
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mathematics and Statistics Faculty Research & 
Creative Works Mathematics and Statistics 

01 Jan 2004 

The Independence of Characters on Nonabelian Groups The Independence of Characters on Nonabelian Groups 

David E. Grow 
Missouri University of Science and Technology, grow@mst.edu 

Kathryn E. Hare 

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork 

 Part of the Mathematics Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
D. E. Grow and Kathryn E. Hare, "The Independence of Characters on Nonabelian Groups," Proceedings of 
the American Mathematical Society, American Mathematical Society, Jan 2004. 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229033003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 132, Number 12, Pages 3641–3651
S 0002-9939(04)07506-9
Article electronically published on May 20, 2004

THE INDEPENDENCE OF CHARACTERS
ON NON-ABELIAN GROUPS

DAVID GROW AND KATHRYN E. HARE

(Communicated by Andreas Seeger)

Abstract. We show that there are characters of compact, connected, non-
abelian groups that approximate random choices of signs. The work was mo-
tivated by Kronecker’s theorem on the independence of exponential functions
and has applications to thin sets.

1. Introduction

Kronecker’s theorem states that if x1, . . . , xk are real numbers that are linearly
independent over Q, then for any ε > 0 and α1, . . . , αk ∈ R there exists a real num-
ber y with

∣∣eiyxj − eiαj ∣∣ < ε for j = 1, . . . , k. This classical theorem has inspired
many mathematicians since it was first proved more than 100 years ago, and has
been extended in many ways. For example, Bohr [1], [2] exploited the idea to study
the absolute convergence of Fourier series of almost periodic functions, Hewitt and
Zuckerman [11] generalized the theorem to deduce various approximation theorems,
and Rudin [19] introduced the related notion of a Kronecker set.

A variation of Kronecker’s theorem on the independence of exponential functions
states that there is an infinite set of integers {nk} with the property that for any
choice of signs {rj} there is some x ∈ T with supj

∣∣einjx − rj ∣∣ < 1. A similar result
is true for all infinite, compact abelian groups [9].

In this paper we study the independence properties of characters of compact,
connected, non-abelian groups. We prove that for all such groups there are infinite
sets of characters that approximate random choices of signs {rk}. We do this first
for Lie groups where the characters are well understood, and then appeal to the
structure theorem for compact, connected groups.

Since the value of a character, χk, can be as large as its degree, one might expect
that an arbitrary choice of signs could be approximated by {χk(x)/ degχk}. It is
not possible to do this in compact, simple Lie groups (see [16], [18]); however, we
are able to show that for most such groups one can approximate arbitrary choices
of signs by {χk(x)/(degχk)a} for some a > 0.

An application is given to the study of thin sets in compact, non-abelian groups.
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2. Independence of characters

2.1. Independence of characters of compact, abelian groups. In [9] Hart-
man and Ryll-Nardzewski showed that the dual of every infinite, compact abelian
group contains an infinite set of characters {χj} such that for any choice of signs
{rj} there is some x in the group satisfying supj |χj(x)− rj | < 1. The goal of this
paper is to extend this result to any compact, connected group G. The dual of G,
denoted Ĝ, is a maximal set of inequivalent, irreducible, unitary representations of
G. The irreducible representations of compact groups are always finite dimensional
and their traces are the characters of G.

Our main result is:

Theorem 2.1. Let G be any infinite, compact, connected group. There is an
infinite set of representations {λj} ⊂ Ĝ such that for all choices of signs {rj} there
is some x ∈ G with

sup
j
|Trλj(x) − rj | < 1.

We begin by considering compact, connected, simply connected, simple Lie
groups because explicit formulas are known for their characters. Once the inde-
pendence properties for characters on these groups have been established it is not
difficult to use abelian group theory and the structure theorem to transfer the
results for compact, Lie groups to all compact, connected groups.

2.2. Notation. Let G denote a compact, connected, simply connected, simple Lie
group of rank n, and let T be a maximal torus of G associated with a system of
positive roots Φ+. If h is a Cartan subalgebra of the Lie algebra g ofG corresponding
to T , then T = {exp(X) : X ∈ h}. Pick and fix a basis {H1, . . . , Hn} for h such
that each α(Hk) is an integer for all α ∈ Φ+ (cf. [20, p. 181]). The coordinates
of X ∈ h are the unique real numbers ξ1, . . . , ξn such that X =

∑n
i=1 ξiHi. The

Weyl character formula (cf. [21]) specifies the value of a character on the torus and,
since a character is a class function, this uniquely determines it. For more details
and further background information on the structure and representation theory of
compact, Lie groups the reader is referred to [12] and [20].

