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Optimal Beaver Population Management Using Reduced Order 
Distributed Parameter Model and Single Network Adaptive Critics 

R a d h a k a n t  Padhi’ and S. N. Balakrishnan’ 
Department of Mechanical and Aerospace Engineering 

University of Missouri - Rolla, MO, 65409, USA 

Abstract 
Using a distributed parameter model for beaver 
population that accounts for their spatial and 
temporal behavior, an optimal control for a desired 
distribution of the animals is presented. Optimal 
solutions are obtained through a “single network 
adaptive critic” (SNAC) neural network 
architecture. 
Keywords: wildlife management, control 

1. Introduct ion 
Beavers are small mammal species and have a 
strong tendency to create nuisances, mainly by 
building dams on the flowing water thereby 
creating flooding the low land areas, roads, crop 
lands etc. However, the same activities sometimes 
lead to desirable consequences too- like increased 
vegetation, increased water table etc. However, the 
same activities sometimes lead to desirable 
consequences too- like increased vegetation, 
increased water table etc. Because of this 
conflicting situation, an optimal management 
strategy is needed to control their 
population[McKinshy, McTaggart].With the 
assumption that the neighboring land owners have 
a common goal, a distributed parameter model has 
been proposed in [Bhat]. An optimal harvesting 
strategy using this model has also been proposed 
[Bhat, Leinhart]. 
The main goal of this research is to design an 
“optimal” beaver harvesting scheme for a region of 
interest. Solving the associated Hamilton-Jacobi- 
Bellman (HJB) equation[Blyson] usually demands 
a very large amount of computations. Werbos 
proposed an innovative idea to get around this 
numerical complexity by using an ‘Approximate 
Dynamic Programming (ADP)’ formulation that 
uses two neural networks called adaptive critics. 
This paper uses a variant of the adaptive 
critic[Balakrishnan,Werbos] architecture that is 
named ‘‘Single Network Adaptive Critics (SNAC)” 
using a single network. 
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depends on the parameters of the model. Reasons 
for the diffusion term in the model include 
migration of two-year olds to set up new colonies, 
migration of the entire colonies for better food 
availability etc. Similarly, decay terms represent 
their natural demise, being eaten by predators, 
diseases due to contaminated water (their habitat is 
always close to water resources) etc. 
2.2 Controller Objective 
The objective of this controller in this study is to 
trap the beavers throughout the territory in an 
optimal way that leads to a desired distribution 
Z' ( y )  in the long run. 
2.2.1 Choice of the Desired Distribution 

The territory considered in this paper is a 
forest land and the desired distributions wanted by 
a wildlife manager 2' ( y )  is restricted to satisfy 
the following conditions: 
(i) Z' t 0 in R \ JR , Z' < 0 is meaningless 

(ii) Z' = O  on JQ 

(iii) Z' is continuous and smooth (i.e. V'Z' 
continuous) 

(iv) V'Z' /Z' is finite for R u  JR 
Condition (ii) is imposed because the boundary of 
the forest land usually consists of human 
habitation. However, the conditions 2' = 0 and 
(V'Z'IZ')  being finite are in conflict. Hence, 

condition 1 is restricted to Z' > 0 in R \ JR 
and an approximation for condition (ii) that 
Z' -0' onJQ is introduced. One such 
approximation is 

Z' (Yd* ) = f ( Y ,  )f(h 1 (2) 

Means of the distributions are selected as 

For continuity in both y, and y, dimensions, a 
condition 1; (4 ) = f, (& ) is imposed. This leads to 

B = A (U2 lo,) and Z' ( y ,  , y2 )  becomes 

U = 4 12,H = Ll 12, 30, = 4 12, 3a1 = L2 12 ; 

Selection of this distribution is found to be good 
enough for this application, even though it does not 
satisfy the boundary condition of the model (see 
Eq.(l)) in a strict sense. For a particular selection 
of the parameter A , the total number of species in a 
rectangular territory having sides L, and L'for 
such a selection of Z' can be computed as follows. 

=(O.9973) 'A2(u2/U, )  = (0.9973)2 A* (& 14) 
2.2.2 Feed-forward Controller 

Let P' be the associated control with Z' so that 
Z' remains at steady state. Then from Eq.(l), it is 
clear that Z' and P' should satisfy the following 
equation: 

a V'Z' + Z' (a- bZ' -P*) = 0 (6) 
which leads to 

P' = ( u b Z ' ) + a ( y )  V'Z' (7) 

Note that the conditions (iii) and (iv) imposed on 
Z' in Subsection 2.2.1 makes P' well-behaved. 
By using Eqs.(4) and (7) P' can be written as: 

One may observe from Eq.(8) that the steady state 
control P' is a function of A via the steady state 
Z ' .  However since Z' + 0 at the boundary, P' 
is not a function ofA at the boundary. 

