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Safety Analysis of Redundant Systems Using 
Fuzzy Probability Theory 

Abstract 

James Dunyak 
lhab W. Saad 

Donald Wunsch 
Texas Tech University 

Lubbock,Texas 

This paper develops a new theory of independent fuzzy probabilities, that addresses 
limitations of fuzzy fault trees both and Zadeh's fuzzy extension of probability. In 
contrast to the fuzzy fault tree approach, the new theory is complete since it assigns a 
fuzzy probability to every event. In the case of a probability theory built from 
independent events·, Zadeh' s extension is not consistent with fuzzy fault trees. Our new 
extension is also consistent. The new theory is demonstrated with an example. 

Introduction 
Many safety assessment models require, as input, the probabilities of a number of 
independent events. Often these probabilities can be estimated from data or theory, but 
sometimes choosing probabilities for input is difficult. This work is part of an ongoing 
study in high-consequence surety analysis. Many of the factors of interest come from 
traditionally non-mathematical areas of research, such as estimating the probability of a 
terrorist attack, compliance with safety practices, or a flawed design of a safety system. 
Other factors are too expensive or dangerous to measure experimentally. Instead, expert 
opinion is used to provide these probabilities, but these estimates are rarely precise. 
Fuzzy sets and possibility theory provide a tool for describing and analyzing these 
uncertain quantities. 

Fuzzy fault trees provide a powerful and computationally efficient technique for 
developing fuzzy probabilities based on independent inputs. The probability of any event 
that can be described in terms of a sequence of independent unions, intersections, and 
complements may be calculated by a fuzzy fault tree. Unfortunately, fuzzy fault trees do 
not provide a complete theory: Events of substantial practical interest for calculating 
safety margins cannot be described only by independent operations. Thus the standard 
fuzzy extension (based on fuzzy fault trees) is not complete, since not all events are 
assigned a fuzzy probability. Zadeh and others have proposed other complete extensions. 
Unfortunately, the calculations of these models are not consistent with the underlying 
fuzzy probabilities of the independent inputs. 
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In this paper, we discuss a new extension of crisp probability theory. Our model is based 
on n independent inputs, each with a fuzzy probability. The elements of our sample 
space describe exactly which of the n input events did and did not occur. Our extension 
is complete, since a fuzzy probability is assigned to every subset of the sample space. 
Our extension is also consistent with all calculations that can be arranged as a fault 
tree [l]. 

Our approach allows the reliability analyst to develop complete and consistent fuzzy 
reliability models from existing crisp models. This allows a comprehensive analysis of 
the system. Computational algorithms are provided both to extend existing models and 
develop new models. The technique is demonstrated with an example. 

An uncertain parameter F e iR may be assigned a fuzzy membership function E(y) 
mapping iR into [0,1], which is the membership function of a fuzzy set ;E. Then the 
possibility that Eis in a set S is designated by IIF(S), and 

This is the sense in which we describe uncertainty in the probability of an event A. Note 
the inherent conservative nature of possibility theory: the possibility of a set is high if a 
single point in the set has high possibility. This may be viewed as a worst-case 
calculation and is appropriate for the study of rare but high- consequence events. An 
uncertainty model based on probability theory, on the other hand, better models the 
average risk over repeated trials. 

In this paper, ~ is a fuzzy set describing uncertainty in the crisp number P(A). Fuzzy 
fault trees provide a method for developing fuzzy probabilities based on independent 
fuzzy inputs~ [2]. The probability of any event that can be described in terms of a 
sequence of independent unions, intersections, and complements may be calculated by a 
fuzzy fault tree. Unfortunately, we show below that some events of substantial practical 
interest cannot be described only by independent operations; fuzzy fault trees do not 
provide a complete theory. Thus the standard fuzzy extension (based on fuzzy fault 
trees) is not complete, since not all events are assigned a fuzzy probability. Zadeh 
proposed another extension that is complete [3], but his extension is shown (in our 
context) to be inconsistent with the calculations from fuzzy fault trees. 

