

Missouri University of Science and Technology Scholars' Mine

Materials Science and Engineering Faculty Research & Creative Works

Materials Science and Engineering

01 Jan 1999

High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

Wayne Huebner Missouri University of Science and Technology, huebner@mst.edu

Brian L. Gilmore

Shi C. Zhang Missouri University of Science and Technology, scz@mst.edu

Mike L. Krogh

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/matsci_eng_facwork/1439

Follow this and additional works at: https://scholarsmine.mst.edu/matsci_eng_facwork

Part of the Materials Science and Engineering Commons

Recommended Citation

W. Huebner et al., "High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications," *Proceedings of the 12th IEEE International Pulsed Power Conference, 1999*, Institute of Electrical and Electronics Engineers (IEEE), Jan 1999. The definitive version is available at https://doi.org/10.1109/PPC.1999.823749

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Materials Science and Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

HIGH BREAKDOWN STRENGTH, MULTILAYER CERAMICS FOR COMPACT PULSED POWER APPLICATIONS

W. Huebner, S.C. Zhang, B. Gilmore University of Missouri-Rolla, Rolla, Missouri, USA

M.L. Krogh, B.C. Schultz AlliedSignal FM&T,* Kansas City, Missouri, USA

R. C. Pate, L. F. Rinehart, J. M. Lundstrom Sandia National Laboratory, New Mexico, USA

Abstract

Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10⁶ J/m³) and physical size reduction. Initial materials based on slip cast TiO₂ exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion ($\epsilon \approx 100$). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO₂ composites. The addition of glass increases the density (≈99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO_2 multilayer structures with an area of 2cm² and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

I. INTRODUCTION

Dielectrics for pulsed power applications need to satisfy several key material and processing parameters [1], including a high voltage hold off (\geq 300 kV), a high, nondispersive permittivity ($\epsilon \approx$ 100 to 400), surface flashover inhibition at the edge, the ability to be triggered by surface flashover switching, and the ability to be fabricated into various shapes and sizes.

Higher voltages and permittivities result in greater stored energy density and hence smaller systems. Current systems based on water dielectrics can hold off ≈ 150 kV/cm, have a $\epsilon \approx 80$, and are self-healing [1]. Their replacement by a solid system such as a polymer or ceramic is highly desirable, but currently available systems based on polymers [2] or ceramics [3] are insufficient due to fundamental shortcomings.

This work focused on improving the microstructure and composition of ceramic-based systems, with particular emphasis on increasing the BDS and ε . The primary source of voltage failure for a ceramic is related

0-7803-5498-2/99/\$10.00@1999 IEEE.

to the presence of porosity [4,5], and the associated field/stress amplification. By adding a high BDS, low ε glass to a higher ε dielectric, the porosity can be virtually eliminated, and the BDS is increased. Here we report on studies on glass-loaded TiO₂ dielectrics, with additional improvements in processing methodology.

II. EXPERIMENTAL PROCEDURE

In this work TiO₂ (HG TICON, TAM Ceramics, NY) was used as the base dielectric. TiO₂ has a nondispersive $\varepsilon \approx 110$, and hence is similar to water. The TiO₂ was prepared by both slip and tape casting. Compositional modifications included additions of a glassy phase.

A. Slip Cast Dielectrics

The fabrication of dielectrics with dimensions on the order of a meter rules out many processing techniques, hence slip casting was initially pursued. Through a series of rheological studies, an optimized slurry suitable for slip casting was developed: 50 vol% TiO₂, 0.25 wt% PVA based on solids (binder for green strength), 0.8 mg/m² Darvan C (dispersant) and a pH≈10 (electrostatic dispersion). This slurry was cast into large disks (up to 10" diameter) using plaster-of-paris molds, sintered to ≈97% density at 1400°C - 6 h, and then planar-lapped to a 12 µinch finish.

B. Tape Cast Dielectrics

Tape cast dielectrics were fabricated by doctor blading a slurry of 50 vol% TiO_2 dispersed in a nonaqueous binder system (MSI Ferro, CA.) Individual tape layers were 0.20 mm thick. Multilayer structures were fabricated by screen printing tapes with a Pt thick film ink, followed by lamination up to the desired thickness. Structures were dried for 5 days at 140°C, and calcined at 450°C for 5 days (1°C/min heating rate). Sintering was performed at varying temperatures to vary the grain size and density.