2.2.3 Deviation Dynamics and Cost Function 

With the availability of the desired final values for 
state Z' and control P', Z Z ' + x  and 
P P' + U ,  where x and U are deviations in state 
and control respectively. Then it follows from 
Eq.(l) that 

JI 

where 

(9) 
- = a V ' x + ( a - P '  ax - 2 b Z ' ) x - Z ' u  + f ( x , u )  

f (x, U )  (-bx' -m) 

x (Y , ,Y , J )=o  on a n  (10) 

X(YI.Y2,0)=ZO(y,,yz)-Z'(y,,Y2) on Q 
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The goal of the controller design now is to cancel 
the deviation terms x and U throughout the 
domain. This can be achieved by finding a 
controller that minimizes 

where q > O  and r > O  are the weights on state 
and control respectively. 

3. Reduced Order Model Development 

3.1 Basis Function Design Based on Proper 
Orthogonal Decomposition (POD) 

Proper Orthogonal Decomposition (POD) is a 
technique of finding an optimal set of basis 
functions, which spans an ensemble of data 
optimally in an average sense. Let 
{U, ( y )  : 1 2 i 2 N ,  y E R) be an ensemble of data, 
consisting of set of N snapshot solutions 
(observations), of some physical process over the 
domain 0 at arbitrary instants of time. It is an 
effort to find all possible basis functions Q , each 
of which provides a local maximum for the 
following figure of merit 

The problem is reduced to finding eigenvalues and 
eigenvectors where the normalized orthogonal 
eigenvectors are given by 
W"[< w; ... w ; ] ' .  

The N basis functions can be written as 

. .  

The eigenspectrum can then be truncated 
P " 

judiciously such that ELT, =ELT, ,  where the 
,=, ,=I 

truncated system has f? 2 N eigenvalues and 
eigenvectors. 

3.2 Reduced Order Model: Galerkin Projection 
After obtaining the basis functions, x and U are 
expanded as follows 

P 

j = l  
x ( t , Y ) = x i j  ( t ) Q j  (Y, ,Y,)  (13) 

Note that: 
The principle of Galerkin projection [Holmes] 
is used after substituting Eqs.13-14 in Eqs.(9- 

10) to obtain the following reduced-order 
finite-dimensional model for the deviation 
dynamics. 

k = dB+bir+P(B,O) (15) 

where 2 ? ifi]', fi A [C,... B R I T  and 
& '  

= -1, I, [V@".V@,+(2bZ'+~')@"@,]dy*dy,+a/",  

P ( i , ; )  =I," Io' /( * , ~ ) @ ~ d y , d y ,  = -Io4 Io' (bx' +ru)dy,dy, 

Similarly substitutions for x and U from Eqs.(l3- 
14) in the expression for the cost function Eq.(ll) 
results in 

E", = - IoL j," Z * @ 9 , d y 2 d y L  

(16) 

where 
3.4 Snapshot Solution Generation 
The spatial domain R \ dR is discretized denoting 
m, =1, ..., M I  as the node points along y,  and 
m, = 1, ..., M, as the node points along y , .  Then 
for m,=2 ,..., ( M , - l )  and m , = 2  ,..., (M2-1) the 
following ordinary differential equations can be 
written [Gupta]. 

Q = qI, and R = rln 

1 1.. [t 1 (%*, -2%" +x",,.m*.,) 

7 ( X ? * , . " ,  -2xm,.ml +%,.m>)+- 

+ ( a  - 2bz:,,m2 - p;,,m2 )%,- - Z L >  U?,- ... 
-%,,, -X?,*um& 

AY I 
xm,,- = a  

(18) 

It is also observed that x,,,,,, = O  for either 

m, = 1,M, or m2 = 1, M ,  for all time f (because of 
the boundary conditions). By defining 

the following finite-dimensional approximated 
system dynamics can be written as 

where matrices A,  B and the function f(X,U) 
are appropriately defined (we have omitted the 
detailed expressions for brevity). Next the cost 
function was also approximated using this 
discretized system in the form 

k = Ry+ BU+ f ( X , U )  (19) 
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where Q = ( l / 2 )  4 ( A y , A y ~ ) 1 ~ ~ , . ~ ~ ( ~ , . * ~  and 

R = (1 12) r (AY&, 1 1 ( M , . 1 p ! . 2 )  ' 

4. Single Network Adaptive Critics (SNAC) 
4.1 Optimality Conditions 
The necessary conditions of optimality for a 
lumped system driven by the system dynamics in 
Eq.(15) and cost function in Eq.(17) is 

where the nkth element of [ak/af i ]  matrix is 

given by 

The costate equation is given by 

A = -  z=  ax -b+[l+$IA) (23) 

where the nk* element of aF/aX matrix is 

given by 
[ "  " I  

Eq.(15), Eq.(21) and Eq.(23) need to be solved 
simultaneously, along with the boundary 
conditions for optimal control with k(0) is 

known and d(t ,  + -) = 0 .  