Here we develop a new extension of crisp probability theory, based on n independent 
inputs, each with a fuzzy probability. The elements of our sample space describe exactly 
which of the n input events did and did not occur. This extension will be shown to be 
both complete and consistent. These results are discussed in more detail in [l]. 

Independent Calculations and Fuzzy Fault Trees 

Throughout this paper, we use the bar notation EA to indicate a fuzzy set representing 
probability of A, the notation ~(y) to indicate the corresponding membership function, 
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and £./={y:L(y):?:a.} to indicate the corresponding a.-cuts. A convex fuzzy set~ has 
special structure; each a.-cut is a closed and convex subset of 9i. We see for a convex 

fuzzy probability that each a.-cut can be written as a closed interval with~ ex = LP AI ex, 

P A2 a]. This assumption of convexity is equivalent to assuming that the membership 
function has a single mode. Earlier work with independent fuzzy probabilities relied on 
this (often quite reasonable) assumption of convexity, but our work will be more general. 
Following the lead of most fuzzy models, all fuzzy sets here are required to have 
nonempty a.=l cut. This property is called normality. 

Consider independent events A1,A2, ... , An with estimated fuzzy probabilities ~ 1 ~ 2, ... , 
~n, which will be used in a reliability model. Our goal is to build a fuzzy probability 
theory to describe the probabilities of various unions, intersections, and complements of 
these sets. To this end, we follow the standard approach of Tanaka et. al. [2] and first 
build fuzzy intersections of independent events. 

If events Ai are independent, then for crisp probabilities we have 

and 

Using the usual extension principle, we define the fuzzy independent union and 
intersection as 

fNvAj(Y)= SUPy=pi+pj-pi pj min[ fN(pD,~j(pj)] 

and 

Complements of fuzzy probabilities are similarly defined by 

fN(y)= SUPy=I-pi fN(pD = fN(l-y). 

We then have the following familiar properties: 

~ivAj = LjvAi ~inAj = LjnAi 

f(AivAj)vAk = .RAfv(AjvAk) f(AinAj)nAk =hin(AjnAk) 

tAinAj)' = Lj'vAi' · 

This third formula is DeMorgan's law and extends in the obvious way to 

(Eq. 1) 

(Eq. 2) 

(Eq. 3) 

(Eq. 4) 

f(AlvA2v ... vAk)' = h1•nA2'n ... nAk' f(AlnA2n ... nAk)' =L1•vA2'v ... uAk' (Eq. 5) 
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If the fuzzy probabilities are convex, we have the relationships between endpoints of the 
a-cut intervals 

[PAivAj la, PAivAj 2 a]= 

and 

[P AinAj la, P AinAj 2 a]=[ P Ai l a P Aj l a, P Ai 2 a P Aj 2 a]· 

Unfortunately, the distributive laws fail. Straightforward application of the above 
formulas shows 

rruv(AjnAk) * p (AivAj)n(AivAk) .EAin(AjvAk) * P(AinAj)u(AinAk) • 

This formula fails because of the violation of independence. 

(Eq. 6) 

(Eq. 7) 

(Eq. 8) 

As we see in Equation 8, care must be used in organizing calculations to maintain 
independence. This is usually done by describing calculations as a tree structure. This 
viewpoint was naturally assumed in several papers on fuzzy fault trees [2,4,5,6,7,8]. To 
illustrate this concept, consider the example tree diagram in Figure 1. This diagram 
contains three varieties of nodes: unions, intersections, and complements. At the nodes, 
fuzzy input probabilities are combined according to the formulas in equations (1-3). As 
long as the tree only feeds upward and each node has only one output, independence is 
maintained. Because of DeMorgan's laws in Equation 5, we can develop fault trees using 
only unions and intersections (but no complements) or only intersections and 
complements (but no unions). Thus several somewhat different approaches to fault trees 
are in fact equivalent when the standard extensions in Equations 1 through 3 are used. 

