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Optimal Control Synthesis of a Class of Nonlinear Systems Using Single 
Network Adaptive Critics 

Radhakant Padhi’, Nishant Unnikrishnan ’, S. N. Balakrishnan ’ 
Department of Mechanical and Aerospace Engineering 

University of Missouri - Rolla. MO 65409. USA 

Abstract 
Adaptive critic (AC) neural network solutions to optimal 
control designs using dynamic programming has reduced 
the need of complex computations and storage 
requirements that typical dynamic programming requires. 
In this paper, a “single network adaptive critic”(SNAC) is 
presented. This approach is applicable to a class of 
nonlinear systems where the optimal control (stationary) 
equation is explicitly solvable for control in terms of state 
and costate variables. The SNAC architecture offers three 
potential advantages; a simpler architecture, significant 
savings of computational load and reduction in 
approximation errors. In order to demonstrate these 
benefits a real-life Micro-Electro-Mechanical-system 
(MEMS) problem has been solved. This demonstrates that 
the SNAC technique is applicable for complex engineering 
systems. Both AC and SNAC approaches are compared in 
terms of some metrics. 

It is well-known that the dynamic programming 
formulation offers the most comprehensive solution 
approach to nonlinear optimal control in a state feedback 
form [Bryson]. However, solving the associated Hamilton- 
Jacobi-Bellman (HJB) equation demands a very large 
(rather infeasible) amount of computations and storage 
space. An innovative idea was proposed in [“Werbos] to 
get around this numerical complexity by using an 
‘Approximate Dynamic Programming (ADP)’ formulation. 
The solution to the ADP formulation is obtained through a 
dual neural network approach called Adaptive Critic (AC). 
In one version of the AC approach, called the Dual 
Heuristic Programming (DHP), one network (called the 
action network) represents the mapping between the state 
and control variables while a second network (called the 
critic network) represents the mapping between the state 
and costate variables. Optimal solution is reached after the 
two networks iteratively train each other successfully. This 
DHP process, overcomes the computational complexity 
that had been the bottleneck of the dynamic programming 
approach. Proofs for both stability of the AC algorithm as 
well as the fact that the process will converge to the 
optimal control is found in [Liu] for linear systems 
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Among many successful uses of this method for 
nonlinear control design, we cite [Balakrishnan] in which 
the authors have solved an aircraft control problem using 
this technique and [Han] where the adaptive critic 
technique has been used for agile missile control. Padhi 
et al. [.‘SPadhi] have extended the applicability of this 
technique to distributed parameter systems. There are 
various types of AC designs available in literature. An 
interested reader can refer to [“Prokhorov] for more 
details. 
In this paper a significant improvement to the adaptive 
critic architecture is proposed. It is named Single 
Network Adaptive Critic (SNAC) because it uses only 
the critic network instead of the action-critic dual 
network set up in typical adaptive critic architecture. 
SNAC is applicable to a large class of problems for 
which the optimal control (stationary) equation is 
explicitly solvable for control in terms of state and 
costate variables. As an added benefit, the iterative 
training loops between the action and critic networks are 
no longer required. This leads to significant 
computational savings besides eliminating the 
approximation error due to action networks. 
In literature there is an alternate approach to solving the 
optimal control problem using a neural network trained 
by a ‘back propagation through time’ (BPTT) approach 
[bProkhorov] (an interested reader can fmd the details of 
BPTT in [bWerbos]). Even though the motivation behind 
the above mentioned work was to carry out a comparison 
study of computational complexity, no ‘quantitative’ 
comparison was made. In this paper, it is clearly shown 
through comparison studies with the typical dual- 
network based AC approach why SNAC is better. The 
SNAC approach presented in this paper is more control 
designer friendly since the neural networks embed more 
control theoretic knowledge. 
2. Approximate Dynamic Programming 
In this section, the principles of approximate (discrete) 
dynamic programming, on which both AC and SNAC 
approaches rely upon are described. An interested reader 
can find more details about the derivations in 
[Balakrishnan, ‘Werbos]. 
In discrete-time formulation, the aim is to fmd an 
admissible control U,, which causes the system 
described by the sfate equufion 

to follow an admissible trajectory from an initial point 
X, to a final desired point X, while minimizing a 
desired cost function J given by 