Of primary interest to us are the representations σN on G whose characters on
the torus are given by the Weyl character formula as
(2.1)

TrσN (x) ≡ DN (x)
D(x)

where DN(exp(X)) =
∏
α∈Φ+

sin (Nα(X)/2) and D = D1.

(This formula is understood as a limit if D(x) = 0.) Our study of these particular
representations was motivated in part by the work of Dooley who showed in [4]
that the set of representations {σNj}, for Nj growing sufficiently rapidly, had the
special feature of being a central p-Sidon set for p > 1. Later in this section we will
prove that these characters have the desired independence property.

2.3. Periodicity properties. The key to our approximation results is the peri-
odicity of the functions DN . In particular, one should note that DN (exp(X)) =
DN(exp(Y )) if each coordinate of X−Y is an integer multiple of 4π/N. In the first
two lemmas we derive useful consequences of this periodicity.
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Lemma 2.2. Let {Bj}Jj=1 be a finite collection of non-empty, open subsets of T .
Then there is an integer N0 such that for any N ≥ N0, the range of DN restricted
to any of the sets Bj is the same as the range of D on T .

Proof. The range of DN and the range of D clearly coincide. Thus it suffices to
show that DN and DN |Bj have the same range.

Fix elements

xj = exp(
n∑
i=1

ξ
(j)
i Hi) ∈ Bj , j = 1, . . . , J,

and choose an integer N0 such that if
∣∣∣ξ(j)
i − ζ

(j)
i

∣∣∣ < 4π/N0 for all i and all j, then

exp(
∑n
i=1 ζ

(j)
i Hi) ∈ Bj .

Let N ≥ N0. Given y = exp(
∑n

i=1 υiHi) ∈ T , select integers lj(i), i = 1, . . . , n,
j = 1, . . . , J satisfying

max
i
{
∣∣∣ξ(j)
i − (υi − 4πlj(i)/N)

∣∣∣} < 4π/N.

Therefore, if

Zj =
n∑
i=1

(υi − 4πlj(i)/N)Hi,

then exp(Zj) ∈ Bj , and the remarks above imply that DN (exp(Zj)) = DN (y).
Thus the range of DN on Bj contains the range of DN . �

Lemma 2.3. Let c 6= 0 and assume ±c ∈ Range D. Let δ > 0 and let B ⊂ T be
any non-empty, open set. Then there is an increasing sequence of integers {Nk}
such that for any choice of signs {rk} there exists z ∈ B with

|DNk(z)− rkc| < δ for all k.

Proof. Apply Lemma 2.2 to choose N1 such that the range of DN1 restricted to
B includes both ±c, say DN1(xw1 ) = w1c for xw1 ∈ B, w1 = ±1. Because DN is
continuous, we can choose closed neighbourhoodsBw1 in B, such that xw1 ∈ intBw1

and having the property that for all z ∈ Bw1 ,

|DN1(z)− w1c| = |DN1(z)−DN1(xw1)| < δ.

Without loss of generality, we may assume the diameter of Bw1 is less than 1/2.
Now assume inductively that for wj = ±1, j = 1, . . . , k we have found points

xw1···wk , closed neighbourhoods

Bw1···wk ⊂ intBw1···wk−1

and an increasing sequence of integers N1, . . . , Nk such that diamBw1···wk < 1/2k,
xw1···wk ∈ intBw1···wk , DNk(xw1···wk) = wkc, and

|DNk(z)− wkc| < δ for all z ∈ Bw1···wk .

From Lemma 2.2 we may choose Nk+1 > Nk such that the range of DNk+1

restricted to each of the (finitely many) sets intBw1···wk for wj = ±1, j = 1, . . . , k,
contains both ±c. Indeed, suppose that for wk+1 = ±1, xw1···wk+1 ∈ intBw1···wk
satisfies

DNk+1(xw1···wk+1) = wk+1c.
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Then obtain closed neighbourhoods Bw1···wk+1 of xw1···wk+1 , contained in
intBw1···wk , so that for all z ∈ Bw1···wk+1 ,∣∣DNk+1(z)− wk+1c

∣∣ < δ.

