixR© tiling array data are typically pre-

processed by background correction, normalization to remove array effects, and log-

transformation prior to employing statistical methods for sample comparison. Table

4.1 gives an example of the pre-processed data generated from such an experiment

using Affymetrix R© tiling arrays.

With data in this format, a simplistic approach for determining whether a probe

is significantly methylated is to conduct a paired t-test at each probe. Pairwise

differences (Table 4.1) can be calculated between observations on the same individual
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under the two different conditions, dpk = y1pk − y2pk. This difference is expected to

be large for methylated probes since the untreated sample retains methylated DNA

and the treated sample does not. The following hypotheses (4.5), which address the

issues specific to DNA methylation tiling array experiments, can be tested for each

probe:

Ho : µdp
≤ µ0 vs. Ha : µdp

> µ0 (4.5)

where µdp
is the population mean for the paired differences between the untreated

and treated samples for probe p and µ0=median{µdc
,∀c control probes}. The test

statistic (4.6) for each probe is:

t∗p =
dp − µ0

Sdp√
n

∼ t(n − 1) under Ho (4.6)

where dp =
∑n

k=1
dpk

n
and Sdp

=

√

∑n
k=1

(dpk−dp)2

n−1
, noting that Sdp

may differ for each

probe (i.e., per-probe variance). Note that a common probe variance could also be

employed with appropriate adjustments to the test statistic and its distribution under

the null hypothesis.

For both spotted cDNA and AffymetrixR© tiling arrays, the multiple testing issue

that arises due to the large number of hypothesis tests being conducted is typically

addressed by controlling the false discovery rate (FDR) at level α (Benjamini and

Hochberg, 1995). This procedure for controlling the FDR assumes the hypotheses

tests conducted for each probe are independent. However, probes are linearly ordered

across a genomic region, making this independence assumption questionable. Also,

previous studies have shown that for many organisms, methylated probes tend to oc-

cur together in regions of dense methylation (Suzuki and Bird, 2008), offering further

evidence that the methylation status of probes may depend on neighboring probes.

Effectively utilizing information from neighboring probes is a current statistical chal-

lenge for DNA methylation profiling studies with tiling arrays and are the main focus

of this research.
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4.1.2 Methods Incorporating Dependency Between Probes

An initial effort to incorporate the potential dependency between neighboring

tiling array probes into a statistical model involved the implementation of sliding

window tests to identify transcription factor binding sites (Cawley et al., 2004; Ji

and Wong, 2005; Buck et al., 2005; Keles et al., 2006). These methods combine

information from probes within a certain genomic distance of the probe being tested

to calculate a test statistic for that probe. Test statistics employed vary for different

procedures. For example, Cawley et al. (2004) use all probes within a window of 1000

bases of the probe being tested to calculate a Wilcoxon rank sum statistic. Keles et al.

(2006) allow a varying genomic window size so that the same number of probes will be

included in each window and probes in the window are combined via a moving average

(MA) of t-test statistics. While these methods accommodate the spatial structure of

the probes, they also present a few problems. First, if the window size is based on

genomic distance, test statistics for some probes may only utilize information from

a small number of probes; whereas if the window size is based on a fixed number

of probes then the genomic distance between probes in the window may be large so

that a dependency between some of the probes in the window is unlikely. Also, a

separate hypothesis test is still conducted for each probe, and although Keles et al.

(2006) proposed some options for accommodating this multiple testing problem when

tests are not independent, these alternatives are not optimal and testing of multiple

dependent probes remains an open problem for these methods.

An alternative framework to conducting individual hypotheses tests for each probe,

which also incorporates dependency between neighboring tiling array probes is a hid-

den Markov model (HMM) (Rabiner, 1989; Cappe et al., 2005). Hidden Markov mod-

els have been proposed to identify locations of transcription factor binding sites and

histone modifications through ChIP-chip experiments (Li et al., 2005; Ji and Wong,

2005; Du et al., 2006; Humburg et al., 2008). Yoo (2008) also proposed an HMM for

detecting locations of DNA methylation. In a hidden Markov model, a sequence of
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Op+1

qp-1 qp qp+1… …

Op-1 OpOp-1

qp+1qpqp-1

Figure 4.1. Illustration of a hidden Markov model. The random
variable qp represents the hidden state at probe p, while the random
variable Op represents the observed value at probe p. Arrows represent
conditional dependencies. Since the hidden state (qp) at probe p only
depends on the hidden state (qp−1) at probe p − 1 , the first-order
Markov property holds. Also, the observation (Op) at probe p is
conditionally dependent on the hidden state (qp) at probe p .

non-observable (hidden) random variables take on values in a set of finite states and

form a Markov chain. Although the states themselves are not directly observable, an

observable output is available, which is dependent on the hidden states (Figure 4.1).

In the case of DNA methylation tiling array experiments, the hidden states are the

true methylation status of the probes (methylated or not) and the observed values are

the intensity measurements. Standard algorithms (forward-backward (Baum et al.,

1970; Baum, 1972), Viterbi (Viterbi, 1967; Forney, 1973), Baum-Welch (Baum et al.,

1970)) are available for HMMs which can estimate the model parameters and the

hidden states using information from all probes.

A popular two-stage HMM approach for modeling tiling array data was proposed

by Ji and Wong (2005), where the first stage involves the calculation of empirical

Bayes t-statistics for each probe. In the second stage, the hidden states for each probe

are estimated with the forward-backward algorithm (Baum et al., 1970; Baum, 1972)

using probe-level statistics as observed values. The algorithm in the second stage is

restarted if two neighboring probes are more than a specified genomic distance apart.

Ji and Wong (2005) developed the TileMap software to implement this method and
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it has been used in a variety of studies, including the identification of locations of

DNA methylation (Zhang et al., 2006) and histone modifications (Zhang et al., 2007)

in Arabidopis thaliana.

Although the approach presented by Ji and Wong (2005) provides an advanta-

geous way to incorporate neighboring probes into DNA methylation status estima-

tion, Humburg et al. (2008) pointed out that some of the model parameters in Ji and

Wong (2005) and other methods are estimated in an ad hoc manner. This is also

the case for the HMM proposed by Li et al. (2005), who use results from a previous

study, and Yoo (2008), who uses the observed methylation status obtained from a hy-

pothesis test to estimate HMM model parameters. Munch et al. (2006) and Du et al.

(2006) use genomic annotation to identify a set of training data, which can be used to

estimate the HMM model parameters. Both studies focus on transcription mapping,

where expressed and non-expressed regions are identified, although Du et al. (2006)

notes a potential application to transcription factor binding site identification and

posits that any source of validated biological knowledge can be used in the context of

the particular application to select a good set of training data. Humburg et al. (2008)

propose the use of the Baum-Welch (Baum et al., 1970) or Viterbi training (Juang and

Rabiner, 1990) algorithms to obtain maximum likelihood estimates for HMM model

parameters using data from all probes rather using ad hoc methods. They apply this

method to a ChIP-chip histone modification tiling array study. As an alternative to

HMMs, a few Bayesian approaches have also been proposed for modeling tiling array

data (Qi et al., 2006; Keles, 2007; Gottardo et al., 2008; Wu et al., 2009; Mo and

Liang, 2010). Although these methods are potentially powerful alternatives, some of

them require experimental information that are not always readily available or are

computationally more complex than the standard HMM algorithms.

While the previous methods highlight the importance of incorporating a depen-

dency structure among probes and using a formal estimation procedure for model

parameters, the majority of them do not make use of genomic annotation informa-

tion. The only exceptions are the methods by Du et al. (2006) and Munch et al.
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(2006) which utilize genomic annotation to identify a set of probes to be used for

training data. Unfortunately, both of these methods used the training data to arrive

at a set of common parameter estimates for the whole genomic region, and neither

were applied to DNA methylation tiling array data. DNA methylation status of tiling

array probes is typically identified using one of the statistical methods described in

this section and then results are connected back to genome annotation to identify

patterns after the analysis.

Genomic annotation for many organisms is now available and previous studies

have revealed that, for some organisms, different genomic elements (e.g., genes, trans-

posons) may have different DNA methylation patterns than other genomic regions

(Suzuki and Bird, 2008). This research is motivated by a desire to improve DNA

methylation status prediction by coupling knowledge about genomic annotation with

statistical analysis for DNA methylation tiling array data. Here, a method is pro-

posed to incorporate genomic annotation information into a HMM framework for

estimating the DNA methylation status of tiling array probes. In particular, certain

model parameters are allowed to vary according to the genomic element the probe

represents and HMM estimation procedures are modified to include this extra layer

of information. The resulting model integrates the use of neighboring probe depen-

dency with genomic annotation, while obtaining maximum likelihood estimates of

HMM model parameters.

4.2 Hidden Markov Models (HMMs)

As described previously, a hidden Markov model is a probabilistic process in which

a set of underlying, unobservable hidden states form a Markov chain (Cappe et al.,

2005). At each time point (probe) in the chain, an observation is available whose

distribution depends on the underlying state (Figure 4.1). Prior to their successful

application in epigenomic studies, HMMs have been employed in a variety of applica-

tions from speech recognition (Rabiner, 1989; Jelinek, 1997) to analysis of biological
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sequence data (Durbin et al., 1998). In this section, the general HMM framework is

introduced along with a description of standard estimation algorithms and is discussed

in the context of DNA methylation profiling studies with tiling arrays.

4.2.1 General HMM Framework

The following summary about HMMs is based upon the model formulation in a

tutorial by Rabiner (1989). For hidden states S = {S1, ..., SN} a sequence of random

variables {qp, p = 1, ..., P} take on values in S. The variable qp represents the state

the process is in at time (or probe) p. The first-order Markov property holds for this

sequence such that the probability that the process is in state Sj at probe p + 1 (i.e.,

qp+1 = Sj) depends only on the state at probe p and no other previous states:

aij = P (qp+1 = Sj|qp = Si, qp−1 = Sip−1
, ..., q1 = Si1)

= P (qp+1 = Sj|qp = Si).
(4.7)

These probabilities (4.7) are transition probabilities which provide the probability

of the process going from state Si at probe p to state Sj at probe p + 1 for any p

(i.e., independent of time/probe). Transition probabilities (aij) have the following

properties (4.8):

aij ≥ 0

ΣN
j=1aij = 1 1 ≤ i, j ≤ N

(4.8)

and can be written in matrix form A = {aij}:

A =

















a11 a12 ... a1N

a21 a22 ... a2N

... ... ... ...

aN1 aN2 ... aNN

















. (4.9)

The probability of the first probe being in state Si is given by the initial state

distribution π = {πi}:

πi = P (q1 = Si) 1 ≤ i ≤ N. (4.10)
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Although the hidden states are unobservable, at each probe p an observation (Op)

is available (which may be discrete or continuous) that depends on the hidden state

at probe p. This is given by the observation probability distribution in state j,

B = {bj(op)}:

bj(op) = f(op|qp = Sj) 1 ≤ j ≤ N, −∞ < op < ∞. (4.11)

A hidden Markov model is characterized by hidden states (S), the state transition

probability distribution (A), the initial probability distribution (π), and the observa-

tion probability distribution (B). The complete parameter set (4.12) of the model is

denoted:

λ = (A, B, π). (4.12)

To simulate a sequence of P hidden states Q = {q1, q2, ..., qP} and observations

O = {o1, o2, ..., oP} from an HMM, the following steps can be implemented, given

parameter values for λ:

1. Use the initial probability distribution (4.10) to select the hidden state at the

first probe (q1 = Si).

