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ABSTRACT 

This paper explores the problem of frequency-domain Blind 
Source Separation (BSS) of convolutive mixtures.  The 
main difficulties of this approach lie in the so called 
permutation and amplitude problems.  In order to solve the 
permutation ambiguity, a new hybrid approach is proposed, 
in which the Independent Component Analysis (ICA) 
processes across all frequency bins are concatenated and 
each of them is embedded with a permutation control unit.  
In each frequency bin, when the separation matrix is 
obtained by the ICA process, the control unit detects the 
possible permutation and aligns the matrix only if the 
permutation is confirmed.  Then the final value of separation 
matrix is used to initialize the ICA iterations in the next 
frequency bin.  The amplitude problem is addressed by 
utilizing the elements in estimated mixing matrix.  The 
method is compared with conventional frequency-domain 
BSS approaches and the experimental results demonstrate 
superior performances of the proposed method. 

 
Index Terms— convolutive mixture, frequency-domain, 
Blind Source Separation, permutation control 

1. INTRODUCTION 

Blind Source Separation (BSS) is a statistical technique for 
recovering a number of original source signals when only 
their linear mixtures are available for observation.  With the 
understanding that both source signals and mixing 
procedure are unknown, the process is termed “blind” and 
this blindness enables the technique to be used in a wide 
variety of situations.  These include noise-robust speech 
recognition, hands-free telecommunication, and medical 
signal processing.  

Based on the nature of the signal mixing process, there 
are two important issues in BSS research that are generally 
investigated: instantaneous BSS and convolutive BSS.  
Recently convolutive BSS is drawing much of researchers’ 
attention, because in many real-world applications, the 

signals are mixed in a convolutive manner.  The major 
approaches to separate convolutive mixtures can be divided 
into time-domain and frequency-domain methods.  Time-
domain BSS suffers from high computational complexity to 
compute convolution of long filters and update filter 
coefficients.  Frequency-domain BSS can overcome this 
shortcoming by simplifying convolutive mixing to 
instantaneous mixing which allows standard instantaneous 
ICA algorithms to be employed.  However, it encounters 
problems, namely permutation and amplitude ambiguity.  

During the last few years, to solve the permutation 
problem, approaches that employ geometric beamforming 
[1, 2], filter consistency [3] and spectrum continuity [4], etc, 
have been investigated.  Some of them can sufficiently solve 
the permutation, but they are still time consuming for real-
time processing.  Some other methods are computationally 
efficient but come with a relatively low degree of accuracy.  
It is still open to a satisfying solution.  In this paper, we 
propose a novel hybrid separating framework which 
achieves efficiency both on computation and performance.  

2. FREQUENCY-DOMAIN BSS 

In this section, we briefly review the general model of 
convolutive mixtures and frequency-domain BSS.   

2.1. Mixing and Separation Model 

It is widely believed that a linear mixture of source signals 
weighted by filters is a sufficient model to describe the 
convolutive mixture.  Assume P source signals are recorded 
by Q sensors in a reverberant environment.  In this model, 
the observed signals xj(k), j = 1, …, Q are obtained as the 
sum of linear convolutions of the source signals si(k), i = 1, 
…, P and the room impulse response: 

 ( ) ( ) ( )x a sj ji ii
k

τ
kτ τ= −∑ ∑  (1) 

where aji(τ) denotes the impulse response from source i to 
sensor j.  The additive noise is not considered because it is 
sufficient to evaluate this model in a noise free situation.  



The objective of BSS is to design a causal, stable 
separation filter bij(τ) to obtain the estimation of original 
source signals, which is denoted by yi(k), i = 1, …, P: 

 ( ) ( ) ( )y b xi ij jj
k

τ
kτ τ=∑ ∑ −  (2) 

Using an L-point short-time Fourier transform (STFT), 
the time-domain observed signals are transformed into 
frequency-domain signals:  

 ( ) ( ) ( )1

0
X , x gL j l

j jl
k k l l e ωω − −

=
= +∑  (3) 

where g(l) represents a window function.  Then the BSS 
model is converted into the frequency domain: 

 ( ) ( ) ( ),kω ω ω=X A S ,k  (4) 
where A(ω) is the mixing matrix in the frequency bin ω. 
X=[X1,…,XQ]T and S=[S1,…,SP]T are time-frequency 
representations of the observed signals and source signals,  
respectively.  And the estimated signals are turned into:  

 ( ) ( ) ( ),kω ω ω=Y B X ,k  (5) 
where B(ω) is the demixing matrix in the frequency bin ω 
and Y=[Y1,…,YP]T.  At the last step, the time-domain 
signals are reconstructed using the inverse STFT:  

 ( ) ( )1
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i il

k l k e
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ωω−
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2.2. Independent Component Analysis 

In each frequency bin, the instantaneously mixed frequency-
domain signals are separated.  ICA is the most widely used 
approach to attack this problem.  It exploits the statistical 
independence between the original source signals in order to 
separate them from the observed mixtures, attempting to 
make the signals as independent as possible.  When the 
source signals are non-Gaussian and mutually independent, 
sufficient separation can be achieved. 