Certainly we can achieve this with a diameter of Bw1···wk+1 less than 1/2k+1. This
completes the induction step.

To see that the sequence {Nk} has the required property take any choice of signs
{rk}∞k=1 and consider the sets {Br1···rk}∞k=1. These sets are non-empty, nested, com-
pact and shrinking to zero in diameter; hence there exists a unique z ∈

⋂
k Br1···rk ⊂

B. Since z ∈ Br1···rk for every k, it follows by construction that |DNk(z)− rkc| < δ
for all k. �

2.4. Independence of characters of Lie groups. We are now ready to prove
that if {Nj} grows sufficiently quickly, then the characters {TrσNj} can be used to
approximate arbitrary choices of signs.

Theorem 2.4. Let G be a compact, simple, simply connected, connected Lie group.
For every ε > 0 there is a set of representations {λj}∞j=1 ⊂ Ĝ such that for any
choice of signs {rj} there is some z ∈ G with

|Trλj(z)− rj | < ε for all j.

Proof. Without loss of generality, we may assume ε < 1. Choose g ∈ T such that
D(g) 6= 0. It is well known that D is alternating, i.e., D(x) = detwD(w(x)) for
any w in the Weyl group of G ([21, 4.14]). Thus D takes on both the (non-zero)
values ±D(g).

Let d = |D(g)|. Choose a closed neighbourhood B of g such that for all y ∈ B,
|D(y)−D(g)| < εd/4. Then apply Lemma 2.3, taking c = D(g) and δ = εd/4, to
choose a sequence {Nk} with the outlined properties. Set λk = σNk .

Given a choice of signs {rk} select z ∈ B such that |DNk(z)− rkc| < δ for all k.
Since z ∈ B, |D(z)−D(g)| < εd/4 and hence

|Trλk(z)− rk| ≤
∣∣∣∣DNk(z)
D(z)

− rk
D(g)
D(z)

∣∣∣∣+
∣∣∣∣D(g)
D(z)

− 1
∣∣∣∣ < ε

for all k. �

2.5. Approximation of signs for compact, connected groups. We are now
ready to show that there are infinite, “independent” sets of characters in any com-
pact, connected group.

Proof of Theorem 2.1. By the structure theorem ([15, 6.5.6]) we may assume G is
T×

∏
i∈I Gi/K where the Gi are compact, simple, simply connected, connected Lie

groups, T is a compact, abelian group, K is a subset of the centre of T ×
∏
i∈I Gi

and K ∩T is the identity of G. Since the result is known for abelian groups we may
assume I is non-empty.

Choose any index i0 ∈ I and consider the representations σN on Gi0 , with N
odd. A fact about root systems is that z = exp(Z) belongs to the centre of Gi0
if and only if α(Z) ∈ 2πZ for all positive roots α of Gi0 ([3, V.2]). Thus one can
verify from the formula for TrσN (2.1) that if z is in the centre and N is odd,
then TrσN (z) = deg σN and therefore σN (z) = Id(σN ). Since (t, (gi)) belongs to the
centre of T ×

∏
i∈I Gi if and only if gi ∈ centre Gi for each i, it follows that the



INDEPENDENCE OF CHARACTERS 3645

homomorphism λN defined on G by λN ((t, (gi))K) ≡ σN (gi0) is well defined. The
reader can easily check that the representations λN are irreducible and inequivalent.

From (the proof of) Theorem 2.4 we can obtain a sequence of integers {Nj} such
that given any choice of signs {rj} there is some x ∈ Gi0 with

sup
j

∣∣TrσNj (x) − rj
∣∣ < 1.

The corresponding representations {λNj} interpolate at the coset with representa-
tive (e, gi) where gi0 = x and gi = e otherwise. �

3. Better approximations on Lie groups

For any representation λ we have Trλ(e) = degλ; thus one might speculate that
it would be possible to find an infinite set of representations {λj} such that for all
choices of signs {rj} there is some x ∈ G with

sup
j

∣∣∣∣Trλj(x)
deg λj

− rj
∣∣∣∣ < 1.

This is not true for compact, connected, simple Lie groups, however, because it is
known that Trλ(x)/ deg λ→ 0 off the centre of the group ([16], [18]) and the centre
of such a group is finite.