2. Let p = 1.

3. Use the observation probability distribution (4.11) in state Si to obtain an

observed value op.

4. Use the state transition probability distribution (4.9) for state Si to determine

the next hidden state qp+1 = Sj.

5. For p < P , set p = p + 1 and go back to step 3. Once the final hidden state qP

and observation oP are generated, the procedure is stopped.

4.2.2 HMMs for DNA Methylation Profiling

For DNA methylation tiling array experiments, the goal is to determine whether

each of the p = {1, ..., P} probes is methylated or not. However, the true methylation
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…
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k=

0 or 1
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0 or 1

j=
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…y2,p+1,1 y2,p+1,2 y2,p+1,n…

Figure 4.2. A hidden Markov model for DNA methylation profiling
using tiling arrays. The circles represent probes with hidden states 0
for unmethylated probes and 1 for methylated probes. Arrows repre-
sent conditional dependencies. The hidden states for the probes fol-
low a first-order Markov chain with transition probabilities aij from
probe p−1 to probe p. The distribution of the observed data for each
probe is conditionally dependent upon the hidden state at that probe.
The boxes represent the observations (yipk) which are background cor-
rected, normalized, log-transformed intensities from the tiling array
experiment, where i = {1, 2} is the sample type (untreated, treated),
p = {1, ..., P} is the probe and k = {1, ..., n} is the biological replicate.

status is unknown and, instead, the information actually observed for each probe are

intensity values as in Table 4.1 for AffymetrixR© arrays. For spotted cDNA arrays, the

experimental effects (dye, array) can be removed to obtain data in the same format.

Thus, in terms of the HMM framework, the hidden states are S = {0, 1} where 0 is the

unmethylated state and 1 is the methylated state. Figure 4.2 illustrates the hidden

Markov model in the context of DNA methylation profiling. The initial probabilities

π = {π0, π1} can be thought of as the proportion of probes that are unmethylated or

methylated in the genomic region of interest. The transition matrix (4.13):

A =





a00 a01

a10 a11



 (4.13)
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gives the probabilities of moving from methylation status {0,1} at probe p to methy-

lation status {0,1} at probe p + 1 (e.g., a00 gives the probability of a probe being

unmethylated at probe p and staying unmethylated at probe p + 1). For both initial

probabilities and transition probabilities, information can be used from previous stud-

ies, or empirically estimated from the data, to obtain reasonable starting parameter

estimates for a formal estimation procedure. For instance, it is expected that a state

is more likely to remain the same upon transition than to change (i.e., a00 and a11

are expected to be much greater than a01 and a10).

Finally, the observed data for each probe consist of intensity values of untreated

and treated samples for n biological replicates. Since the data are paired (i.e., un-

treated and treated samples come from the same individual), it is reasonable to assume

the paired data (y1pk, y2pk) for each probe p and individual k follow a bivariate normal

distribution, conditional on the true methylation status. In other words, the observa-

tion probability distribution (4.14) for truly unmethylated (b0) and methylated (b1)

probes is assumed to be:

b0





y1pk

y2pk



 ∼ N









µ01

µ02



 ,





σ2
01 ρ0σ01σ02

ρ0σ01σ02 σ2
02







 Unmethylated Probes

b1





y1pk

y2pk



 ∼ N









µ11

µ12



 ,





σ2
11 ρ1σ11σ12

ρ1σ11σ12 σ2
12







 Methylated Probes.

(4.14)

The means for both the untreated and treated sample are expected to be similar

in magnitude for probes that are not methylated (i.e., µ01 ≈ µ02). For methylated

probes, the mean of the untreated sample is expected to be larger than the mean of

the treated sample (i.e., µ11 > µ12). Since the untreated and treated samples repre-

sent DNA collected from the same individual, correlation (ρ0 and ρ1) between these

observations is expected. Since the parameters for these distributions are unknown

in practice, they can be empirically estimated from the real data to obtain starting

estimates for a formal estimation procedure.
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An additional consideration is that the general HMM framework includes only

one observation per probe. However, in this context, there are n observations per

probe. To stay within the general HMM framework, one option is to average the n

observations, leading to the following modified observation probability distribution

(4.15):

b0





y1p.

y2p.



 ∼ N









µ01

µ02



 ,
1

n





σ2
01 ρ0σ01σ02

ρ0σ01σ02 σ2
02







 Unmethylated Probes

b1
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y2p.



 ∼ N









µ11

µ12



 ,
1

n





σ2
11 ρ1σ11σ12

ρ1σ11σ12 σ2
12







 Methylated Probes.

(4.15)

Another option is to combine information from multiple observation sequences into

the state and parameter estimation algorithms. This alternative is discussed in the

future work chapter, but for the remainder of this research the average of the n

observations is employed.

4.2.3 HMM Estimation Algorithms

For hidden Markov models, there are three main problems that need to be ad-

dressed. First, the likelihood function, or the probability of the observation sequence

given the model parameters P (O|λ), needs to be efficiently computed. Second, the

hidden states need to be estimated in an optimal way given the observation sequence

and the model parameters. And, finally, the model parameters need to be estimated

so that P (O|λ) is maximized. Standard algorithms have been developed to address

each of these issues (Rabiner, 1989). The forward-backward algorithm (Baum et al.,

1970; Baum, 1972) can both efficiently compute P (O|λ) and estimate the hidden

states. When used to estimate the hidden states, the forward-backward algorithm

maximizes the expected number of correct individual states. An alternative algo-

rithm for estimating hidden states is the Viterbi algorithm (Viterbi, 1967; Forney,
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Observed Data (O)

Initial Parameter Estimates ( *
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Baum-Welch (BW) Algorithm
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Observed Data (O)

HMM Parameters (! or !̂ )

Forward-Backward (FB) Algorithm

Hidden State Estimates 

Figure 4.3. Workflow of the Baum-Welch and forward-backward algo-
rithms. The Baum-Welch algorithm requires a set of observations (O)
and initial parameter estimates (λ∗) as inputs to calculate the maxi-
mum likelihood parameter estimates (λ̂). The forward-backward algo-
rithm requires a set of observations (O) and model parameters, which
can be the true parameters (λ) if they are known or the maximum
likelihood parameter estimates (λ̂) obtained from the Baum-Welch
algorithm. With this information, the forward-backward algorithm
estimates the hidden states.

1973), which maximizes the probability of the state sequence (rather than individual

states). While both algorithms and optimality criteria have their own merits, in this

work, the percent of individual correctly predicted states will be used as a model

performance measure and, thus, the forward-backward algorithm will be employed.

Maximum likelihood estimates for the model parameters can be obtained through the

Baum-Welch algorithm (Baum et al., 1970; Baum, 1972), which is the expectation-

maximization (EM) algorithm (Dempster et al., 1977) for HMMs. Details of both the

forward-backward and the Baum-Welch algorithm are described in this section, since

they are both used in this work. The forward-backward procedure is described first

since it requires the creation of forward and backward variables which are also used

in the Baum-Welch algorithm. Figure 4.3 gives an overview of these methods.
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Forward-Backward (FB) Algorithm

One of the main goals when using a HMM is to obtain an optimal estimate of

the hidden state sequence (Q) given the observations (O) and the model parameters

(λ). In the context of DNA methylation tiling array experiments, this translates to

estimating the DNA methylation status of all probes given the tiling array intensity

data for each probe and a specific set of model parameters. The FB algorithm (Baum

et al., 1970; Baum, 1972) accomplishes this goal by utilizing the probability (4.16)

of being in state Si at probe p, given the observation sequence O and the model

parameters λ:

γp(i) = P (qp = Si|O, λ). (4.16)

For each probe p, the state which yields the maximum probability γp(i) is the esti-

mated hidden state for that probe. Thus, the FB algorithm selects the states that

are individually most likely, maximizing the expected number of correct individual

states (Rabiner, 1989).

The probability γp(i) is calculated through the use of forward and backward vari-

ables. The forward variable (4.17) is the joint probability of the partial observation

sequence up to probe p and state Si at probe p given the model λ:

αp(i) = P (o1o2...op, qp = Si|λ). (4.17)

The forward variables αp(i) can be calculated inductively:

1. Initial Step:

α1(i) = πibi(o1) 1 ≤ i ≤ N

2. Induction Step:

αp+1(j) = [
∑N

i=1 αp(i)aij]bj(op+1) 1 ≤ j ≤ N, 1 ≤ p ≤ P − 1.

Figure 4.4 illustrates the inductive step of the forward variable calculation for a HMM

with two states {0,1}, as is the case for DNA methylation tiling array data. Note
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Figure 4.4. The inductive step in the forward variable (αp+1(j)) cal-
culation for a HMM with two states Si = {0, 1}. Probe p + 1 could
have arrived at state Sj either through the hidden state 0 or 1 at
probe p. The forward variables for probe p (αp(0) and αp(1)) repre-
sent the joint probability of the partial observation sequence up to
probe p and state Si at probe p. Thus the product αp(i) ∗ aij is the
joint probability of the partial observation sequence up to probe p and
reaching state Sj at probe p+1 through state Si at probe p. Summing
across these probabilities and accounting for the observation at probe
p + 1 by multiplying the sum by bj(op+1) gives the joint probability
of the partial sequence up to probe p + 1 and state Sj at probe p + 1
(Rabiner, 1989).

that P (O|λ) can be calculated (4.18) by summing over the forward variables for the

last probe (P ) in the sequence (Rabiner, 1989):

P (O|λ) =
N

∑

i=1

αP (i). (4.18)

The backward variable (4.19) represents the probability of the partial observation

sequence from probe p + 1 to the end of the sequence, given state Si at probe p and

the model parameters λ:

βp(i) = P (op+1op+2...oP |qp = Si, λ). (4.19)

Similar to the forward variables, the backward variables βp(i) can also be calculated

inductively (Rabiner, 1989):
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Figure 4.5. The inductive step in the backward variable (βp(i)) cal-
culation for a HMM with two states Si = {0, 1}. If the hidden state
at probe p is Si, then a transition to either state 0 or 1 at probe
p + 1 can occur. The backward variables at probe p + 1 (βp+1(0) and
βp+1(1)) represent the probability of the partial observation sequence
from probe p + 2 to the end of the sequence, given state Sj at probe
p + 1. Thus the product aij ∗ bj(op+1) ∗ βp+1(j) accounts for the tran-
sition (aij) from state Si at probe p to state Sj at probe p + 1, the
observation at p+1 (bj(op+1)), and the observations from p+2 to the
end of the sequence (βp+1(j)). Summing this product over all possi-
ble states Sj gives the probability of the partial observation sequence
from probe p + 1 to the end of the sequence, given state Si at probe
p (Rabiner, 1989).

1. Initialization Step:

βP (i) = 1 1 ≤ i ≤ N

2. Induction Step:

βp(i) =
∑N

j=1 aijbj(op+1)βp+1(j) 1 ≤ i ≤ N, p = P − 1, P − 2, ...1.

Figure 4.5 highlights the inductive step calculation of the backward variable for a

HMM with two states {0,1}, as is the case for DNA methylation tiling array data.