0 

and 

not 

A3 

Figure 1. A fuzzy fault tree which maintains independence. 
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Unfortunately, many problems do not easily fit into a straightforward tree structure, with 
each node having only one output. In our investigations, certain factors (such as 
terrorism risk) influence many different events, so that construction of independent trees 
is problematic. As we will see in the next section, other problems also occur. 

Completeness 
The representation of some sets can be rearranged to allow use of Equations 1 through 3 . 
. For example, in Equation 8, since AiuAj is not (necessarily) independent of AiuAk> we 
could simply define 

f(AivAj)()(AivAk) = .fA.iv(Aj()A)c) · (Eq. 9) 

Now Aj and Ak are independent so we can correctly calculate £Aj()A)c using equation 2. 

Since Ai is independent of A/1Ak, we can apply Equation 1 to calculate £Aiv(Aj()Ak)· 
Unfortunately, unraveling such relationships can be very difficult in complex models. Of 
greater concern is the fact that not all possible fuzzy probabilities can be calculated by 
rearranging them into a calculation that maintains independence. 

For example, a listing of all possible independent calculations easily shows that 
(A{ nAj)u(AinA/) may not be rearranged to allow calculation by independence 
formulas. Consider two independent system components numbered i and j. If event Ai 

indicates that i is operational and Aj indicates that j is operational, then fcAi'r,Aj)v(Air,Aj') is 
the fuzzy probability that exactly one of the two components is operational. The inability 
of Equations 1 through 3 to calculate such probabilities is a serious limitation in 
reliability applications. 

This limitation is illustrated by the example we use in this paper. Consider the three
stage manufacturing process shown in Figure 2. This diagram shows the flow of an 
industrial process through three stages. Stage 1 may be performed by two redundant 
units, each with a throughput capacity of 0.5 items per second. If both units 1 and 2 are 
operational, stage 1 has a throughput capacity of 1 item per second. If only one of the 
two units is operational, the stage 1 throughput is 0.5 items per second. If neither unit 1 
nor unit 2 is operational, the throughput capacity of stage 1 is 0. This viewpoint may be 
used to build the throughput capacity of the entire process, with the capacity of stage 1 
limiting the possible flow through stage 2, and so on. Let Ai be the event that unit i is 
operational. Assume the process has repairable ( or replaceable) independent units, and 
that the process has been in operation long enough to approximately reach stationarity. 
Then Pi=P(Ai) is the stationary readiness coefficient of unit.i [9]. Letting T be the 
process throughput capacity, we can calculate the steady state distribution of T as 

(Eq. 10) 
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and so on. Possible values of T are { 0, 0.4, 0.5, 0.8, 1.0}. Calculation of the distribution 
of T follows easily when the stationary readiness coefficients are crisp; our goal is to 
study this process with fuzzy readiness coefficients. To calculate the fuzzy probability 
fT=o.s, we must calculate the fuzzy probability that exactly one of units 1 and 2 is 
functional. Unfortunately, as discussed in the proceeding paragraph, this fuzzy 
probability cannot be modeled using Equations 1 through 3. Several other "gaps'' occur 
in the fuzzy reliability model of the system. 

Unit3 
rJ capacity=0.4 -

Unit 1 - capacity=0.5 -
Unit4 Lnit 6 

---J ; capacity=0.4 - capacity=l ~ ~ 

Unit2 
- capacity=0.5 - Unit5 

..... capacity=0.4 -

stage 1 stage 2 stage 3 

Figure 2. A three-stage industrial process. 

Clearly, many important fuzzy probabilities cannot be reached by the standard 
independence formulas in equations 1-3. To understand what sets are missing, we 
should more carefully specify the probability space of interest in our reliability problem. 

Definition: The sample space Sn based on n independent events Ai, A2, ••. ,Anthe set of 
2n distinct elements 

of the form 

For the remainder of this paper, the notation Ai will be used to indicate the independent 
events from which Sn is defined. 

Note that Sn has a finite number of elements, so our sample space is discrete. A fuzzy 
probability theory, in keeping with both our needs and the structure of crisp probability 
theory for discrete sample spaces, should assign a probability for every subset of Sn. 