But characters can interpolate larger values than just signs in most simple Lie
groups. To prove this we need to generalize Lemmas 2.2 and 2.3. It will be conve-
nient to introduce some additional notation.

3.1. Notation. As usual, W will denote the Weyl group of G. For each g =
exp(Y ) ∈ T , it will be useful to consider the following subset of the positive roots

Φ+(g) = {α ∈ Φ+ : α(Y ) ∈ 2πZ},
and the related subset of the torus

X(g) = {y ∈ T : Φ+(g) = Φ+(y)}.
The (dense) elements g of the torus for which Φ+(g) is empty are known as regular.
We also need to consider the function on T given by

Dg(exp(X)) =
∏

α∈Φ+8Φ+(g)

sin (α(X)/2) .

Lemma 3.1. Let g ∈ T and suppose there exists w ∈ W that fixes Φ+(g). Then
detwDg(x) = Dg(w(x)) for all x ∈ T.

Proof. Since D is alternating, we have for x = exp(X) that

D(x) =
∏

α∈Φ+(g)

sin (α(X)/2)Dg(x)

= detw
∏

α∈Φ+(g)

sin (α(Ad(gw)X)/2)Dg(w(x))

where w(y) = gwyg
−1
w for all y ∈ T . Since w fixes Φ+(g), this implies that

D(x) = detw
∏

α∈Φ+(g)

sin (α(X)/2)Dg(w(x)).
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When x is regular,
∏
α∈Φ+(g) sin (α(X)/2) 6= 0, and hence Dg(x) = detwDg(w(x)).

Because such x are dense in T, and the functions Dg and Dg ◦ w are continuous,
the same equality holds for all x ∈ T . �

Next, we generalize Lemma 2.2. We will write Dg
N for the function exp(X) 7→∏

α∈Φ+8Φ+(g) sin (Nα(X)/2) and denote by δi, 1 ≤ i ≤ n, the coordinate projections
on h with respect to the basis {H1, . . . , Hn}.

Lemma 3.2. Fix k ∈ N \ {1} and suppose Φ+(g) = {δi − δj : 1 ≤ i < j ≤ k}. Let
{Bj}Jj=1 be a finite collection of open subsets of T with Bj ∩X(g) non-empty for
each j. Then there is an integer N such that the range of Dg

N restricted to each set
Bj ∩X(g) contains the range of Dg on X(g).

Proof. Let z ∈ X(g) and considerDg(z). The structure of Φ+(g) guarantees that we
may assume z = exp(Z) where Z =

∑n
j=1 ζjHj with ζ1 = · · · = ζk and α(Z) 6∈ 2πZ

for all α 6∈ Φ+(g). Consequently, exp(Z/N) ∈ X(g), and hence the range of Dg
N

restricted to X(g) contains the range of Dg|X(g).
Fix any xj ∈ Bj ∩X(g), j = 1, . . . , J . The continuity of exp and the functions

α ∈ Φ+ ensure that if zj = exp(Zj) is sufficiently close to xj , then α(Zj) /∈ 2πZ
for all α /∈ Φ+(g). Thus there is some ε > 0 such that if zj = exp(Zj) ∈ T ,
‖xj − zj‖ < ε, and the first k coordinates of Zj are all equal, then zj ∈ Bj ∩X(g).

Choose N > 4π/ε and write xj = exp(Xj) where Xj =
∑n

i=1 ξ
(j)
i Hi, j =

1, . . . , J . Given y = exp(
∑n
i=1 υiHi) ∈ X(g), select integers lj(i), i = 1, . . . , n, with

lj(1) = · · · = lj(k) and

max
i
{
∣∣∣ξ(j)
i − (υi − 4πlj(i)/N)

∣∣∣} < 4π/N < ε.

If zj ∈ T is defined by

zj = exp(
n∑
i=1

(υi − 4πlj(i)/N)Hi) for j = 1, . . . , J,

then the remarks above establish that zj ∈ Bj ∩X(g) and Dg
N(zj) = Dg

N (y). Thus
the range of Dg

N on Bj ∩X(g) contains the range of Dg
N on X(g), and consequently

contains the range of Dg|X(g). �

Lemma 3.3. Let c 6= 0 and assume ±c ∈ Range Dg|X(g). Let δ > 0 and let B ⊂ T
be any open set with B ∩ X(g) non-empty. Then there is an increasing sequence
of integers {Nk} such that for any choice of signs {rk} there exists z ∈ B with
Φ+(z) ⊇ Φ+(g) and ∣∣Dg

Nk
(z)− rkc

∣∣ < δ for all k.