4.2 Neural Network Synthesis Process 

4.2.1 Sate Generation for Training 
Let 2,- denote the vector of maximum values for 

ik and im,. the vector for minimum values. Then 
fixing a positive constant O<c, 9 1, the states 

. t k i c , [ i m n , i _ ] a r e  selected. Let 

S, = { : ik E ~ , [ k ~ , ~ , k ~ ~ ] } .  Then for 

c, 9 c 2  <c, < ..., SI c s, E S, c . .. . Hence, 

for some i = I ,  c, = 1 and S, will include the 
domain of interest for initial conditions. At the 
beginning a small value for the constant c, is fixed 
and the networks is trained with these states, 
randomly generated withins,. Once the critic 

networks converge for this set, a higher value of c, 
s are picked and. the network training is continued 
until the set s, includes domain of interest for the 
initial conditions. 

4.2.2 Training Procedure 

The SNAC training algorithm is described in 
Figure 1. 

Figure 1: Schematic of SNAC synthesis 

4.2.3 Network Structure 

Since E = 5 for the beaver problem, five critic 
networks are used withX, as inputs and a 
component of the,vector as the output. For the 
wildlife management problem the network 
architecture is ns,R,, where n,,,, means five 
neurons in the input layer, eight neurons in the 
hidden layer and one neuron in the output layer. 
For activation 'functions, a tangent sigmoid 
function for the 'input and hidden layers and a 
linear function for the output layer are used. 
Simulation results indicate the network choices 
were adequate. 

5. Numerical Results 

5.1 Selection of Numerical Values 

The values of parameters used in the numerical 
experiments in this study are the same as used in 
[Bhat, Leinhart]. A spatial domain having 
L, =62.75 miles and L2 =112.95 miles was 
selected and the grid parameters are 
Ay, = Ay2 = 12.55 miles. The time step 
At =(7/365)yr ' (one week), means that the 
control solution (rate of beavers to be harvested) is 
updated every one week. For the costhence N ' )  in 
Eq.(4), random values were used for 
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AE[A, , , ,A , , ]  where & n = 0 . 4 & a ,  and 

4," = 0.5 fi a, in the simulation. 

5.2 Analysis of Results 

The main goal in this study is to drive Z + Z' and 
in the process drive the control P + P' for any 
initial condition in the chosen domain of interest. 
A lot of initial profiles were used and simulation 
studies carried out where these conditions were 
met. However, since it is impossible to include a 
number of simulation results (due to space 
constraints), results for one representative random 
case is presented in Figures 2-9. 

Figures 2 and 3 depict the steady state (or target) 
state and control profiles respectively. In other 
words, starting from any initial condition that has 
been accounted for training the networks, the sate 
and control should converge to these profiles with 
time. 

Figure 2: Target profile for state 

Figure 3: Target profile for control 

The randomly chosen initial condition (for time 
f = 0 )  for this simulation and the associated 

control computed are shown in Figures 4 and 5 
respectively. 

Figure 4: Initial condition for state 

II 
0 -0 12 

Figure 5: Control for the initial condition 
Since it is impossible to show a three dimensional 
surface plot as it evolves, we have included the 
state and control at different time instants. At f = 6 
months the state and control are as in Figures 6 and 
7 respectively. 

... : ..._ 

Y I  
"2 0 0  

Figure 6: State at f = 6 months 

1602 



Y l  
r2 0 -0 

Figure 7: Control at t = 6 months 
To further illustrate the way the state and control 
develop towards their steady state, we have 
included the time histories of the lumped parameter 
states and controls for the state and control 
deviations (see Section 3.2) in Figures 8 and 9 
respectively. 

.........I .............. . ..... , , , . .  
: : : : I  

. I , , . , ,  , , . . . , ,  

m e  

Figure 8: Lumped parameter state histories for the 
state deviation 

T"8 

Figure 9: Lumped parameter control histories for 
the control deviation 

From Figures 8 and 9 it is clear that the state and 
control converge to their respective targets in about 

two years time and it stays there afterwards. We 
observed this in all of the large number of 
simulations we have carried out. The results in 
Figures 2 through 9 clearly indicate that the control 
design achieved it objective. 

6. Conclusions 

The optimal harvesting technique presented for 
managing the beaver population leads to a healthy 
desired distribution. Hence this strategy will not 
invoke much of opposition from the animal 
conservationist and may be a great tool for a 
wildlife manager. 
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