Finally, the forward and backward variables can be employed to calculate γp(i) as

follows (4.20):

γp(i) = P (qp = Si|O, λ) =
αp(i)βp(i)

∑N

i=1 αp(i)βp(i)
. (4.20)
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Thus, the individually most likely state at probe p (4.21) (Rabiner, 1989):

qp = arg max
1≤i≤N

[γp(i)] 1 ≤ p ≤ P. (4.21)

Note that γp(i) gives an certainty measure for the state estimate at probe p. For

example, if state Si maximizes γp(i), then more confidence can be placed in the state

estimate when γp(i) is closer to 1 than to 0.5. This extra information obtained from

the forward-backward algorithm, along with the fact that it maximizes the expected

number of correctly predicted states, make it the state estimation algorithm of choice

for this work.

Baum-Welch (BW) Algorithm

While the forward-backward algorithm can provide DNA methylation status es-

timates for all probes, it requires the knowledge of a set of model parameters λ. In

real data, the true model parameters are unknown and need to be estimated from

the data. Ideally, the model parameters λ should maximize the probability of the

observation sequence given the model parameters (P (O|λ)). While there is no ana-

lytical solution to find this maximum, the expectation-maximization (EM) algorithm

(Dempster et al., 1977) can be used to find λ such that P (O|λ) is locally maximized.

Baum et al. (1970) formalized this procedure within the HMM framework and it is

called the Baum-Welch (BW) algorithm. Given a set of initial parameters and the ob-

served data, the BW algorithm can re-estimate the parameters of the initial state (π),

transition (A), and observation probability (B) distributions until a local maximum

of P (O|λ) is reached.

The BW algorithm makes use of the forward (4.17) and backward (4.19) vari-

ables, as well as γp(i) (4.16), described in the formulation of the forward-backward
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algorithm. Additionally, the following probability (4.22) is also employed in the BW

algorithm:

ξp(i, j) = P (qp = Si, qp+1 = Sj|O, λ)

=
αp(i)aijbj(op+1)βp+1(j)

∑N

i=1

∑N

j=1 αp(i)aijbj(op+1)βp+1(j)

(4.22)

which represents the probability of being in state Si at probe p and in state Sj at probe

p + 1, given the observations and model parameters. Given a set of initial param-

eter estimates λ∗ = (A∗, B∗, π∗) and the observed data, the following re-estimation

formulas for the initial and transition probabilities can be applied:

Initial Probabilities:

π̂i = γ1(i)

= Expected number of times in state Si at the first probe
(4.23)

Transition Probabilities:

âij =

∑P−1
p=1 ξp(i, j)

∑P−1
p=1 γp(i)

=
Expected number of transitions from state Si to state Sj

Expected number of transitions out of state Si

.

(4.24)

Baum et al. (1970) also proposed a re-estimation formula for the observation

probability distribution parameters for discrete observations, yielding an updated set

of parameter estimates λ̂ = (Â, B̂, π̂) derived from the re-estimation formulas. That

work showed that P (O|λ̂) ≥ P (O|λ∗), meaning the observations are more likely to

have been produced by the model with updated parameters λ̂ than the model with

the initial parameters λ∗. This re-estimation procedure can be iteratively applied by

continually inputing the new set of parameters into the re-estimation formulas until

some convergence criteria is met (i.e., P (O|λ̂) − P (O|λ∗) < ε, ε > 0)(Rabiner, 1989).

Since the observations in a DNA methylation profiling experiment are continuous

rather than discrete, a different set of parameter estimates than those proposed by

Baum et al. (1970) are required for the observation probability distribution. Rabiner

(1989) provides details of re-estimation formulas for the parameters of a mixture

of normal distributions. For the bivariate normal distributions (4.14, 4.15) that are
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assumed for observations from DNA methylation data from tiling arrays, the following

re-estimation formulas (4.25) are applicable:

Observation Probability Distribution Parameters:

µ̂i =

∑P

p=1 γp(i)op
∑P

p=1 γp(i)
Σ̂i =

∑P

p=1 γp(i)(op − µi)(op − µi)
T

∑P

p=1 γp(i)
. (4.25)

Taken along with the initial (4.23) and transition (4.24) probability estimates,

this re-estimation procedure yields maximum likelihood estimates for all of the HMM

parameters. The resulting parameter estimates λ̂ can then be used in the FB algo-

rithm to obtain hidden state estimates. Note that upon implementation, a scaling

procedure is required when the number of probes exceeds 100 to perform calculations

within the precision range of a computer.

4.3 Incorporating Genomic Annotation into HMM Framework

In an effort to include additional genomic information into the estimation of DNA

methylation status, the hidden Markov model framework is extended to incorporate

information provided by genomic annotation. A method is proposed and investigated

to determine if incorporating genomic annotation into a HMM framework is useful in

predicting true methylation status of tiling array probes in DNA methylation profiling

studies. Recall that previous studies (Zhang et al., 2006; Suzuki and Bird, 2008) have

found evidence for DNA methylation patterns that differ by genomic element (e.g.,

gene vs. intergenic regions). For example, DNA methylation studies of Arabidopsis

thaliana identified regions of dense DNA methylation in bodies of genes interspersed

between regions of little or no methylation. In the HMM framework, this can be

modeled by allowing probes in genes to have different transition probabilities than

probes in intergenic regions (Figure 4.6). To formally incorporate the potential dif-

ferences in transition probabilities for genes and intergenic regions into the HMM

framework, modifications to the forward-backward and Baum-Welch algorithms are

necessary. Since both algorithms rely on the use of forward and backward variables,

the modifications start at that step.
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Figure 4.6. Example of how genomic annotation can be incorporated
into the HMM framework for DNA methylation tiling array exper-
iments. Probes that correspond to gene regions can have different
transition probabilities (aG

ij) than probes in intergenic regions (aIG
ij )

to reflect different dependency patterns in those regions.

4.3.1 Modified Forward and Backward Variables

Recall the forward (4.17) and backward (4.19) variables described previously and

the inductive step of their calculations (repeated here for convenience):

1. Forward Variable:

αp(j) = P (o1o2...op, qp = Sj|λ)

= [
N

∑

i=1

αp−1(i)aij]bj(op)

2. Backward Variable:

βp(i) = P (op+1op+2...oP |qp = Si, λ)

=
N

∑

j=1

aijbj(op+1)βp+1(j).

To incorporate transition probabilities that vary for genes and intergenic regions, the

calculations of the forward and backward probabilities are mostly the same with aij

replaced by aIG
ij for intergenic probes and by aG

ij for probes in genes. However, due

to the first-order Markovian property, the hidden state at probe p depends on the

hidden state at probe p−1. So, at boundaries where an intergenic region changes to a

gene region (or vice versa) the boundary transition probability (aB
ij) is the probability
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Figure 4.7. Probes at the boundary of an intergenic region and a gene.
The transition probability from probe p − 2 to probe p − 1 is given
by aIG

ij , since both probes lie in the intergenic region. Similarly, the
transition probability from probe p to probe p+1 is given by aG

ij, since
both probes lie in the gene region. However, the transition probability
at the boundary, from probe p − 1 to probe p, is an average of the
intergenic and gene transition probabilities: aB

ij = 0.5 ∗ aIG
ij +0.5 ∗ aG

ij.
This transition also occurs when going from a gene to an intergenic
region.

of a transition from state Si at probe p − 1 in an intergenic region to state Sj at

probe p in a gene region (Figure 4.7). This boundary transition probability is taken

to be the average of the transition probabilities for gene and intergenic regions (i.e.,

aB
ij = 0.5 ∗ aIG

ij + 0.5 ∗ aG
ij).

To illustrate the changes in the forward and backward variable calculations at

boundary regions, consider probes p − 2 and p − 1 at the end of an intergenic region

and probes p and p + 1 at the beginning of a gene region, as in Figure 4.7:

Forward Variable Modification:

At probe p − 1: αp−1(j) = [
∑N

i=1 αp−2(i)a
IG
ij ]bj(op−1)

At probe p: αp(j) = [
∑N

i=1 αp−1(i)(0.5 ∗ aIG
ij + 0.5 ∗ aG

ij)]bj(op)

At probe p + 1: αp+1(j) = [
∑N

i=1 αp(i)a
G
ij]bj(op+1)
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Backward Variable Modification:

At probe p: βp(i) =
∑N

j=1 aG
ijbj(op+1)βp+1(j)

At probe p − 1: βp−1(i) =
∑N

j=1 (0.5 ∗ aIG
ij + 0.5 ∗ aG

ij)bj(op)βp(j)

At probe p − 2: βp−2(i) =
∑N

j=1 aIG
ij bj(op−1)βp−1(j).

While these modifications are for the boundary when transitioning from an inter-

genic to gene region, respective modifications can be employed when switching from

a gene to an intergenic region. If α̃p(i) and β̃p(i) represent the modified forward and

backward variables, then a modified γ̃p(i) (4.26) can also be computed:

γ̃p(i) = P (qp = Si|O, λ) =
α̃p(i)β̃p(i)

∑N

i=1 α̃p(i)β̃p(i)
. (4.26)

As before, the state which maximizes γ̃p(i) is the estimated hidden state for probe p.

4.3.2 Modified Baum-Welch Parameter Estimates

To incorporate genomic annotation in this proposed way, the main difference in

obtaining parameter estimates with the BW algorithm is the need to estimate two

different sets of transition probabilities, one for the gene regions and one for the

intergenic regions. The transition probabilities for genes are assumed to be constant

across all genes, as are the transition probabilities for intergenic regions. First, note

that the parameters π, µ, and Σ are estimated (4.27, 4.28) in the same way as before,

with γp(i) replaced by the modified γ̃p(i) (4.26):

Modified Initial Probabilities:

π̃i = γ̃1(i) (4.27)

Modified Observation Probability Distribution Parameters:

µ̃i =

∑P

p=1 γ̃p(i)op
∑P

p=1 γ̃p(i)
Σ̃i =

∑P

p=1 γ̃p(i)(op − µi)(op − µi)
T

∑P

p=1 γ̃p(i)
. (4.28)

To obtain parameter estimates for aIG
ij and aG

ij, the variable ξp(i, j) must first be

modified in a similar manner as the forward and backward variables. Consider the
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following changes to ξp(i, j), moving from a intergenic to a gene region as described

previously (Figure 4.7):

At probe p − 2: ξ̃p−2(i, j) =
α̃p−2(i)aIG

ij bj(op−1)β̃p−1(j)
∑N

i=1

∑N
j=1

α̃p−2(i)aIG
ij bj(op−1)β̃p−1(j)

At probe p − 1: ξ̃p−1(i, j) =
α̃p−1(i)(0.5∗aIG

ij +0.5∗aG
ij)bj(op)β̃p(j)

∑N
i=1

∑N
j=1

α̃p−1(i)(0.5∗aIG
ij +0.5∗aG

ij)bj(op)β̃p(j)

At probe p: ξ̃p(i, j) =
α̃p(i)aG

ijbj(op+1)β̃p+1(j)
∑N

i=1

∑N
j=1

α̃p(i)aG
ijbj(op+1)β̃p+1(j)

.