Proof. This is a routine generalization of Lemma 2.3 using the lemma above. The
fact that the element z, found through the nested sets construction, is a limit of
{xr1···rk} ⊂ X(g) ensures that Φ+(z) ⊇ Φ+(g). �

We can now improve Theorem 2.4.

Theorem 3.4. Let G be a compact, simple, simply connected, connected Lie group,
other than SU(2) or SU(3). For every ε > 0 there is an infinite set of represen-
tations {λj} ⊂ Ĝ with the property that for all choices of signs {rj} there is some
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x ∈ G with ∣∣∣∣∣Trλj(x)
degλj

− rj
deg λsj

∣∣∣∣∣ < ε

deg λsj
for all j,

for some s = s(G) < 1.

Remark 3.1. (1) Every element in SU(2) (Lie type A1) is either central or regular.
It can be easily seen from the Weyl character formula that for all regular x and
representations λ, |Trλ(x)| ≤ c(x). Since the centre of SU(2) is finite, this shows
that the theorem cannot hold for SU(2).

(2) For SU(3) (Lie type A2) there are elements neither central nor regular,
namely those of the form g = exp(diag(ix, ix,−2ix)) or a “permutation” thereof.
However, all such g satisfy Dg(g) > 0, and consequently TrσN (g) ≥ 0. This means
it is impossible to do the desired approximation with these representations (which
is what we show for all the other groups). It is possible to obtain the desired
approximation on SU(3) by using a different family of representations, but this is
much more technical and the argument is not included in this paper.

Proof. The basic strategy of the proof will be to show that there exists some g ∈ T
and w in the Weyl group with negative determinant, such that Φ+(g) is fixed by w
and has the form

Φ+(g) = {δi − δj : 1 ≤ i < j ≤ k}
for some k > 1.

Once this is established we will argue in a similar manner to the proof of Theorem
2.4, but appealing to the more general lemmas above, as follows: First, because
w fixes Φ+(g), w(g) ∈ X(g) and thus an application of Lemma 3.1 shows that
Dg|X(g) contains the two (non-zero) values ±Dg(g). Let d = |Dg(g)|. Choose a
closed neighbourhood B of g such that for all y ∈ B, |Dg(y)−Dg(g)| < εd/4.
Apply Lemma 3.3, taking c = Dg(g) and δ = εd/4, to obtain a sequence of integers
{Nk} with the outlined properties. We take λk = σNk .

Given a choice of signs {rk} choose z ∈ B such that Φ+(z) ⊇ Φ+(g) and∣∣Dg
Nk

(z)− rkc
∣∣ < δ for all k. Thus∣∣∣∣Dg

Nk
(z)

Dg(z)
− rk

∣∣∣∣ ≤ ∣∣∣∣Dg
Nk

(z)
Dg(z)

− rk
Dg(g)
Dg(z)

∣∣∣∣+
∣∣∣∣Dg(g)
Dg(z)

− 1
∣∣∣∣ < ε for all k.

The fact that z ∈ B ensures that Dg(z) 6= 0 and consequently Φ+(z) = Φ+(g).
Thus

Trλj(z) = lim
x→z, x regular

∏
α∈Φ+(g)

sin(Njα(X)/2)
sin(α(X)/2)

∏
α∈Φ+�Φ+(g)

sin(Njα(Z)/2)
sin(α(Z)/2)

= N
|Φ+(g)|
j

Dg
Nj

(z)

Dg(z)
.