Xk+, = F,(Xk, UA) (1) 
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where the subscript k denotes the time step. X, and Uk 
represent the n x l  state vector and m x l  control vector, 
respectively, at time step k . The b c t i o n s  F, and Y, are 
assumed to be differentiable with respect to both X, and 
U,. Moreover, Yt is assumed to be convex (e.g. a 
quadratic function in X ,  and Uk). One can notice that 
when N + m , this leads to the infinite time problem. The 
aim is to fmd U, as a function of X ,  , so that the control 
can be implemented as a feedback. 
Now, the steps in obtaining optimal control are described. 
First, the cost function in Eq(20) is rewritten for 
convenience to start from time step k as 

Then J ,  can be split into 
Jk = y k  + Jw 

(3) 

(4) 
h-l 

where Y,  and Jt+> = 2 vi represent the utility function at 
1.h 

time step k and the cost-fo-go Ji'om time step k + l  to N , 
respectively. The n x l  costate vector at time step k is 
defmed as 

Ak = - 

For optimal control (stationay) equation, the necessary 
condition for optimality is given by 

However, 

,-f, 

Thus combining Eqs.(6) and (7), the optimal control 
equation can be written as 

The cosfate equation is derived in the following way 

(9) 
Note that by using E¶.@), on the optimalpath, the costate 
equation Eq.(9) can be simplified to 

Eqs.(l), (8) and (IO) have to be solved simultaneously, 
along with appropriate boundary conditions for the 
synthesis of optimal control. Some of the broad classes 
of problems include fwed initial and final states, fued 
initial state and free fmal state etc. For infinite time 
regulator class I of problems, however, the boundary 
conditions usually take the form: &is fixed and 
AN --f 0 as N --f m . 
3. Adaptive'  Critics fo r  Optimal  Control 
Synthesis 
In this section, the process of adaptive critics (AC) for 
optimal control synthesis is reviewed. In an AC 
framework, two neural networks (called as 'action' and 
'critic' networks) are iteratively trained. Afler successful 
training, these networks capture the relationship between 
state and control and state and costate variables 
respectively. We review the steps in this section in fair 
detail. 
3.1 State Genethion for Neural Network Training 
State generation is an important part of training 
procedures for both the AC and the newly-developed 
SNAC. For this purpose, define 
S, = { X k  : X, E Domain of operation} where the action 
and critic networks have to be trained. This is chosen so 
that the elements of this set cover a large number of 
points of the state space in which the state trajectories are 
expected to lie. Obviously it is not a trivial task before 
designing the control. However, for the regulator class of 
problems, a stabilizing controller drives the states 
towards the origin. From this observation, a 'telescopic 
method' is arrived at as follows. 
For i = l , 2  ,... defme the set S, as S,=(X,:IlX,II,<c,) 

where, c, is a ,positive constant. At the beginning, a 
small value of ' cI is fixed and both the networks are 
trained with the states generated in s,. Atter 
convergence, c, is chosen such that (c2 > c,) . Then the 
networks are trained again for states within S, and so on. 
Valuesof c, =0105 and e, =c, +0.05(i- l )  for r = 2 , 3 ; . .  

are used in thissstudy in Subsections 5.2 and 5.3. The 
network training is continued until i =  I ,  where S, 

covers the domain of interest. 
3.2 Neural network training 
The training procedure for the action network is as 
follows (Figure 1): 
1. Generate set S, (see Section 3. I ) .  For each element X, of 

S, , follow the steps below: 
a.lnput X, to'the action network to obtain U& 

b.Get X,,, from state Eq.(l) using x, and U, 

C. Input X,,, to the critic network to get A,, 
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d.Using ,i“ and A,,, , calculate U; (target U*) from the 
optimal control Eq.(8) 

Train the action network for all X, in S, , the output being 

corresponding U: 
2. 