Let ξ̃p(i, j) represent these modified variables. γ̃p(i) and ξ̃p(i, j) can be partitioned

in the following way:

Intergenic Regions: γ̃ig
p (i), ξ̃ig

p (i, j) where {p, p + 1} ∈ Intergenic (IG) region

Gene Regions: γ̃g
p(i), ξ̃

g
p(i, j) where {p, p + 1} ∈ Gene (G) region

Boundary Regions: γ̃b
p(i), ξ̃

b
p(i, j) where p ∈ IG, p + 1 ∈ G or p ∈ G, p + 1 ∈ IG.

Note that g = 1, ..., NG, ig = 1, ..., NIG, and b = 1, ..., NB where NG is the total

number of genes in the sequence, NIG is the total number of intergenic regions in

the sequence, and NB is the total number of boundary regions in the sequence. The

transition probabilities for intergenic and gene regions can be estimated (4.29) as

follows:

Modified Transition Probabilities:

ãG
ij =

∑NG

g=1

∑Pg−1
p=1 ξ̃g

p(i, j) + 0.5 ∗
∑NB

b=1

∑Pb−1
p=1 ξ̃b

p(i, j)
∑NG

g=1

∑Pg−1
p=1 γ̃

g
p(i) + 0.5 ∗

∑NB

b=1

∑Pb−1
p=1 γ̃b

p(i)

ãIG
ij =

∑NIG

ig=1

∑Pig−1
p=1 ξ̃ig

p (i, j) + 0.5 ∗
∑NB

b=1

∑Pb−1
p=1 ξ̃b

p(i, j)
∑NIG

ig=1

∑Pig−1
p=1 γ̃

ig
p (i) + 0.5 ∗

∑NB

b=1

∑Pb−1
p=1 γ̃b

p(i)
.

(4.29)

4.4 Summary

In this chapter, statistical methods for DNA methylation profiling experiments

with tiling arrays are reviewed. In particular, hidden Markov models were introduced
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as a way to model dependency between neighboring probes. While several studies have

utilized HMMs for estimating the methylation status of each probe, most methods

do not attempt to incorporate genomic annotation into the actual data analysis, and

parameter estimation is often ad hoc. Evidence from previous studies indicate that

using genomic annotation information in the context of a HMM framework may be

a beneficial way to model the data. Here, a method is proposed in which transition

probabilities are allowed to differ for genes and intergenic regions, with updates to the

forward-backward and Baum-Welch algorithms to include this extra information in

state and parameter estimation. The next step is to investigate whether incorporating

genomic annotation information in a HMM in this manner improves DNA methylation

status prediction.
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5. SIMULATION STUDIES

Simulation studies are employed to investigate the importance of incorporating ge-

nomic annotation into the hidden Markov model framework for DNA methylation pro-

filing studies. Data are simulated for a HMM with transition probabilities that differ

between genes and intergenic regions. The first study assumes that HMM parameters

are known and focuses on evaluating the effectiveness of using genomic annotation

for methylation status estimation via comparison of the standard forward-backward

(FB) algorithm (Baum et al., 1970; Baum, 1972) and the modified FB algorithm de-

scribed in Section 4.3.1. In the second study, HMM parameters are estimated from

the data using both the standard (Baum et al., 1970) and modified (Section 4.3.2)

Baum-Welch (BW) algorithms to assess the performance of using genomic annotation

when model parameters are unknown, as for real data. Additionally, states are also

estimated by conducting paired t-tests for each probe, as well as implementing the

forward-backward algorithm with ad hoc HMM parameter estimates. Comparison of

these results to those using the BW algorithm investigates the value of modeling de-

pendence between neighboring probes and obtaining maximum likelihood estimates

for HMM model parameters. A common set of simulation settings is used for both

studies and are described in the next section.

5.1 Simulation Settings

For a hidden Markov model, a set of hidden states and observations given the

model parameters λ=(A,B,π) can be simulated according to the method described in

section 4.2.1. Hidden states (0=Unmethylated, 1=Methylated) and observations are

simulated for a genomic region of 2000 probes covering 20 genes (Figure 5.1), with 58

probes representing each gene. The total number of probes is similar in magnitude
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Figure 5.1. A genomic region with 2000 probes and 20 genes.

to that of the Arabidopsis thaliana chromosome 4 tiling array custom-designed by

Lippman et al. (2004), representing a small-scale study for the purpose of evaluating

model performance. The density of genes per total number of probes and probes per

gene reflects those averages for probes on the Arabidopsis Affymetrix R© whole genome

tiling array.

Two different DNA methylation patterns are simulated with transition probabili-

ties for genes and intergenic regions given in Table 5.1. The initial state distribution

is assumed to be π = (0.5, 0.5) for both patterns. At boundaries where an intergenic

region changes to a gene region (or vice versa), the hidden state of the first probe in a

new region is simulated from the average of the intergenic and gene transition proba-

bilities: aB
ij = 0.5∗aIG

ij +0.5∗aG
ij. The first DNA methylation pattern is representative

of mosaic DNA methylation as described in Suzuki and Bird (2008) where regions of

dense methylation are interspersed with less dense, more variable DNA methylation

regions. In particular, for organisms such as Arabidopsis thaliana genes are often

either densely methylated or not methylated at all, whereas intergenic regions may

be more variable. This is reflected by the high transition probability (aG
ii = 0.99)

of staying in the same state for sequential probes in a gene region and a lower such

probability (aIG
ii = 0.7) in intergenic regions (Table 5.1). The second DNA methyla-

tion pattern assumes the transition probabilities are constant across the whole region.

This pattern is used to determine whether there is a difference in model performance

by using the modified versions of the forward-backward and Baum-Welch algorithms,

even if the transition probabilities for genes and intergenic regions are truly the same.
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Table 5.1
Model parameter settings for intergenic (aIG

ij ) and gene (aG
ij) transition

probabilities for two different DNA methylation patterns. Note that
the hidden state of the first probe in a new region at a boundary of
a gene and intergenic region is simulated from the average of the two
transition probabilities: aB

ij = 0.5 ∗ aIG
ij + 0.5 ∗ aG

ij.

DNA Methylation Pattern aIG
ij aG

ij

1: Different for Intergenic/Genes





0.7 0.3

0.3 0.7









0.99 0.01

0.01 0.99





2: Same Across Whole Region





0.85 0.15

0.15 0.85









0.85 0.15

0.15 0.85





Observed data are generated from a variety of different parameter settings of the

following observation probability distribution:

b0





y1pk

y2pk



 ∼ N









0

0



 ,





σ2 ρσ2

ρσ2 σ2







 Unmethylated Probes

b1





y1pk

y2pk



 ∼ N









µ11

0



 ,





σ2 ρσ2

ρσ2 σ2







 Methylated Probes.

(5.1)

These parameter settings are chosen so that in the unmethylated case, the untreated

(i = 1) and treated (i = 2) means are equal and centered at zero, but in the methy-

lated case there is a difference of (µ11) between the two means. Decreasing the magni-

tude of µ11 and increasing σ should result in observed data in which state estimation

is more difficult since the mean difference between untreated and treated samples will

be smaller for the methylated case and the variation in the data larger. The value of ρ

is selected to allow for both a high and low level of correlation between samples from

the same individual. All combinations of the following observation probability distri-
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bution parameter settings (5.2) are employed to simulate three biological replicates

for both DNA methylation patterns (Table 5.1) and the 2000 probes:

µ11 = {0.75, 1, 2} σ = {1, 2} ρ = {0.3, 0.7}. (5.2)

Averages over the 3 biological replicates are calculated for input into the forward-

backward or the Baum-Welch algorithms, with modified observation probability dis-

tribution given by Equation 4.15. These data are simulated 1000 times.

5.2 Simulation Study 1: Investigating Importance of Genomic Annota-

tion

5.2.1 Study Goal and Model Comparison

In this simulation study, the goal is to compare the performance of a HMM which

incorporates genomic annotation into hidden state estimation and a HMM model that

does not utilize this information. Models are evaluated under the best case scenario

that the model parameters are known, and thus no parameter estimation is required.

Simulated observed data and the true model parameters are used to estimate hidden

states with both the standard (Baum et al., 1970; Baum, 1972) and the modified (Sec-

tion 4.3.1) forward-backward algorithms. The following two models are compared.

Unannotated Model: Genomic annotation information is ignored and the tran-

sition probabilities are assumed to be the same across the entire genomic region. For

the model with truly different intergenic and gene transition probabilities (Table 5.1),

the common transition probabilities are assumed to be the weighted average of aIG
ij

and aG
ij (i.e., aij =





0.87 0.13

0.13 0.87



). The standard forward-backward algorithm (Baum

et al., 1970; Baum, 1972) is employed for hidden state estimation.

Annotated Model: Genomic annotation information is incorporated into the

HMM by assuming the gene has different transition probabilities (aG
ij) than the inter-
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genic region (aIG
ij ) (Table 5.1). The modified forward-backward algorithm (Section

4.3.1) which integrates these potential transition probability differences is employed

for hidden state estimation.

Model performance is evaluated by calculating the proportion of estimated states

that match the true states and averaging across the 1000 simulated datasets. Note

that when the transition probabilities are truly constant across the region, the mod-

ified forward-backward algorithm (Annotated Model) should be equivalent to the

standard (Unannotated Model) forward-backward algorithm when given the true pa-

rameters. Differences in the two models should be apparent when the transition

probabilities are truly different for genes and intergenic regions.

5.2.2 Results and Conclusions

Figure 5.2 illustrates the results for the first DNA methylation pattern (Table 5.1)

with different transition probabilities for genes and intergenic regions. The propor-

tion of correctly predicted states is given for both the annotated and the unannotated

models for each of the observation probability distribution parameter settings (5.2).

Across all settings, the annotated model outperforms the unannotated model. The

difference in the magnitude of performance between the two models increases as σ

increases and the mean difference between the untreated and treated samples (µ11)

decreases, meaning that the annotated model can more accurately model noisy data

and detect smaller mean differences. The difference in model performance also ap-

pears to slightly increase as the correlation between the samples taken on the same

subject (ρ) decreases, but this change in performance is only slight. Figure 5.3 shows

the results for the second DNA methylation pattern (Table 5.1) with the same set

of transition probabilities across the whole genomic region. As expected, for all of

the observation probability distribution settings, the unannotated and the annotated

model perform identically. The results from this simulation study show that the an-
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Figure 5.2. Results from Simulation Study 1 for the first DNA methy-
lation pattern (Table 5.1) when transition probabilities are different
for genes and intergenic regions. The proportion of states predicted
correctly for the annotated and unannotated models is plotted for
each of the µ11 parameter settings of the observation probability dis-
tribution (5.2). Separate plots are shown for each combination of the
σ and ρ parameters of the observation probability distribution.
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Figure 5.3. Results from Simulation Study 1 for the second DNA
methylation pattern (Table 5.1) when transition probabilities are con-
stant across the whole region. The proportion of states predicted cor-
rectly for the annotated and unannotated models is plotted for each
of the µ11 parameter settings of the observation probability distribu-
tion (5.2). Separate plots are shown for each combination of the σ

and ρ parameters of the observation probability distribution. Note
that the performance of the two models is identical, resulting in the
appearance of only one line.
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notated model performs better than the unannotated when there truly is a difference

in transition probabilities for genes and intergenic regions, and that using the anno-

tated model does not decrease model performance if the transition probabilities are

the same across the whole region.