C. Glass Composites

The target microstructure has a 0-3 connectivity; i.e. a continuous, glassy grain boundary surrounding TiO₂ grains. A useful glassy phase needs to exhibit several key properties, including: a) the glass must "wet" the dielectric, but not react with it in a fashion detrimental to the electrical properties, b) the glass must result in higher densities, and c) the glass must exhibit a high electrical

^{*} Operated for the United States Department of Energy under contract #DE-AC04-76-DP00613

resistivity, as well as a high electrical breakdown strength. Borosilicate glasses were chosen for these reasons [1]. Table I summarizes the composition and properties of glasses made by melt fining and quenching. Volume fractions of these glasses ranging from 5-20% were added to the TiO_2 by ball milling, and then microstructural evolution studies were performed to optimize the density and minimize the grain size. Test specimens were tape cast as described above.

Table I	Properties	of the	Candidate Glass	es
1 4010 1.	1100001000			v o

Glas	s Comp.	T _m	Density	ρ	Κ	BDS	φ
		(°C)_	(g/cc)	(Ω·cm)		(V/mil)	
В	SiO ₂ -B ₂ O ₃	1200	2.06	≥10 ¹⁶	4	1900	58°
С	SiO ₂ -B ₂ O ₃ CaO	1000	2.72	≈10 ¹⁵	8.5	2060	8°
D	SiO ₂ -B ₂ O ₃	1100	2.18	≈10 ¹⁴	4	>1900	28°
	CaO, Al ₂ O ₃						

III. RESULTS AND DISCUSSION

A. Slip Cast Titania

Initial studies focused on the influence of dielectric thickness and area on the breakdown strength of slip cast TiO_2 . This approach was pursued in the interest of ultimately producing 1 m diameter components. For example, Figure 1 shows an 8" diameter test specimen with sputtered-Au electrodes. To explore thickness effects on the D.C. breakdown strength, 1.25 cm diameter test specimens with a 0.25 cm hemispherical cathode and a planar anode were used. All measurements were performed in silicon oil. Figure 2 exhibits the results. Clearly the intrinsic breakdown strength of the dielectric is on the order of 750 kV/cm, but as a larger volume is stressed the breakdown strength decreased. A series of studies on the relationship between the microstructure and BDS led to the conclusion that the critical flaw size leading to this thickness dependency was on the order of 25 - 50 μ m. These samples were all \approx 96% dense, hence the presence of even 4 vol% porosity did not seriously impact the BDS. Using results from Gerson [5] we might expect that the intrinsic BDS would be ≈25% higher for 100% dense samples. The high grain boundary mobility

Figure 1. Slip cast TiO₂ dielectric.

Figure 2. BDS as a function of dielectric thickness for slip cast TiO_2 .

Figure 3. BDS as a function of electrode area for slip cast TiO_2 dielectrics.

of TiO_2 at these temperatures leads to mostly intragranular, spherical porosity. Spherical, 3 μ m pores obviously do not strongly degrade the BDS.

Figure 3 shows the effect of stressed area on the BDS, using 0.3 cm thick planar samples as shown in Figure 1. Similar to the thickness dependency, larger area samples had significantly lower BDSs. Ultimately, the BDS appeared to be $\approx 100 \text{ kV/cm}$ for larger area, thick parts. This was deemed unsuitable for the purposes of the desired pulsed power components.

B. Tape Cast Titania with Glass Phase Additions

1) Microstructural Evolution

The ability to fabricate a dense, composite dielectric with a glassy grain boundary is predicated on the ability of the glass to wet the dielectric. Table I contains the contact angle of the various glasses on TiO₂ taken from the SEM micrographs shown in Figure 4. Glass C wets the best, followed by the D and C glasses. All three can be used to create a continuous grain boundary phase, depending upon the volume fraction (V_f) of glass which is added. For instance, Figures 5 and 6 show SEM micrographs of 5 and 10 vol% additions of B glass. The 5 vol% addition resulted in a high density, but a discontinuous glass phase. Comparatively, the 10 vol% addition resulted in a nearly model microstructure, with virtually no porosity, and a continuous glassy grain boundary with a uniform thickness. The grain size is substantially larger, which is not as desirable in terms of ultimate BDS.

1243

B Glass: 58°

C Glass: 8°

D Glass: 28°

Figure 4. SEM micrographs of the wetting angle of glass droplets fired onto the TiO_2 dielectric.

Figure 5. SEM micrograph of a TiO_2 dielectric with 5 vol% B glass additions.

Figure 6. TiO_2 dielectric with 10 vol% B glass additions.

2) Electrical Properties

Certainly the presence of a low K glass in the grain boundary will decrease the overall K, the extent of which will depend on the V_f and thickness of the glassy grain boundary. Figure 7 exhibits the variation in K with V_f of the B glass. Pure TiO₂ has a K≈110. Additions of up to 20 vol% decreased the K to ≈70-85, depending upon the soak time. Longer sintering times increases the grain size

Figure 7. Effect of volume percent B-glass on the K.

and the thickness of the glassy grain boundary, resulting in an overall lower K.