Definition: A fuzzy probability theory is called complete if it assigns a fuzzy probability 
to every subset of Sn. 
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Consider a set subset B of Sn, which can be constructed through independent operations. 
For an event B, which can be organized as an independent calculation, we define B as the 
fuzzy probability theory resulting from repeated application of Equations 1 through 3. 

Zadeh's Linguistic Probabilities and Consistency 
Now we must build the definition of fuzzy probability for subsets of Sn from the given 
fuzzy probabilities ~ 1 ~ 2, ... , £An. Following Zadeh [3], we can define an extension. 
Consider a proper subset B of a sample space Sn={s1,s2, ... ,s2n}, with B={ti, t2, ... , tk} 
where ti are the elements in Sn which are in B. We define, using a superscript Z to 
indicate Zadeh's extension, 

(Eq. 11) 

The inequality in the sup is a result of the interactivity of crisp probabilities, since 

Li=t,2n P({sJ) =l. 

Each £si(.) is calculated from ~ 1 £A2, ... , £An using independence and Equations 1 
through 3. This formulation does provide a fuzzy probability for every subset of Sn. 
Unfortunately, Equations 11 and 12 are not consistent with the calculations in Equations 
1 through 3 [1]. 

A Complete and Consistent Formulation of 
Independent Fuzzy Probabilities 
As an alternative to Zadeh's approach, we consider a different extension. Consider a 
reliability model built in terms of the independent fuzzy probabilities £Ai, i=l,2, ... , n, for 
sample space Sn. Using, for crisp probabilities, the definition Pi=P(Ai), we see, for subset 
B of Sn, that 

P(B)= P( UsieB {sJ )= LsieB P( {sJ )= fs(P1,P2, .... ,pn) (Eq. 12) 

for a function f8 (.). Thus the crisp probability of every B can be written uniquely as a 
function fs(.) in terms of p1, p2, ... , Pn· For the empty set <I> we have fip(pi,p2, .... ,pn)=0 and 
for the sample space we have fsn(pi,p2, .... ,pn)=l. We use these functions to build our 
extension of Equations 1 through 3. We can now define our extension for B. 

Definition: For subset B of Sn, the extension of independent fuzzy probabilities is 
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with P(B)=fB(p1,p2, ... ,p0 ) when P(Ai)= Pi· If, for a fixed y, the set 

{(p1,P2,•··,Pn):y=fB(P1,P2,•••,Pn)} is empty, we take rl(y)=O. The function fB(.) is defined 
in Equation 12. 

The extension _eaE, when derived from independent fuzzy probabilities £Ai, is both 
consistent and complete. See [1] for a complete proof. 

An Example 

To demonstrate the technique, we consider the three-stage process discussed above and 
illustrated in Figure 2. To demonstrate the calculations, the event T=0.8 will be 
discussed. To simplify the illustration, all six independent units are assumed to have the 
fuzzy readiness coefficient shown in Figure 3. Note that 

m 
.c c..0.5 
m 

(a) (b) 

0.5 

0'--~~-«--...,_~~~--'-~~~-" 

-2.5 -2 -1.5 -1 -0.06 -0.04 -0.02 
log1 O(p) log10(p) 

Figure 3. The fuzzy idleness coefficient (a) and readiness coefficient (b) for a single unit. 

Figure 4 shows the resulting fuzzy probabilities for T=O, T::0.4, T=0.5, T=0.8, and 
T=l.O. These fuzzy probabilities describe the long-term performance of the industrial 
process. 

m 
.c c..0.5 
m 

(a) (b) (c) 

0.5 

0 

o~~~~~~~~ 

-2 -1 0 -3 -2 -1 0 
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(d) (e) 
1 1 

ro 
.c o..0.5 0.5 
ro 

0 0 
-3 -2 -1 0 -0.2 0 

log10(p) log10(p) 

Figure 4. The resulting fuzzy probabilities for the process throughput T =0 (a), T =0.4 (b), 
T=0.5 (c), T=0.8 (d), and T=1 (e). 