Let s = 1− |Φ
+(g)|
|Φ+| . Since deg λj = N

|Φ+|
j we obtain∣∣∣∣Trλj(z)

degλj
− rj

(degλj)
s

∣∣∣∣ =
1

N
|Φ+|−|Φ+(g)|
j

∣∣∣∣Dg
Nk

(z)
Dg(z)

− rj
∣∣∣∣ < ε

(degλj)
s

as desired.
To establish the existence of such g ∈ G and w ∈ W , each classical Lie type can

be considered separately. For example, in type Bn, n ≥ 3, a basis for h is the set
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of 2n + 1 by 2n + 1 matrices {H1, . . . , Hn} where Hk = [ars] with a2k−1,2k = 1,
a2k,2k−1 = −1, and all other ars = 0. Take

g = exp(yHn +
n−1∑
j=1

xHj)

in T with x and y chosen so that Φ+(g) = {δi − δj : 1 ≤ i < j ≤ n − 1}; the
element w that corresponds to the simple change of sign in the nth coordinate on h

fixes Φ+(g) and is odd. For type An with n ≥ 3, an analogous argument produces
g ∈ T with Φ+(g) = {δi − δj : 1 ≤ i < j ≤ n − 1}. In this case, let w correspond
to the transposition diag(z1, . . . , zn−1, zn, zn+1) 7→ diag(z1, . . . , zn−1, zn+1, zn) in h.
Types Cn, Dn, En and F4 are similar.

For B2 and G2 the argument is slightly different. In the case of B2, a basis
for h is the set of 5 by 5 matrices {H1, H2} where Hk = [ars] with a2k−1,2k = 1,
a2k,2k−1 = −1, and all other ars = 0. We take g = exp(xH1 + xH2) so that
Φ+(g) = {δ1 − δ2}. Notice that Dg(g) = sin2(x/2) sin(x) = −Dg(g−1). This
change of sign allows similar arguments to be applied. Type G2 is analogous. �

4. Applications to thin sets

In this section we will be studying subsets of Ĝ with particular properties. To
define these properties we need to introduce some normed spaces: First, given a
matrix A we let ‖A‖∞ denote the largest eigenvalue of |A|. For E ⊂ Ĝ let

l∞(E) = {(Aσ)σ∈E : Aσ is a deg(σ)× deg(σ) matrix with sup
σ
‖Aσ‖∞ <∞},

and let lz∞(E) denote the subset of l∞(E) containing the matrices of the form
(cσIdeg σ)σ∈E . For φ ∈ l∞(E) and a ≥ 0 we let

‖φ‖a,∞ = sup{(deg σ)1−a ‖φ(σ)‖∞ : σ ∈ E}

and denote by la,∞(E) (respectively, lza,∞(E)) the set of all φ ∈ l∞(E) (φ ∈ lz∞(E))
with ‖φ‖a,∞ <∞. Observe that l1,∞ = l∞.

A measure is called central if it commutes with all other measures under convolu-
tion. One class of central measures are the orbital measures: The orbital measure,
µg, supported on the conjugacy class containing g ∈ G, is the measure defined by∫

G

fdµg =
∫
f(xgx−1)dmG(x) for all continuous functions f on G.

The Fourier transform of a measure µ is given by µ̂(σ) =
∫
G
σdµ. A measure

is central if and only if µ̂(σ) = cσIdeg(σ) for all σ in Ĝ. Recall that a subset E of
Ĝ is called a (central) Sidon set if whenever (φ ∈ lz∞(E)) φ ∈ l∞(E) there is
a (central) finite measure µ such that µ̂(σ) = φ(σ) for all σ ∈ E. Sidon sets in
the duals of compact, abelian groups have been extensively studied and found to
be very useful and plentiful; indeed, every infinite subset of the dual of a compact,
abelian group contains an infinite Sidon set (cf. [13]).

In contrast, compact, simple Lie groups admit no infinite, central Sidon sets [16].
This motivated the introduction of weighted Sidon sets in [8]: A subset E of Ĝ is
said to be a (central) (a, 1)-Sidon set if whenever (φ ∈ lza,∞(E)) φ ∈ la,∞(E) then
there is a (central) finite measure µ such that µ̂(σ) = φ(σ) for all σ ∈ E. (Central)
(1, 1)-Sidon sets are the usual (central) Sidon sets. Weighted Sidon sets can be
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more plentiful. In fact, every infinite subset of the dual of an infinite, compact
group contains an infinite, central (a, 1)-Sidon set for all a < 1 [7].

Many Sidon sets in abelian groups have the special property that one can always
choose a discrete interpolating measure µ. These sets are known as I0 sets and have
also been studied by many authors. The result of Hartman and Ryll-Nardzewski
implies that every infinite, compact, abelian group admits an infinite I0 set (see
the remark below). An important open problem is to determine if all Sidon sets
are finite unions of I0 sets.

It is natural in the non-abelian setting to consider weighted I0 sets.