The steps for training the critic network are as follows 
(Figure I): 
1. Generate set S, (see Section 3.1). For each element X, of 

S, , follow the steps below: 
a.lnput X, to the action network to obtain U* 
b.Get X,,, from the state Eq.(l) using X, and U, 

c. Input X,,, to the critic network to get A+, 
d.Using X, and A,,, , calculate A; from the costate 

Train the critic network for all X, in S, , the output being 
corresponding ?; . 

equation Eq.(lO) 
2. 

3.3 Convergence Conditions 
In order to check the individual convergence of the critic 
and action networks, a set of new states, S,‘ and target 
outputs are generated as described in Section 3.2. Let these 
target outputs be ?; for the critic network and U; for the 
action network. Let the outputs from the trained networks 
(using the same inputs from the set s;) be 1; for critic 
network and U; for action network. Tolerance values to/, 

and rol. are used as convergence criteria for the critic and 
action networks resptively. _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ ~  

I 

I 

I I  I I I  

L - - - ? _  _ _ _ CDrmTnin im _ _ - - - - I 
Figure 1: Adaptive Critic Network Training 

The following quantities are defined as relative errors: 
e., A ( ~ \ A ~ - 1 ; ~ ~ / ~ ~ ? ; ~ ~ )  and e., A(l\UL - U ; ~ ~ / ~ ~ U ~ ~ ~ ) .  Also define 

e, L {ec6 ) , k = I, .  . .,IS[ and e, {eoa), k = I, .  . .,IS1 . When 

Ilecll < tol,, the convergence criterion for the critic network 
training is met and when ~ ~ e ~ ~ ~ < t o I ~ ,  the convergence 
criterions for the action network is met. 
After successful training runs of the action and critic 
networks (i.e. after the convergence criterions are met), 
cycle error criterion are checked. For the training cycle 
n> I , the error is defined as err, = llec” -ec”.> [ille.. 11 and 

err, =Ilea.  en,^, Ilille.. 11 for the critic and the action networks 

respectively. Also hy defining to!, =pc fol, , and 

t o / ,  =pa tol, where 0 < pc,pa < 1 ,  (for n > I ) if both 

lerrc” -errcn, I < to/, and \erro. -err,_, I < tola, , the cycle 

convergence criterion has been met. Further discussion 
on this adaptive critic method can be found in [“Werbos, 
Balakrishnan, ‘Padhi]. Note that this iterative training 
cycle will not be needed in the newly-developed SNAC 
technique (Section 4). 
3.4 Initialization of networks: Pre-training 
Note that during the process of action network training, 
the critic network is assumed to he optimal and vice 
versa. Consequently, there is a need to start with ‘good’ 
initial weights for the networks to lead to convergence. A 
process called “pre-training” is used for this purpose. 
This is carried out before starting the AC or SNAC 
training cycle. The neural networks are initially trained 
with the solution of the linearized problem using the 
standard linear quadratic regulator (LQR) theory 
[Bryson]. Intuitively, the idea is to start with a solution 
that is guaranteed to be ‘close enough to’ the optimal 
solution, at least in a small neighborhood of the origin. 
This approach is followed in the problems discussed in 
Section 5. 
4. Single Network Adaptive Critic (SNAC) 
Synthesis 
In this section, the newly developed single network 
adaptive critic (SNAC) technique is discussed in detail. 
As mentioned in Section 1, the SNAC technique retains 
all powerful features of the AC methodology while 
eliminating the action network completely. Note that in 
the SNAC design, the critic network captures the 
functional relationship between states X, at stage k, and 
the costates A,,, at (k+l), whereas in the AC design the 
critic network captures the relationship between states 
X, at stage k, and the costates A, at stage k. The SNAC 
method though is applicable only for problems where the 
optimal control equation Eq.(8) is explicitly solvable for 
control variable U ,  in terms of the state variable X, and 
costate variable A,,, (e.g. Systems that are affine in 
control fall into this class if the associated cost function 
is quadratic). This is not a hugely restrictive since many 
engineering problems such as aerospace, mechanical and 
chemical processes fall under this class. 
4.1 Neural Network training 
The steps in SNAC neural network training are as 
follows (Figure 2): 
1. Generate S, (see Subsection 3.1). For each element 