There have been lots of ICA methods such as InfoMax 
[5], JADE [6] and FastICA [7], etc.  In the proposed 
method, the well-known FastICA algorithm by Hyvärinen is 
implemented.  According to the complex data value in the 
frequency domain, the algorithm is complex-valued [8]. 

2.3. Permutation and Amplitude Ambiguity 

Even though the ICA algorithm for instantaneous mixtures 
accurately estimates the demixing matrix in each frequency 
bin, it still encounters indeterminacy of permutation and 
scaling, because ICA does not take into account the order 
and gain in which the original sources are recovered.  Each 
ICA solution satisfies:  

 ( ) ( ) ( ) ( )ω ω ω=W A Π Γ ω  (7) 
where Π represents a permutation matrix and Γ is a diagonal 
matrix, of which the elements denote the scaling factors. 

If the permutation matrix Π is not consistent across all 
frequencies then contributions from different sources will be 
combined into a single channel when converting the signal 
back to the time domain.  It is the biggest challenge in the 

context of frequency-domain BSS.  The scaling ambiguity Γ 
at each frequency bin results in a filtering effect on the 
sources in the time domain.  In order to perfectly recover the 
sources in the time domain, these indeterminacy problems 
must be essentially solved before making an inverse STFT. 

3. PROPOSED METHOD 

In this approach, the permutation control process is 
embedded into the ICA iterations.  In a single frequency bin, 
the separation matrix obtained by the ICA process is 
immediately fed into the permutation control unit, where the 
possible permutation is checked and then corrected if 
necessary.  In the next frequency bin, the ICA step is 
initialized with the final value of the separation matrix in the 
previous bin, which does not have permutation.  After all the 
ICA iterations are completed, the separation matrices are 
sent to the rescaling stage, where the amplitude ambiguity is 
solved.  The flow of proposed method is shown in Fig. 1. 

 

 
 

Fig. 1. Diagram of proposed frequency-domain BSS 

3.1. Permutation Control 

In most of the conventional frequency-domain methods, 
permutation is corrected in all frequency bins, which is time 
consuming, especially when the number of sources and 
sensors is large.  In this letter, instead of spending time on 
all bins, we focus on those bins where permutation could 
possibly happen.  A permutation control unit is proposed to 
accomplish this job, which is shown in Fig. 2.  

 

 
 

Fig. 2. Flowchart of the permutation control unit 



In the first step, criteria must be set to determine 
whether a possible permutation exists.  In order to set the 
criteria, a fact needs to be noticed.  When the sensor signals 
are converted into the frequency domain, their spectrums 
change gradually along the frequency axis.  Therefore, if the 
frequency bins are narrow enough, we can also expect that 
the separation matrices obtained by ICA process in adjacent 
bins will not have great changes in their coefficients.   

Due to this fact, we can employ the distance between 
adjacent matrices as criteria, which is calculated as  

 ( ) ( )1,

Not permuted.
, ,

Permuted.l li j
D i j i j

ε
ε−

< ⇒⎧
= − ⎨> ⇒⎩
∑ W U  (8) 

where ε is the threshold.  If the distance is under the 
threshold, no changes will be made.  But if it is above the 
threshold, the permutation will be corrected in the second 
step.  The method utilized to correct the permutation is the 
beamforming alignment method proposed by Kurita [1].  
Then we get the demixing matrix with correct order:  

 ( ) ( ) ( )1ω ω ω−=U Π W  (9) 
Under this two-stage framework, most of the existing 

permutation solving methods could be exploited.  The 
combination could vary but the method in the step 1 must be 
computationally efficient, because it is implemented in all 
frequency bins.  The distance method we used is not 
sufficient to correct all permutations, but good enough to 
find them.  Accuracy and robustness are the key issues for 
the method in step 2, where the possible permutation will be 
corrected if necessary.  Focusing only on the permuted 
frequency bins allows more complicated permutation 
correcting methods to be employed without greatly 
increasing the overall computational load.  