5.3 Simulation Study 2: Investigating Parameter Estimation with Ge-

nomic Annotation

5.3.1 Study Goal and Model Comparison

In the previous simulation, true model parameters are used to estimate the hidden

state sequence via the FB algorithm. However, in reality, the true model parame-

ters are not known and must be estimated. The goal of this simulation study is

to investigate the performance of the modified Baum-Welch (described in Section

4.3.2) algorithm which incorporates genomic annotation information and yields sep-

arate transition probability estimates for intergenic and gene regions. This model

will be compared to the standard BW (Baum et al., 1970) algorithm, ad hoc parame-

ter estimation, and paired t-tests to examine the effects of incorporating annotation,

obtaining maximum likelihood estimates, and modeling dependency between probes,

respectively. The following six models are compared.

Independent Paired t-tests: For each probe, a paired t-test (with µ0 = 0) is

performed as described in Section 4.1.1 to determine whether the probe is methylated

or not. Dependence between probes and genomic annotation are both ignored in this

model.

FB with Initial Estimates: The estimated methylation status from the paired

t-tests can be used to empirically estimate the HMM model parameters. These ini-

tial ad hoc estimates are then used with the standard (Unannotated) and modified

(Annotated) FB algorithms to estimate the methylation status of each probe. While
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these initial estimates do not maximize the likelihood P (O|λ), this method does in-

corporate dependence between probes via the FB algorithm.

FB with BW Estimates: The initial parameter estimates calculated from paired

t-test results can be used as starting values in the standard (Unannotated) and mod-

ified (Annotated) BW algorithms to obtain updated parameter estimates which lo-

cally maximize P (O|λ). These updated parameter estimates can then be used with

appropriate FB algorithm to estimate the methylation status of each probe.

FB with True Parameters: Since the true parameter values are known, the FB

algorithm can be employed to estimate the methylation states given the true model

parameters. This is used as a basis for comparison to the other models, as it should

yield the best possible results.

Each of these models will yield estimated methylation states for all probes. The

estimated states are again compared to the true methylation status by determining

the proportion of states predicted correctly and averaging across the 1000 data sets.

Note that, unlike the forward-backward algorithm, when the transition probabilities

are truly constant across the region, the modified Baum-Welch algorithm (Annotated

Model) may not yield the same results as the standard (Unannotated Model) Baum-

Welch algorithm since separate transition probabilities for the gene and intergenic

region are estimated from the data. Results are compared to determine how the

modified BW affects model performance if genomic annotation is not needed. Differ-

ences between all six models should be apparent when the transition probabilities are

truly different for genes and intergenic regions.
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5.3.2 Results and Conclusions

The results for the first DNA methylation pattern (Table 5.1) when transition

probabilities are different for genes and intergenic regions are shown in Figure 5.4.

As expected, the model which utilizes the true parameter estimates to estimate hid-

den states performs the best across all parameter settings. The paired t-tests and FB

with ad hoc parameter estimation perform poorly across all parameter settings, even

though the FB with ad hoc parameters performs better or similar to the paired t-tests

in most cases. Parameter estimation with Baum-Welch prior to hidden state estima-

tion with the FB algorithm greatly improves model performance. In particular, when

genomic annotation is incorporated, this model often achieves the same performance

as if the true parameters were known. Similar to Simulation Study 1, it is clear that

all models perform the worst when µ11 and ρ are the smallest, and σ is the largest.

Similar trends are seen in the results for the second DNA methylation pattern (Table

5.1), which assumes a constant transition probability across the whole region (Figure

5.5). The main difference being that performance of the unannotated and the anno-

tated models is the same across all observation probability distribution settings. The

results from this simulation study further indicate that incorporating genomic anno-

tation into the HMM framework is beneficial for hidden state estimation when there

truly is a difference in transition probabilities for genes and intergenic regions. It also

demonstrates that the model which incorporates genomic annotation will not affect

the proportion of correctly predicted states if the transition probabilities are truly the

same across the whole region. Additionally, modeling the dependence between probes

improves model performance the most when the Baum-Welch algorithm is employed

to obtain maximum likelihood estimates.

5.4 Summary

Genomic annotation is an important source of biological information that is often

used with DNA methylation profiling studies to better understand the distribution
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Figure 5.4. Results from Simulation Study 2 for the first DNA methy-
lation pattern (Table 5.1) when transition probabilities differ for genes
an intergenic regions. Proportion of states predicted correctly for
each of the six models (indicated by different colors and line types)
are shown for each of the µ11 parameter settings of the observation
probability distribution (5.2). Separate plots are shown for each com-
bination of the σ and ρ parameters of the observation probability
distribution.
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Figure 5.5. Results from Simulation Study 2 for the second DNA
methylation pattern (Table 5.1) when transition probabilities are con-
stant across the whole region. Proportion of states predicted correctly
for each of the six models (indicated by different colors and line types)
are shown for each of the µ11 parameter settings of the observation
probability distribution (5.2). Separate plots are shown for each com-
bination of the σ and ρ parameters of the observation probability
distribution. Note that the performance of the annotated and unan-
notated models for the FB with BW estimates is nearly identical,
resulting in the appearance of only one line. The same is true for the
annotated and unannotated models for the FB with initial estimates.
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of this epigenetic modification across the genome. Typically, genomic annotation is

utilized after the completion of a statistical analysis to explore DNA methylation

patterns for different genomic elements. While this approach has provided valuable

insight in the study of DNA methylation, it may be beneficial to incorporate informa-

tion from genomic annotation into a statistical analysis. In chapter 4, a method for

incorporating genomic annotation information into a hidden Markov model frame-

work was proposed by allowing transition probabilities to differ between genes and

intergenic regions. Modified versions of the forward-backward and Baum-Welch algo-

rithm were introduced to incorporate these differences in transition probabilities into

standard state and parameter estimation algorithms.

In this chapter, the proposed method for incorporating genomic annotation infor-

mation into a HMM framework for analysis of DNA methylation tiling array data is

investigated via two simulation studies. Results from the simulation studies show that

incorporating genome annotation into HMMs improves prediction of DNA methyla-

tion status if there truly are differences in transition probabilities between intergenic

and gene regions. In this case, the modified FB and BW algorithms perform bet-

ter than the standard FB and BW algorithms. More specifically, the algorithms

which incorporate genomic annotation are able to more accurately predict hidden

states, even when the observations are noisy and the mean difference between the

untreated and treated sample for methylated probes is small. In addition to incorpo-

rating genomic annotation, the importance of BW parameter estimation in correctly

estimating hidden states is demonstrated by its notable improvement in model per-

formance compared to employing ad hoc parameter estimates with the FB algorithm

or conducting paired t-tests, which ignore probe dependency and genomic annota-

tion. Finally, in the case that transition probabilities are truly constant across the

region, the performance of the annotated model is the same as that of the unanno-

tated model. Ultimately, these results indicate that using the modified FB and BW

algorithms which incorporate genomic annotation improves model performance if ge-
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nomic annotation information is needed, and can be used even when this information

is not needed without an affect on model performance.
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6. APPLICATION TO REAL DATA: DNA METHYLATION

PROFILING IN ARABIDOPSIS THALIANA

The method proposed in this research for incorporating genomic annotation informa-

tion into a HMM framework for DNA methylation profiling studies (Chapter 4) is

applied to two real data sets from previously published work. Both studies use tiling

arrays to investigate DNA methylation in the model plant Arabidopsis thaliana. The

first study (Lippman et al., 2004) utilizes a custom-designed tiling array, whose design

is described in Section 2.3.1, to investigate DNA methylation in the heterochromatic

knob (hk4S) on the short arm of chromosome 4. This region is known to contain many

transposable elements and repetitive DNA (Martienssen and Colot, 2001), which are

often heavily methylated. In that work, an ANOVA model (4.1) was employed to

determine statistical significance of each probe. The second study (Zhang et al.,

2006) is the first genome-wide DNA methylation profiling experiment for Arabidopsis

thaliana. The Affymetrix R© whole genome tiling array, described in Section 2.3.2, is

employed to accomplish this task and the HMM proposed by Ji and Wong (2005) is

used to determine the DNA methylation status of all probes. Here, genomic anno-

tation is incorporated into the analysis of these two data sets via application of the

modified forward-backward and Baum-Welch algorithms described in Section 4.3.1

and 4.3.2. Results are compared to those from the methods employed in each of the

studies. Additionally, results for the heterochromatic knob region of chromosome 4

are compared between the two studies.
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6.1 Chromosome 4 Tiling Array Data

6.1.1 Description of Lippman et al. (2004) Study

Before whole genome tiling arrays became available, Lippman et al. (2004) de-

signed a cDNA tiling array to conduct a small scale study of epigenetic modifications

in the heterochromatic knob (hk4S) region of chromosome 4. This tiling array cov-

ers base pair positions 1,201,322 to 2,673,088 on chromosome 4, including the knob

which is located between base pair positions 1,600,000 to 2,330,000. Lippman et al.

(2004) investigate DNA methylation, histone modifications, and gene expression in

wild-type Columbia and a ddm1 mutant of Arabidopsis all using the same tiling array

platform. Since the region contains numerous transposable elements and repetitive

DNA, heavy methylation is expected inside the region. Details about the design and

genomic annotation of the Lippman et al. (2004) custom-designed tiling array are

given in Section 2.3.1. Briefly, recall that there are 1407 unique probes (each repli-

cated two to four times) represented on the array that cover the 1.5 megabase (Mb)

region centered on hk4S. On average, probes are 995 base pairs in length with the

possibility of gaps or overlaps between probes. Of the 1407 probes, 71.6% of them lie

in gene regions, with an average of three probes per gene. A set of 680 probes located

in the euchromatic region outside the knob can be used as controls, since they are

known to be unmethylated.

For the purposes of this research, the DNA methylation data obtained from wild-

type Columbia Arabidopsis are further studied to gain a better understanding of

the natural state of DNA methylation in this region. To study DNA methylation,

Lippman et al. (2004) employ the use of a methylation restriction enzyme, McrBC,

to separate methylated and unmethylated DNA. In this technique, a DNA sample

collected from an individual is split into two subsamples. One of the subsamples

(treated sample) is digested with McrBC to remove sequences which contain DNA

methylation. The other sample is left untreated and is representative of total DNA,

with both unmethylated and methylated DNA retained. A dye swap is then performed
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by splitting the treated and untreated samples into two subsamples, labeling each of

the subsamples with a different dye, and hybridizing treated and untreated samples

with different dye labels to the custom-designed tiling arrays. DNA samples are

collected on two biological replicates, yielding a total of two arrays per individual

and four arrays overall.

To determine the DNA methylation status of each probe represented on the tiling

array, Lippman et al. (2004) employ ANOVA model (4.1) and hypotheses tests (4.2)

described in Section 4.1.1. Yoo (2008) later reanalyzed these data by conducting the

updated set of hypotheses tests (4.3), which address issues specific to DNA methy-

lation tiling array data. To address the multiple testing problem, the false discovery

rate was controlled at α = 0.05. Here, these data are further analyzed by applying the

hidden Markov model proposed in this research which incorporates genomic annota-

tion information. The HMM which uses the standard forward-backward algorithm,

as well as the Baum-Welch algorithm, without genomic annotation information is

also applied for comparison purposes. Results from the two HMMs and the ANOVA

employed by Yoo (2008) are compared. The same background correction and nor-

malization process is performed on the data prior to all analyses.