References 

[1] Dunyak, J., Saad, I., and Wunsch, D., "A Theory of Independent Fuzzy 
Probabilities for Reliability," preprint. 

[2] Tanaka, H, Fan, C., Lai, F., and Toguchi, K., 1983, "Fault Tree Analysis by 
Fuzzy Probability," IEEE Transactions on Reliability, Vol. R-32, No. 5, p. 453-457. 

[3] Zadeh, L.A., 1975, "The Concept of a Linguistic Variable and its Application 
to Approximate Reasoning III," Information Sciences, 8, p. 199-249. 

[4] Kenarangui, R., 1991, "Event-Tree Analysis by Fuzzy Probability," IEEE 
Transactions on Reliability, Vol. 40, No. 1, p. 120-124. 

[5] Singer, D., 1990, "A Fuzzy Set Approach to Fault Tree and Reliability 
Analysis," Fuzzy Sets and Systems, Vol. 34, p. 145-155. 

[6] Weber, D., 1994, "Fuzzy Fault Tree Analysis," Proceedings for the Third 
IEEE International Conference on Fuzzy Systems, Orlando, Florida, p. 1899-1904. 

[7] Cooper, J.A., 1994, Fuzzy-Algebra Uncertainty Analysis of Abnormal
Environment Safety Assessment, Sandia Technical Report SAND93-2665 UC-706. 

[8] Page, L.B., and Perry, J.E., 1994, "Standard Deviation as an Alternative to 
Fuzziness in Fault Tree Models," IEEE Transactions on Reliability, Vol. 43, No. 3, p. 
402-407. 

[9] Ushakov, I.A., 1994, Handbook of Reliability Engineering, John Wiley and 
Sons. 

High Consequence Operations Safety Symposium II 307 



Biography
James Dunyak 
Department of Mathematics 
Texas Tech University 
Lubbock, TX 79409

James Dunyak received a BS and MS in Engineering Mechanics from Virginia Tech in 
1982 and 1987 respectively. From 1984 through 1992, he worked in systems engineering 
variously for Locus Inc, the Naval Research Laboratory, and Mitre Corporation. After 
completing his PhD in Applied Mathematics from the University of Maryland in 1994, he 
took a position in the Department of Mathematics at Texas Tech University. His research 
interests include random processes and their application to a wide variety of engineering 
and physics problems, fuzzy set theory as an alternate model of uncertainty, and neural 
networks.

IhabW. Saad
Department of Electrical Engineering 
Texas Tech University 
Lubbock, TX 79409

Ihab W. Saad was He received his BS in Electrical Engineering from Ain
Shams University, Cairo, Egypt, in 1993. He has recently completed an MS in Electrical 
Engineering from Texas Tech University.

Donald Wunsch
Department of Electrical Engineering 
Texas Tech University 
Lubbock, TX 79409

Donald Wunsch (Senior Member, 94) received a Ph.D. in Electrical Engineering and a 
M.S. in Applied Mathematics from the University of Washington in 1991 and 1987, a 
B.S. in Applied Mathematics from the University of New Mexico in 1984, and completed 
a Humanities Honors Program at Seattle University in 1981. He is Director of the 
Applied Computational Intelligence Laboratory at Texas Tech University. Prior to 
joining Tech in 1993, he was Senior Principal Scientist at Boeing, where he invented the 
first optical implementation of the ARTl neural and other optical neural networks and 
applied research contributions. He has also worked for Intemational Laser Systems and 
Rockwell International. Current research activities include neural optimization, 
forecasting and control, financial engineering, fuzzy risk assessment for high- 
consequence surety, wind engineering, characterization of the cotton manufacturing 
process, intelligent agents, and Go. He is an Academician in the Intemational Academy 
of Technological Cybernetics, and in the Intemational Informatization. He is a member 
of the Intemational Neural Network Society and a past member of the IEEE Neural 
Network Council.

308 High Consequence Operations Safety Symposium 1!


	Safety Analysis of Redundant Systems Using Fuzzy Probability Theory
	Recommended Citation

	tmp.1462819325.pdf.QSoLi