The output of the permutation control module is used as 
the initial value of the ICA iteration in the next frequency 
bin.  This effort can not only increase the convergence 
speed, but also significantly control the permutation.  In 
some cases, if the resolution in the frequency domain is high 
enough, the separation matrices in neighboring frequency 
bins will even tend to converge in the same order, which 
means the step of correcting permutation can be avoided.  

3.2. Rescaling 

The separation matrices obtained in the previous stage needs 
to be rescaled to remove the amplitude ambiguity.  For 
simplicity, we assume the number of sources and the 
number of sensors are equal, which means N = M, in the 
following discussions.  Assume at the frequency bin ω, the 
demixing matrix U is successfully calculated.  Then the 
rescaling matrix Γ-1 can be obtained by:  

 ( ) ( ){ }1 diag 1ω ω− −=Γ U  (10) 
Then (5) turns into:  

 ( ) ( ) ( ) ( )1,kω ω ω−=Y Γ U X ,kω  (11) 
With (11), the ambiguity of scaling can be resolved.  

4. EXPERIMENTAL RESULTS 

In this section we present the results of experiments carried 
out to test the performance of the proposed method.  The 
experiments were conducted using the Image Model [9] and 
performed on a laptop with a 1.7GHz Pentium M CPU. 
 

 
 

Fig. 3. Experiment room setup 
 

A typical reverberant room was simulated and a 2-input 
and 2-output noise free case was considered, as shown in 
Fig. 3.  The experiment parameters and conditions are 
shown in the following table.  

 

Table 1 
Parameters and Conditions  

Room dimension L: 5m, W: 4m, H: 3m 
Reverberation time (T60 ≈ ) 0ms ~ 350ms 
Distance between sensors 4cm 
Direction of Arrivals (DOA) 45° and 120° 

Distance of sources 1.0m and 0.8m 

Source signals 2 female speeches of 16seconds 
Sample rate 8000Hz 
Permutation threshold (ε) 0.2 

 

Fig. 4 shows the results when reverberation time T60 is 
about 220ms. The performance was compared with Kurita’s 
method [1] (using FastICA), as shown in Fig. 5.  
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Fig. 4. Results when Frame length = 2048 and T60 ≈ 220ms 
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(a) Frame length = 2048, T60 varies 
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(b) T60 ≈ 220ms, frame length varies 

Fig. 5. Performance comparison on average SIR improvement & 
computation time between Kurita’s method and proposed method. 

 
From Fig. 5 (a), it can be seen that the proposed method 

achieves a higher level on the average SIR improvement 
than Kurita’s method does.  When frame length = 2048, the 
average SIR is improved by 30dB, 19dB and 11dB when T60 
≈ 0ms, 220ms and 330ms, respectively.  Computational 
efficiency is another advantage of the proposed method over 
conventional BSS approaches.  As we can see from Fig. 5 
(b), when T60 ≈ 220ms, the time saving reaches at least 3 
seconds and is gradually increasing as we increase the frame 
length of STFT.  In the fourth case, by using inherited initial 
values and concentrating on only a few frequency bins 
which could possibly have permutations, the proposed 
method reduces the overall computation time of Kurita’s 
method from approximately 9 seconds to 5 seconds, and 
meanwhile, it achieves a nearly 4dB higher average SIR 
improvement.   

A bigger permutation threshold ε could make the 
proposed method run even faster, but it could also result in 
the missing of some permuted frequency bins.  In addition, a 
significantly increase of time saving can be expected when 

the number of sources to be recovered gets large.  By 
increasing the frame length or improving the ICA algorithm, 
more decent separation results could be achieved.   

One shortcoming of this method is that it may not be 
competent for the job separating quickly moving sources, as 
well as most of the existing BSS methods.  Furthermore, 
when the T60 gets higher, there are a decrease in the SIR 
improvement and a slightly increase in the computation 
time.  This is a general problem in frequency-domain BSS, 
which is caused by the degradation of convergence, and it is 
even worse in time-domain BSS. 

To sum up, in the BSS for static sources, compared 
with the Kurita’s conventional approach, the proposed 
method is more efficient on computation and performance.  

5. CONCLUSION 

A new approach for blind separation of convolutive 
mixtures has been presented.  It is based on embedding a 
two-stage permutation control unit into the ICA process and 
taking advantage of the separation matrix obtained at each 
frequency bin to initialize the ICA in next frequency bin.  In 
contrast to conventional frequency-domain BSS algorithms, 
this method aligns permutation only in a small amount of 
frequency bins and achieves less computational complexity 
without lowering the efficiency. 
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