Also, note that the starting point and direction of estimation for HMMs have

the potential to affect model performance. While data in simulation studies are

generated according to a certain direction, the direction is less clear for real DNA

methylation profiling data. Recall that the DNA sequence consists of two strands in

opposing directions and genes can be located on either strand. Thus, it is unclear

which direction the HMM estimation should be applied since there is not one clear

direction to the DNA sequence. To investigate the impact of the estimation direction,

the HMM with genomic annotation information is run in both directions and results

for the two directions are compared.
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Figure 6.1. Venn diagram comparing the number of significantly
methylated probes identified by the HMM model with genomic an-
notation and the ANOVA model. Both methods find 643 methylated
probes and 646 unmethylated probes. The ANOVA model identifies
48 methylated probes that the HMM with annotation does not; how-
ever, the HMM with annotation identifies 70 probes as being methy-
lated that the ANOVA does not.

6.1.2 Comparison of Results

Figure 6.1 gives a comparison of the number of significantly methylated probes

identified by the ANOVA model and the HMM model, which incorporates genomic

annotation. Note that the direction of estimation does not impact the annotated

HMM results in these data, as the estimated DNA methylation status in both direc-

tions is identical for 99.9% of the probes. Thus, results for only one direction are

presented here. Of the 1407 probes represented on the array, both methods identify

643 of these as being significantly methylated. The ANOVA model identifies 48 probes

that the HMM with genomic annotation does not, yielding a total of 49.1% of probes

on the array that are significantly methylated. The HMM with genomic annotation

identifies a total of 50.7% methylated probes, and 70 of these are not significantly

methylated in the ANOVA method. Of probes located in the heterochromatic knob



82

1500000 2000000 2500000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Chromosome 4: Genomic Position

P
(P

ro
b
e
 i
 i
s
 M

e
th

y
la

te
d
|d

a
ta

,m
o
d
e
l)

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●●
●
●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●●●●●●●●●

●

●

●●●●●●●●●

●

●

●

●●●● ●●●

●

●

●

●●●●●

●

●● ● ●●
●
●●

●
●
●●● ●●●

●

●
●●●

●

●

●

●
●●

●

●

●
●●●●●●●●●●●●● ●●

●

●

●
●
●
●●●●

●

●●

●

●
●
●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●●●

●
●

●

●
●●●
●

●

●●●●●●●●

●

●

●●

●●●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●

●

●●●●●●●●●

●

●

●●

●

●●●●●●●●●

●

●
●
●●●●●●●●●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●
●
●●
●

●

●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●

●

●●

●

●●●● ●●●

●

●
●
●
●
●●●

●

●

●

●

●

●●

●

●●●● ●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●

●●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●
●●●●

●
●
●●●●●●

●

●●●●●●●●

●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●●●●

●

●
●●●●●●●●●●●●●●

● ●

●●

●

●

●

●

●
●

●●●

●

●
●●●

●

●

●●●● ●

●

●

●●●●●●●●●●● ●●●●●●●●●●
●
●●
●

Figure 6.2. The probability of each probe being in the methylated
state (given the model parameters and data) plotted by the genomic
location of each probe’s start position. The colors of the symbols
correspond to the colors in the Venn diagram (Figure 6.1), where red
points (dots) are probes that are significantly methylated using both
methods, blue points (crosses) are only found methylated in the HMM
with annotation, orange points (triangles) are only found methylated
with ANOVA, and grey points (dots) are not identified as methylated
in either method. The box highlights the heterochromatic knob region
(1,600,000-2,330,000).

region, 74.9% are significantly methylated using ANOVA and 79.9% are identified as

methylated using the HMM with genomic annotation. The high percentage of DNA

methylation found in the knob region by both methods reaffirms the knowledge that

heterochromatic DNA is heavily methylated and demonstrates the ability of both

models to effectively detect this region of dense DNA methylation.

While the results between the two methods are similar, Figure 6.2 highlights some

of the differences. The probability of each probe being in the methylated state, given
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the model parameters and data, is calculated via the forward-backward algorithm in

the HMM approach. This quantity is plotted by the genomic location of the start

position of each probe. The HMM with annotation identifies all points above 0.5

as being methylated. Note that the heterochromatic knob (highlighted in the box),

contains many more methylated probes identified by both methods (red points) than

the surrounding euchromatic region. There is also a lack of unmethylated probes

(grey points) for both methods in that region. The significantly methylated probes

identified by the ANOVA, but not the HMM with annotation (orange points) were

mostly located in the euchromatic region outside the knob. On the other hand, the

HMM with annotation identified several methylated probes at the right end of the

heterochromatic knob that the ANOVA model did not (blue points). To estimate the

false positive rate, the percentage of control probes (which are known to be unmethy-

lated) that are identified as significantly methylated by both methods is calculated.

For the ANOVA model, 24.4% of control probes are significantly methylated. This

is similar (but slightly better) for the HMM with annotation, which identifies 21.9%

control probes as being methylated.

To evaluate the effect of incorporating genomic annotation in the model, data are

analyzed with both the annotated and unannotated HMMs. For these data, there

are no differences in DNA methylation status estimates between the the two models.

The parameter estimates for the annotated model are given below:

âIG
ij =





0.8649 0.1351

0.1348 0.8652



 âG
ij =





0.8620 0.1380

0.1337 0.8663





µ̂0 =





0.1147

0.4338



 µ̂1 =





0.5547

−0.9993





σ̂01 = 0.6867, σ̂02 = 0.6108, ρ̂0 = 0.8100 σ̂11 = 1.5107, σ̂12 = 0.9094, ρ̂0 = 0.8343.

These parameter estimates indicate that the transition probabilities for genes and

intergenic regions are similar for this region of the genome (i.e, the probability of

staying in the same state is ∼ 0.86). Although this analysis did not reveal evidence for
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a difference in transition probabilities for genes and intergenic regions, employing the

annotated HMM allows the direct investigation of such patterns through statistical

analysis that is not possible by previous methods. Also, it appears that there is

more variation among the methylated probes (σ̂11,σ̂12) than the unmethylated probes

(σ̂01,σ̂02). For both unmethylated and methylated probes, the correlation between

samples collected on the same individual is fairly high (∼ 0.8). Note that for this

tiling array design, there are only an average of three probes per gene due to longer

the probe length. Many genes and intergenic regions only contain one probe. In this

case, a single probe in a region is considered to be a boundary probe, since no within

region transition occurs.

6.2 Whole Genome AffymetrixR© Tiling Array Data

6.2.1 Description of Zhang et al. (2006) Study

The first genome-wide DNA methylation profiling study was conducted by Zhang

et al. (2006) for Arabidopsis thaliana using Affymetrix R© whole genome tiling arrays.

Details about the design of this tiling array are described in Section 2.3.2. Recall that

there are ∼3 million probes that cover non-repetitive regions of all five Arabidopsis

chromosomes. Each of these probes is 25 bases in length with an average gap of 10

bases between probes. Genes are represented by 59.7% of the probes, with 58 probes

on average per gene. Zhang et al. (2006) investigate genome-wide DNA methylation

in wild-type Columbia and two Arabidopsis mutants (met1 and drm1 drm2 cmt3)

through a methylcytosine immunoprecipitation technique that is employed to sep-

arate unmethylated and methylated DNA. The separate samples of unmethylated

and methylated DNA collected from the same individual are each hybridized to an

Affymetrix R© whole genome tiling array. In this case, the intensity values of truly

methylated probes are still expected to be greater in the methylated sample than in

the unmethylated sample. However, the unmethylated sample should yield higher

values than the methylated sample when the probes are truly unmethylated (rather
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than having a similar intensity as was the case for McrBC, where unmethylated DNA

is retained in both samples). Three biological replicates are studied, yielding a total

of six tiling arrays.

To determine the methylation status of each probe represented on the tiling ar-

ray, Zhang et al. (2006) utilize Tilemap software which employs the HMM developed

by Ji and Wong (2005). For the purposes of this research, the wild type Columbia

Arabidopsis samples are reanalyzed with the HMM developed here to incorporate

genomic annotation to better understand naturally occurring DNA methylation and

allow comparison to the Lippman et al. (2004) wild-type Columbia results from the

heterochromatic knob of chromosome 4. Here, results between the annotated HMM

and Tilemap, as well as between the annotated and unannotated HMMs are com-

pared. Note that the pre-processing steps of background correction and normalization

are both conducted in the same manner for all analyses. Also, HMM estimation is

performed in both directions and results compared.

6.2.2 Comparison of Results

Figure 6.3 shows the differences in DNA methylation status results between the

HMM which incorporates genomic annotation and the HMM used in Tilemap. As in

the Lippman et al. (2004) data, the direction of HMM estimation does not heavily

impact the annotated HMM results, with 99.9% of probes having the same estimated

DNA methylation status in both directions. Again, results from only one direction

are presented here due to this high agreement. It is evident that the annotated

HMM identifies over twice as many methylated probes as Tilemap. Overall, 27.51%

of probes are identified as being methylated using the HMM with genomic annotation

compared to 9.78% of probes using Tilemap. Both of these methods offer a similar

breakdown in terms of methylated probes in genes, with 68.36% and 70.43% of signifi-

cantly methylated probes using Tilemap and the HMM with annotation, respectively,
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Figure 6.3. Venn diagram comparing the number of significantly
methylated probes identified by the HMM model with genomic an-
notation and the HMM with Tilemap. Both methods find 281,155
methylated probes and 2,084,787 unmethylated probes. The HMM
model with genomic annotation identifies many more methylated
probes (510,168) that the HMM with Tilemap does not; whereas the
HMM with Tilemap only identifies 81 probes as being methylated
that the HMM with annotation does not.

occurring within genes. Of the probes identified as being methylated by the HMM

with annotation, but not by Tilemap, 71.56% of them occur within genes.

To further examine the differences between the HMM with annotation and Tilemap,

the distribution of probabilities calculated from the annotated HMM of probes being

methylated, given the model and data, is investigated (Figure 6.4). For probes that

are identified as methylated using both methods (Figure 6.4, upper left), it is clear

that the probability of being methylated is high and is greater than 0.90 for 99.7%

of the probes. Similarly, for probes that are identified as unmethylated using both

methods (Figure 6.4, upper right), the probability of being methylated is low and

below 0.10 for 91.8% of the probes. However, results for probes identified as methy-

lated by only one of the methods are more variable. Methylated probes using the

annotated HMM only (Figure 6.4, lower left) still exhibit a very high probability of
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Figure 6.4. Density plots for the probability of each probe being in
the methylated state (given the model parameters and data) calcu-
lated from the annotated HMM. Separate plots are given for probes
that are identified as methylated using both the annotated HMM
and Tilemap (upper left), unmethylated using both methods (upper
right), methylated with the annotated HMM only (lower right), and
methylated using Tilemap only (lower right). Note that all proba-
bilities for probes identified as methylated using both methods and
the annotated HMM only are above 0.5, while the probabilities for
probes identified as unmethylated in both methods and methylated
using Tilemap only (i.e. unmethylated with the annotated HMM) are
below 0.5.

being methylated (greater than 0.90 for 72.6% of the probes). For probes identified

as methylated by Tilemap only (Figure 6.4, lower right), the probability of being

methylated using the annotated HMM probabilities is below 0.5 since the probes are
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unmethylated using the annotated HMM. However, the results for probes identified

as methylated by Tilemap only are much more variable and closer to 0.5 than in any

of the other graphs, with an average probability of being methylated of 0.34.