Definition 4.1. We will call a subset E of Ĝ an a-I0 set if any φ ∈ la,∞(E)
can be interpolated by the Fourier transform of a finite, discrete measure on G.
It will be called a central a-I0 set if any φ ∈ lza,∞(E) can be interpolated by
the Fourier transform of a finite measure that is a linear combination of orbital
measures,

∑
bkµgk .

Given the relationship between Sidon and I0 sets, it might seem more natural to
define a central a-I0 set as one for which any φ ∈ lza,∞(E) could be interpolated by a
finite, discrete, central measure. However, not even all finite sets have this property.
This is because discrete, central measures on connected groups are supported on
the centre of the group [16], and hence any set of cardinality larger than the centre
cannot have this alternate property.

However, the expected examples do satisfy our definition.

Proposition 4.1. Any a-I0 set is central a-I0. In particular, all finite sets are
central I0.

Proof. Let E be an a-I0 set and assume φ ∈ lza,∞(E). Choose a finite, discrete
measure µ =

∑
aiδxi such that µ̂(σ) = φ(σ) for all σ ∈ E and define ν(A) =∫

µ(g−1Ag)dmg. Then ν is a measure of norm not exceeding that of µ and is a sum
of orbital measures. Indeed, ν =

∑
bgµg where bg =

∑
ai with the sum being taken

over the indices i such that xi is conjugate to g. Moreover, ν̂(σ) = µ̂(σ) = φ(σ) for
all σ ∈ E. Thus E is central a-I0. �

As with Sidon sets, there are a number of properties equivalent to the definition
of central a-I0. The following equivalence is relevant for us.

Proposition 4.2. A subset E ⊂ Ĝ is central a-I0 if and only if for some ε < 1
(equivalently, for every ε < 1) there is a constant C so that for all choices of
{rσ}σ∈E, rσ = ±1, there is a finite measure µ =

∑
bkµgk such that ‖µ‖ ≤ C and

sup
{

(deg σ)1−a
∥∥∥∥µ̂(σ) − rσIdeg σ

(deg σ)1−a

∥∥∥∥
∞

: σ ∈ E
}
≤ ε.

Proof. We need only prove sufficiency, and for this it clearly suffices to interpolate
the real-valued sequences in the unit ball of lza,∞(E) by finite measures that are
linear combinations of orbital measures. In fact, it suffices to show that there is
some δ < 1 and a constant C such that given any real-valued sequence φ in the
unit ball of lza,∞(E) there is a measure µ =

∑
bkµgk with ‖µ‖ ≤ C, µ̂ real-valued

and ‖µ̂|E −φ‖a,∞ ≤ δ. This is because an iteration argument, such as in [17, Thm.
7], will then allow us to conclude that interpolation on E can be achieved by a
finite measure. This measure, which arises as a limit, will be of the form

∑
bkµgk
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because the mutual singularity of orbital measures shows that the subspace of finite
measures that are linear combinations of orbital measures is norm closed.

So let φ be a real-valued sequence in the unit ball of lza,∞(E), and put rσ =
sgnφ(σ). Obtain µ as in the hypothesis and set ν = µ/2. Replacing ν if necessary
by (ν + ν̃)/2, where ν̃(E) = ν(E−1), we can assume ν̂ is real. It is easy to see that
‖ν̂|E − φ‖a,∞ ≤ (1 + ε)/2 = δ < 1. Moreover, ν is a linear combination of orbital
measures and ‖ν‖ ≤ C/2. �

Remark 4.1. When G is a compact abelian group, the irreducible representations
are of degree one. So this proposition implies that the dual of every infinite, compact
abelian group admits an infinite I0 set. The proposition also shows that Parker’s I
sets [14] are examples of central I0 sets in non-abelian groups.

Since the Fourier transform of any orbital measure satisfies

µ̂g(σ) =
Trσ(g)
deg σ

Ideg σ,

the results of the previous section have implications for the existence of central
a-I0 sets. Indeed, Theorems 2.1 and 3.4, together with Proposition 4.2, imply the
following statements.

Corollary 4.2.1. (1) If G is any infinite, compact, connected group, then Ĝ con-
tains an infinite, central 0-I0 set.

(2) If G is any compact, simple, simply connected, connected Lie group, other
than SU(2) or SU(3), then Ĝ contains an infinite central a-I0 set for some a > 0.
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