x, of S, , follow the steps below: 
a.lnput X, to the critic network to obtain A,,, = q+, 
b.Calculate Uk, form the optimal control equation since 

X, and A,,, are known. 
C.Get Xk.l from the state Eq.(l) using A’, and U ,  
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~ 

2. 

3. 

4. 

d h p u t  Xi+,  to the critic network to get 
e.Using X,,, and A*+>, calculate $+, from costate 

Train the critic network for all X ,  in S, ; the output 
being corresponding S,, . 
Check for convergence of the critic network 
(Subsection 4.2). If convergence is achieved, revert to 
step 1 with i = i + l .  Otherwise, repeat steps 1-2. 
Continue steps 1-3 this process until i = I . 

Eq.(lO) 

4.2 Convergence Condition 
Convergence check in the SNAC scheme is carried out as 
in the AC case. First a set S,‘ of states is generated as 
explained in Subsection 3.1. Let these target output be 
&and the outputs from the trained networks (using the 
same inputs i7om the set S,‘) be A;+, . A tolerance value 
rol is used to test the convergence of the critic network. 
By defming the relative error ec, 2(l/A;+, -q+,11/11.1:+,11) and 

e, 4 (eck}, k = I,...,ISI. ,the training process is stopped when 

Ile.JI < 101. 

t 4+$ 

Figure 2: Single Network Adaptive Critic Scheme 
4.3 Initialization of Networks: Pre-training 
By using the standard discrete Linear Quadratic Regulator 
(LQR) theory, the Riccati matrix S, and gain matrix K ,  

are obtained for use in pretraining[Bryson]. Note that S, 

gives the relationship between X,and 4, whereas the 
critic network in the SNAC has to be trained to capture the 
functional relationship between X ,  and ,$+, . This can be 
done by observing that 

where .?, B S, (A, - BJ,) . Eq.( 11) is to pre-train the 
networks. 
5. Numerical Results 
In this section, numerical results from a representative 
problem is reported. The goals of this study are (i) to 
investigate the performance of the newly-developed SNAC 
controller in stabilizing a nonlinear system and (ii) to 
compare quantitatively the computations in using the 
SNAC and the AC. A personal computer having a Pentium 
111 processor with 930 M H z  speed and 320 MB of RAM 
was used to conduct the numerical experiments. The 
software used for training was MATLAB V. 5.2, Release 

A*+, = SdX,,, = &x, ( 1  1) 

12. The Neural Network Toolbox V.3.0 in MATLAB 
was used with the Levenberg-Marquardt back- 
propagation scheme for training the networks. 
5.1 Example 1: A Micro-Electro-Mechanical-System 
(MEMS) Actuator 
5. I .  I Problem statement and optimaliiy conditions 
The problem considered in this study is a MEMS device, 
namely electrostatic actuator [Senturia]. In addition to 
demonstrating the computational advantage, this problem 
also proves that the SNAC technique is applicable for 
complex engineering systems of practical significance. 
The schematic diagram for this problem is as shown in 
Figure 3. 