These results indicate that probes identified as methylated or unmethylated by

both methods show strong evidence for their predicted DNA methylation status.

Probes identified as methylated by the annotated HMM only also seem to show a

high degree of evidence for their predicted methylation status, while probes identified

as methylated by Tilemap only seem more questionable. It is difficult to determine the

exact reason for the differences in results between these to methods, since in addition

to the extra information provided by genomic annotation in the annotated HMM,

different summary statistics are used on the observations and parameter estimation

is performed in different ways. Tilemap utilizes an empirical Bayes t-statistic (Ji and

Wong, 2005), while the annotated HMM takes the average of the biological replicates

to summarize the data. The annotated HMM assumes the observations follow a

bivariate normal distribution and employs the Baum-Welch algorithm for estimation

of the HMM model parameters. Tilemap does not assume a specific distribution for

the observations and uses a method called unbalanced mixture subtraction (UMS) to

determine the initial probabilities and the observation probability distributions. The

transition probabilities are determined in an ad hoc manner by using prior knowledge

about the typical length of a methylated region (Ji and Wong, 2005). Additional

simulation studies could help to better understand the performance difference in these

two models. However, for these data, it is evident that the annotated HMM identifies

many more methylated probes than Tilemap, and these probes have a high probability

of being methylated according to the model.

Figure 6.5 shows results for the HMM model which uses genomic annotation via

the modified FB and BW algorithms and the unannotated model which uses the

standard versions of the algorithms. Although the results are fairly similar, the

annotated HMM identifies more methylated probes than the unannotated model. Of

these probes that are not found to be methylated in the unannotated model, 78.55%
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Figure 6.5. Venn diagram comparing the number of significantly
methylated probes identified by the annotated and unannotated HMM
models. Both methods find 786,488 methylated probes and 2,082,826
unmethylated probes. The HMM model with genomic annotation
identifies 4835 methylated probes that the unannotated HMM does
not; whereas the HMM without annotation identifies 2042 probes as
being methylated that the HMM with annotation does not.

of them are located in genes. Of the significantly methylated probes found with the

unannotated model, but not the annotated model, only 49.02% of those probes are

located in genes.

Table 6.1 shows the estimates for the transition probabilities from the annotated

HMM model. Note that if a region only contains one probe, it is considered a bound-

ary probe. As in the Lippman et al. (2004) data, the transition probabilities are

similar between the intergenic and gene regions, with some small differences that

likely lead to the unannotated and annotated HMM models detecting some differ-

ences in methylated probes, as shown in Figure 6.5. Utilizing the annotated model is

the only way to allow these transition probabilities to be compared. The parameter

estimates of the observation probability distribution are given in Table 6.2. Note

that, as expected, the means for the unmethylated probes (µ̂0) reveal that the sam-
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Table 6.1
Transition probability estimates from the modified BW algorithm for
the HMM which incorporates genomic annotation. The left column
gives estimates for intergenic regions and the right column gives es-
timates for genes. Results are given for each of the five Arabidopsis
chromosomes.

Chr. âIG
ij âG

ij

1





0.9891 0.0109

0.0387 0.9613









0.9795 0.0205

0.0428 0.9572





2





0.9858 0.0142

0.0344 0.9656









0.9821 0.0179

0.0339 0.9661





3





0.9882 0.0118

0.0311 0.9689









0.9823 0.0177

0.0365 0.9635





4





0.9870 0.0130

0.0332 0.9668









0.9798 0.0202

0.0388 0.9612





5





0.9877 0.0123

0.0400 0.9600









0.9772 0.0228

0.0446 0.9554





ple which retains only methylated DNA has a lower mean intensity than the sample

which retains only unmethylated DNA, and vice versa is true for the means of methy-

lated probes (µ̂1). As in the Lippman et al. (2004) data, the correlation between two

samples collected from the same individual is near 0.8.

6.3 Comparison of Chromosome 4 Results

DNA methylation in wild-type Columbia Arabidopsis is investigated in both stud-

ies presented above. Since a whole genome tiling array is employed in the Zhang
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Table 6.2
Parameter estimates for the bivariate normal observation probability
distribution (4.15), obtained from the modified BW algorithm for the
annotated HMM. Parameter estimates in the left column are for un-
methylated probes, while the estimates on the right column are for
methylated probes. Results are given for each of the five Arabidopsis
chromosomes.

Chr. µ̂0 σ̂01, σ̂02 ρ̂0 µ̂1 σ̂11, σ̂12 ρ̂0

1





3.8725

4.4338



 1.5740, 1.6314 0.8561





5.5422

4.4821



 1.6724, 1.7654 0.8200

2





3.9442

4.4710



 1.6313, 1.6883 0.8670





5.5254

4.3507



 1.6658, 1.7329 0.8073

3





3.9369

4.4746



 1.5995, 1.6453 0.8589





5.5214

4.3875



 1.6582, 1.7520 0.8148

4





3.8947

4.4307



 1.5860, 1.6375 0.8585





5.5794

4.4600



 1.6742, 1.7761 0.8216

5





3.8661

4.4204



 1.5693, 1.6296 0.8577





5.4997

4.4930



 1.6669, 1.7990 0.8292

et al. (2006) study, the probes which correspond to the chromosome 4 heterochro-

matic knob can be compared to results from the Lippman et al. (2004) study. First,

a few design differences between the whole genome array and the custom-designed

cDNA array are noteworthy. On the AffymetrixR© whole genome array, all probes are

25 base pairs long, with an average gap of 10 bases between probes. Even though the

Affymetrix R© tiling array does not include probes in repetitive DNA regions, which

are known to be present in the heterochromatic knob, a total of 14,714 probes cover

the region. This corresponds to 367,850 nucleotide bases, which is 50% of the bases
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Figure 6.6. Chromosome 4 heterochromatic knob results from
Affymetrix R© whole genome tiling arrays. Log fold change (methy-
lated DNA sample - unmethylated DNA sample) is plotted against
the genomic position in the knob region. Red points are significantly
methylated points using both the HMM with genomic annotation and
Tilemap, blue points are probes that were only identified as methy-
lated with the annotated HMM, and grey points are unmethylated
probes using both methods. Note that no points were identified as
methylated with Tilemap that were not also found in the HMM with
annotation.

in the whole knob region (that is 730,000 nucleotide bases in length). By comparison,

the cDNA tiling array custom-designed by Lippman et al. (2004) covers the entire

knob region, but probes are longer (an average of 995 bases long) and vary in length.

These design differences make it difficult to make a direct comparison between the
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two studies, but it is worthwhile to investigate the results from the Zhang et al. (2006)

study in that region.

Figure 6.6 shows DNA methylation status results from the annotated HMM and

Tilemap in the chromosome 4 heterochromatic knob region using AffymetrixR© whole

genome arrays. The log fold change between the methylated and unmethylated DNA

sample is given on the y-axis. It is clear that while both methods (red points) identify

many methylated probes in the region, the HMM with annotation (blue points) iden-

tifies almost twice as many (70%) methylated probes in the region as does Tilemap

(37.78%). While it is clear from these results that there is heavy methylation in this

region, there is a noticable presence of gaps in coverage (e.g., around genomic position

1,700,000). This is due to the lack of repetitive DNA coverage on the AffymetrixR©

whole genome tiling array. Although the results from the whole genome array appear

to be consistent with the heavy pattern of DNA methylation shown in Lippman et al.

(2004), the AffymetrixR© tiling arrays do not truly cover the whole knob region and

DNA methylation cannot be investigated at those locations where gaps in coverage

exist.

6.4 Summary

In this chapter two real DNA methylation tiling array data sets for Arabidopsis

thaliana are analyzed. In the first study (Lippman et al. (2004)), in which a custom-

designed tiling array of the heterochromatic knob of chromosome 4 is utilized, the

HMM which incorporates genomic annotation is compared to an ANOVA previously

used to analyze the data. Both methods detect heavy methylation in the knob region,

which is expected. However, the HMM with annotation identifies some methylated

probes at the right end of the heterochromatic knob that the ANOVA model does not

identify. In the second study (Zhang et al. (2006)), in which an AffymetrixR© whole

genome tiling array is employed, the HMM with genomic annotation is compared

to the HMM used in Tilemap (Ji and Wong, 2005), which Zhang et al. (2006) uses
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to detect methylated probes. The HMM which uses genomic annotation identified

over twice as many methylated probes (mostly in gene regions) that Tilemap did not.

Finally, although the transition probabilities are similar between genes and intergenic

regions in both studies, there are some slight differences, and in the Zhang et al.

(2006) study, the annotated HMM identified several significantly methylated probes

that the unannotated model did not. Most importantly, use of the annotated HMM

allows for the investigation of different patterns in genes and intergenic regions, which

has not been explored in other methods. Since the annotated HMM performs well,

even in the case when transition probabilities are the same in genes and intergenic

regions, it is beneficial to employ this method in DNA methylation tiling array studies

since it allows for the possibility of differences by genomic elements and enables the

investigation of patterns in those regions.



95

7. SUMMARY AND FUTURE WORK

7.1 Summary

Understanding the factors that affect phenotypic variation is a complex task that

is central to the fields of genetics and epigenetics. The study of genetics reveals how

changes or differences in the DNA sequence can lead to phenotypic differences, while

the field of epigenetics addresses heritable changes to phenotypes or gene expression

that are not due to a change in the DNA sequence alone. In the 1990s and early 2000s,

advances in technology made it possible to move from small-scale genetic studies to

the investigation of whole genomes. Genome sequencing projects for many organisms

started to flourish with the goal of determining all of an organism’s nucleotide base

pairs, along with identifying genes and other genomic elements. Online genomic

databases were created to store this genomic annotation information in a publicly

available manner (Stein, 2001). Along with the sequence and annotation information,

came the development of microarray technology (Schena et al., 1995), initially used to

monitor the expression levels of thousands of genes in a single experiment. Advances

in microarray technology made possible the study of the whole genome (not just gene

regions), enabling the large-scale investigation of epigenetic modifications that can

occur anywhere in genome. As technologies continue to advance, new insights into

the fields of genomics and epigenomics will continue to challenge researchers to best

utilize available information to gain a better understanding of biological processes.

In this research, incorporation of genomic annotation information into the statis-

tical analysis of data obtained from a specific microarray technology called a tiling

array is explored. Tiling arrays offer unbiased coverage of entire genomic regions (of-

ten whole genomes) through the sequential placement of probes from one end of the

region to the other. Due to their dense coverage, tiling arrays have been used in a
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variety of applications, such as transcription mapping, identification of transcription

factor binding sites, DNA methylation profiling, and investigation of histone mod-

ifications (Mockler and Ecker, 2005). Although selection of probes without regard

to genomic annotation is essential to their broad applicability, knowing which probes

correspond to which genomic elements (i.e, genes, introns, exons) is useful information

that is often used after a statistical analysis to visualize results in terms of genomic

annotation. In this work, genomic annotation information is incorporated into the

statistical analysis of two different applications of tiling array data: differential ex-

pression analysis and DNA methylation profiling. The process of connecting tiling

array probes to genomic annotation is described in Chapter 2, and results from the an-

notation of two different tiling array designs for the model plant Arabidopsis thaliana

are given in detail. These two tiling arrays are the basis for real data applications

explored in this research.