-.d- 

Figure 3: Electrostatic Actuator 
There are two domains that are interlinked in the 
dynamics of the system. One is the electrical domain and 
the other is the mechanical domain. The governing 
equations are given by 

mg + bg + k(g - go) +x = 0 
2&A 

where Q denotes the charge, g the gap between the 
plate and the base ( g o  = Ipm ), and g represents the rate 
of change of the gap when the plate moves. V,” is the 
input voltage that is used to move the plate to the desired 
position. The mass m ( = I m g )  represents the mechanical 
inertia of the moving plate, a dashpot b ( = o . s m g / s )  

captures the mechanical damping forces that arise from 
the viscosity of the air that gets squeezed when the plate 
moves, a spring k (  = ~ m g / s ’ )  represents the stifhess 
encountered when the plate actuator moves, a source 
resistor R (=o.Ooln) for the voltage source that drives 
the transducer. [Senturia] 
Defining the state variable Z = [z, z2 z3Ir = [Q g g]’, 
Eq.(12) can be written as 

z2 = z, (13) 

The function of the control input in this problem is to 
bring the plate to some desired position, i.e. the gap g 
has to be maintained at some desired value. We selected 
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the desired value of the gap as 0.5 pin, An optimal 
controller is designed to drive the plate to the desired 
value. At the equilibrium point, z2 = 0.5, 2 = 0 .  Solving 
Eq.(13) for z , , q  and c, the values of the states at the 
equilibrium (operating) point are obtained as 
2, =[ lo  0.5 O]r and the associated steady state controller 
value is given by y% = 0.05. Next the deviated state is 
defmed as X = [x, xt x,]' 2 - Z, and deviated control 
U 4 V," - y N 0 .  In terms of these variables, the error dynamics 
of the system is 

j; - --(l+ 1 x 1  I x + !a2 + bx, + - I k g  + - - '- m  EA f i  2 2 k  
Now an optimal regulator problem can be formulated to 
drive X + 0 with a cost function, J as 

where Q, t 0 and & > 0 are weighting matrices for state 
and control respectively. As in Subection 5.1, the state 
equation and cost function were discretized as follows: - -  

25Am m a  m m 2m 2m h 

(16) 
K-rr 1 

J =  ~ T ( X : &  *., X ,  +& u:)At (17) 

Next, using Y, = ( x :  Q, x i + R , u : ) A f / 2  in Eqs.(S) and (lo), 
the optimal control and costate equation can be obtained as 
follows: 

5 1 . 2  Selection of design parameters 
For this problem, values of AI = 0.01, Qw = 1, and = 1 , 
to/, = 101, = 0.05 and p, = pa = 0.01 were chosen and the 
domain of the state S, = { X :  I x , ~  < 1, i = 1,2,3} .The 
'telescopic method' described in subsection 3.1 was used 
for state generation. Each time 1000 points were randomly 
selected for training the networks. In SNAC synthesis, the 
tolerance value i d =  0.05 was used for convergence check. 
In the AC synthesis, three sub-networks each having a 3-6- 
1 structure were used as critics and a 3-6-1 network was 
used as the action network. In each network, hyperbolic 

tangent functions for the input and hidden layers and 
linear function for the output layer served as activation 
functions. 
5.1.3 Analysis of results 
Simulations were carried out using the same initial 
conditions for both AC and SNAC schemes. One set of 
initial conditions used was [Q g g]Ym0 =[9.85 1.5 -1]T . 
Figure 4 shows the trajectory of Q for both AC and 
SNAC techniques. Likewise Figures 5 and 6 show g 

and g trajectories respectively. Figure 7 shows the 
control trajectory obtained from using the two schemes. 

# / I ,  

0 1 1 0 1 . m =  
um 

Figure 7: Associated control trajectories 
Figures 4-6 indicate that both the AC and SNAC 
schemes performed well to drive the states to their 
respective values. It can be seen from Figure 5 that the 
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Critic Action 
training and training and 
convergence convergence 

check check 

Cycle 
convergence 

check 

Time 
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results in substantial computational savings. Besides, it 
also eliminates the neural network approximation error 
due to the eliminated action networks. Tremendous 
computational ,savings with the SNAC have been 
demonstrated by using an interesting example. In 
addition, the MEMS problem also demonstrates that it is 
applicable for complex engineering systems of practical 
significance. 
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