In particular, differential expression analysis using an Arabidopsis Affymetrix R©

whole genome tiling array is described in Chapter 3. Differential expression analysis

involves the study of expression differences between conditions of interest (e.g, treat-

ment vs. control) for all known genes. While statistical issues for studying differential

expression using gene expression microarray technology have been thoroughly inves-

tigated (e.g., Kerr et al. (2000); Wolfinger et al. (2001); Irizarry et al. (2003); Smyth

(2004)), relatively few studies employ tiling arrays for differential expression analysis.

Although they are not specifically designed to optimize the study of gene expression,

the dense coverage provided by tiling arrays offers the potential for coverage of re-

cently discovered genes, as well as provides more coverage per gene. However, since

gene expression is expected to occur in exon regions of genes, many of the tiling array

probes are not biologically relevant. Without genomic annotation information, sta-

tistical testing is limited to individual probe-level testing since it is unknown which

probes correspond to genes. However, by using genomic annotation information to

filter out probes in introns and intergenic regions, a set of biologically relevant probes

is obtained that corresponds to the same format as gene expression microarray data



97

with multiple probes located in the exon regions of genes. Performing this initial

bioinformatic step allows the use of statistical methods previously developed for gene

expression microarrays. An ANOVA model (Wolfinger et al., 2001; Chu et al., 2002)

is applied to gene expression data obtained by hybridizing mRNA samples collected

from the same individuals to both gene expression and tiling microarrays. Results

from this study indicate that (for genes represented on both arrays) although there is

some overlap among differentially expressed genes, some sizable differences are seen

in gene expression level measurements. While more work needs to be done to gain a

better understanding of how the design differences between gene expression and tiling

arrays affects the measurement of gene expression, this application demonstrates how

genomic annotation (i.e, knowing the locations of which probes are in exon regions

of genes) can lead to a biologically relevant statistical analysis.

In Chapter 4, a method is proposed for incorporating genomic annotation infor-

mation into DNA methylation profiling studies. DNA methylation is an epigenetic

mechanism that occurs when a methyl chemical group attaches to a cytosine base on

the DNA sequence. DNA methylation is important in the regulation of gene expres-

sion and has been shown to be associated with many types of cancer (Jaenisch and

Bird, 2003; Jones and Baylin, 2007). To better understand this epigenetic mechanism,

it is imperative to identify locations of DNA methylation in a genome for a variety

of organisms and cell types. Genome-wide profiling of DNA methylation is feasible

with the use of tiling arrays. Early studies employ ANOVA models (Lippman et al.,

2004; Vaughn et al., 2007) or sliding window approaches (Cawley et al., 2004; Keles

et al., 2006) to identify which probes on the tiling array are significantly methylated.

However, both of these approaches require the testing of thousands (if not millions) of

statistical tests that are not likely to be independent. More recently, hidden Markov

models (HMMs) (Ji and Wong, 2005; Du et al., 2006; Humburg et al., 2008; Yoo,

2008) have successfully been employed in DNA methylation tiling array experiments

to estimate the DNA methylation status of all probes while incorporating dependency

between neighboring probes. However, many of these models employ ad hoc param-
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eter estimation and do not make use of genomic annotation information. Previous

studies have offered insight into DNA methylation patterns of many organisms and,

in some cases, seem to indicate that patterns may differ by genomic element (e.g.,

gene, transposon)(Zhang et al., 2006; Suzuki and Bird, 2008). These findings moti-

vate the idea of incorporating genome annotation information into a HMM framework

to improve prediction of DNA methylation. A method is proposed, in which tran-

sition probabilities are allowed to vary between gene and intergenic regions. The

forward-backward (FB) algorithm (employed for state estimation)(Baum et al., 1970;

Baum, 1972) and the Baum-Welch algorithm (an EM-algorithm for HMMs used to

obtain maximum likelihood estimates of model parameters) (Baum et al., 1970) are

both modified to accommodate these changes in transition probabilities according to

genomic element.

Simulation studies are employed in Chapter 5 to investigate the use of genomic an-

notation in DNA methylation profiling studies with tiling arrays. Data are simulated

for two different scenarios. In the first case, transition probabilities are assumed to be

different for gene and intergenic regions, and, in the second case, transition probabili-

ties are assumed to be the same across the whole region. Different parameter settings

for the observation probability distribution are investigated to gain an understanding

of model performance across a wide range of parameter values. In the first simula-

tion study, HMM model parameters are assumed to be known and both the standard

(unannotated) and modified (annotated) forward-backward algorithms are applied to

estimate hidden states. This study reveals that if there truly is a difference in tran-

sition probabilities between gene and intergenic regions, then incorporating genomic

annotation information results in a greater proportion of correctly predicted states

than if transition probabilities are assumed to be constant across the region. While

the annotated model outperforms the unannotated model across all parameter set-

tings, it is noteworthy that the difference in model performance is most drastic when

the data are more noisy and/or for smaller mean differences between intensity levels

of the untreated and treated samples. When there truly are no differences in tran-
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sition probabilities between genes and intergenic regions, performance of annotated

and unannotated model is identical. In the second simulation study, HMM model pa-

rameters are estimated from the data using the standard (unannotated) and modified

(annotated) versions of the Baum-Welch algorithm. These models are compared to

results from paired t-tests and FB algorithm implementation with ad hoc parameter

estimates. Both of the latter two models perform poorly across most parameter set-

tings, while estimating hidden states via FB with BW parameter estimates shows a

marked improvement over these two methods. This indicates the importance of both

modeling dependency between neighboring probes and utilizing a formal estimation

procedure for HMM model parameters. Additionally, when there truly is a differ-

ence in transition probabilities between genes and intergenic regions, incorporating

genomic annotation information into the estimation algorithms, yields model perfor-

mance that is similar to that if the true parameters were known. Again, utilizing the

annotated model when there truly are no differences in transition probabilities does

not affect model performance.

In Chapter 6, the proposed method for incorporating genomic annotation into

the HMM framework for DNA methylation tiling array studies is applied to two real

data sets. The first data set (Lippman et al., 2004) investigates DNA methylation

in the region surrounding the heterochromatic knob on Arabidopsis chromosome 4.

An ANOVA model based on the original analysis is employed to test for significantly

methylated probes across a region of 1407 probes and results are compared to the

HMM which utilizes genomic annotation information. Results are similar between the

two methods, with the annotated HMM detecting a few more methylated probes at

the right end of the heterochromatic knob. The second data set (Zhang et al., 2006)

explores DNA methylation across the whole Arabidopsis genome by using AffymetrixR©

whole genome tiling arrays. A HMM approach developed by Ji and Wong (2005) is

employed in this study to identify methylated probes and these results are compared

to those from the annotated HMM. While many of the same probes are identified

as methylated using both approaches, the annotated HMM detects about twice as
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many methylated probes. In both studies, the annotated HMM is also compared

to the unannotated HMM. The differences in transition probabilities are small in

magnitude, leading to a few differences in DNA methylation status prediction in the

Zhang et al. (2006) study. However, it is only through the use of the annotated HMM

that differences in transition probabilities can be explored and since this model always

allows for the potential of such differences (without affecting model performance if

they do not exist), it is an important contribution to DNA methylation profiling with

tiling arrays.

In summary, genomic annotation information can be used in the statistical anal-

ysis of tiling array data. In this work, the use of genomic annotation information is

applied to differential expression analysis and DNA methylation profiling. For differ-

ential expression analysis, genomic annotation is used to perform a filtering step to

identify biologically relevant probes and obtain data in the same form as that of gene

expression microarrays. For DNA methylation profiling studies, genomic annotation

is incorporated into a HMM framework by allowing different transition probabilities

for genes and intergenic regions. Modified versions of the standard HMM estimation

algorithms (FB and BW) are developed to incorporate these differences in transition

probabilities with the goal of improving prediction of DNA methylation status.

7.2 Future Directions

While this work focuses on the breakdown of genomic annotation into genes and

intergenic regions, it may be worthwhile to consider other types of genomic annotation

(e.g., locations of transposable elements or promoter regions of genes) for incorpo-

ration into a HMM for DNA methylation profiling studies. The methods proposed

here can be extended to include more than two sets of transition probabilities for

multiple types of genomic elements. Also, instead of assuming a constant set of tran-

sition probabilities across all genes, these transitions could be allowed to vary by gene.

While the methods for DNA methylation profiling studies described in this work ad-



101

dress the identification of locations of DNA methylation in one sample type (e.g.,

wild-type Columbia Arabidopsis), it is often of interest to compare DNA methylation

status across sample types (e.g., disease vs. healthy individuals). This presents an-

other opportunity to investigate the use of genomic annotation since perhaps different

sample types could have different sets of transition probabilities for different genomic

elements.

In most DNA methylation profiling studies (including the simulations described in

this work), a common underlying DNA methylation status for each probe is assumed

across all biological replicates. Variation between individuals is assumed to be in the

observed data and not in the underlying hidden states. While this assumption makes

it reasonable to take the average of the observed data for each biological replicate, the

assumption of a common underlying state may not be realistic for real data. Estimat-

ing methylation status of all probes for each biological replicate and determining the

overall methylation status across replicates may be of interest. In this case, taking

the average of the biological replicates may not be ideal since the observed data of

different individuals may come from different underlying distributions. Employing an

estimation technique which allows the direct use of each individual’s observed data to

be combined in a way that accounts for the potential variation in underlying hidden

states is desirable. Such techniques have been described in the HMM literature as

methods which employ the use of multiple observation sequences (Rabiner, 1989). It

is of interest to investigate this method of estimation on simulated and real data in

which hidden states are not assumed to be the same across all replicates.

This work extends the standard forward-backward (FB) and Baum-Welch (BW)

algorithms for hidden state and parameter estimation within the hidden Markov

model (HMM) framework to identify the DNA methylation status for all tiling array

probes. The modifications to the FB and BW algorithms allow the incorporation

of genomic annotation via estimation of separate transition probabilities for genes

and intergenic regions. Although statistical properties of the standard FB and BW

algorithms are well-understood, convergence properties of the modified algorithms
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need to be thoroughly explored. One limitation of the standard BW algorithm is that

it may converge to a local maximum of the likelihood function. Bayesian methods

offer an alternative to the FB and BW algorithms for hidden state and parameter

estimation. Within the HMM framework, priors could be assigned to the model

parameters λ = (A, B, π) and the hidden state sequence. Mo and Liang (2010)

present one option of a Bayesian analysis within the HMM context where the hidden

state vector is modeled by a one-dimensional Ising model, which is a Markov random

field model. Although this method does not use genomic annotation, such information

can potentially be incorporated into Bayesian methods via the prior specifications.

Coupling genomic annotation information with Bayesian approaches for modeling

DNA methylation profiling data offers a potentially powerful alternative to the HMM

framework presented in this work and merits further investigation.

Finally, although the methods in this work are designed for tiling arrays, a newer

type of technology, referred to as next generation sequencing, has become a popular

way to study many different types of biological phenomena, including gene expression

and DNA methylation. Data generated from next generation sequencing technologies

is in the form of counts rather than continuous intensity measurements obtained

from microarrays. Thus, one place to begin an extension of the HMM for DNA

methylation profiling studies is in the specification of the observation probability

distribution. Investigating how the methods in this work can be extended to next

generation sequencing studies will be an important endeavor in advancing this work.
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