The ultimate purpose of this investigation was to study the influence of a glassy grain boundary on the BDS. Table II summarizes the BDS results for all three glasses as a function of volume fraction and soak time at 1300°C, along with pure TiO₂ for comparison. These results can be summarized as follows:

- Compared to pure TiO₂, all three glasses yielded higher BDSs. This is attributable to the higher densities which were achieved and the uniform microstructures.
- ◆ The BDS tracked closely with the density → higher densities yielded higher BDSs, although exceptions exist due to changes in the grain size. For the most part, the 10 vol% samples exhibited the highest BDS.
- ◆ In this study the D glass yielded the best properties, with a BDS ≈ 1650 V/mil (650 kV/cm). This is very encouraging, and ongoing studies are focused on understanding why this composition yielded the highest BDS. This result cannot be explained on the basis of any fundamental glass properties or the resultant microstructures (which were similar between specimens).

Figure 8 graphically depicts the variation in BDS with soak time for the B glass. The maximum exhibited by the glasses occurs at the point where the density is a maximum, and the grain size is a minimum. Longer soak

		1 h	our	2 hour	3 hour	4 hour	6 hour
		ρ	BDS	ρ BDS	ρBDS	ρ BDS	ρBDS
		(%)	V/mil	(%) V/mil	(%) V/mil	(%) V/mil	(%) V/mil
Pure TiO ₂		89.1	590	92.5 895		94.0 770	
1% ZrO ₂		89.2	810	91.6 1060		95.4 950	
B Glass	5%	92	994	94.7 1041	95.7 1114	96.5 1184	97.6 983
	10%	94	1006	97 994	97.7 1039	98.4 965	98.7 959
	15%	95.8	1285	98.8 1107	98.5 1054	99.4 1317	99.8 919
	20%	93.3	779	97.6 1072	99 1273	99.4 904	99.8 1033
C Glass	5%	95.5		96.5 976		97.1 874	
	10%	98.6	1128	97.7 1192		98.3 628	98.7 215
	15%	97.9		99.6 1113		99.8	
	20%	97.4		99.1 1016		99.8	
D Glass	5%	94.6		96.8 1140		98.3	
	10%	97.1	1006	98.7 1650		97.7 1290	98.8 1342
]	15%	99.8		99.0 1162		99.3 1256	
	20%	99.8	1068	99.8 1167		99.8 1246	

Table II. Influence of Processing Conditions on the Breakdown Strength and Density of the Tape Cast TiO₂ Dielectrics

Figure 8. Effect of sintering soak time on the BDS.

times result in larger grains, and hence a larger critical flaw size which controls the BDS.

C. Multilayer Structures

Recent work on multilayer structures has indicated that the presence of interleaving layers of a continuous metallic film within a dielectric increases not only its bulk breakdown strength, but also the surface flashover voltage. This structure is called the "Ultrahigh Gradient Insulator." Tape casting can readily be used to produce 2-2 structures, hence work is underway to incorporate the glass-loaded systems into this configuration. Figure 9 shows the first insulator produced in this manner; this insulator has 25 layers of TiO₂ with internal Pt electrodes. No electrical tests have been performed as of this writing.

IV. SUMMARY

Through modification of the microstructure with glass phase additions the bulk BDS of titania dielectrics has been substantially increased. The addition of glass increases the density, forms a continuous grain boundary phase, and allows for systematic control of the

Figure 9. 1.1" diameter, multilayer TiO_2 with 25 layers of Pt internal electrodes.

permittivity. The energy density of these dielectrics is on the order of 1 MJ/m³, and as such show great promise for compact pulsed power applications.

V. REFERENCES

- S.T. Pai and Q. Zhang, <u>Introduction to High Power</u> <u>Pulse Technology</u>, World Scientific Publishing Co., Singapore.
- [2] Z. Deheng and Y. Zhang, <u>High Voltage Electrical</u> <u>Insulation</u>, Tsinghua University Press, Beijing (1992).
- [3] I.O. Owate and R. Freer, "Dielectric breakdown of ceramics and glass ceramics," in Proc. 6th Intl Conf. on Dielectric Materials, Measurements and Applications, 1992, p. 443.
- [4] R. Gerson and T.C. Marshall, "Dielectric Breakdown of Porous Ceramics," J. Appl. Phys., vol. 30, pp. 1650-1653, Nov. 59.
- [5] G. Economos, "The Effect of Microstructure on the Electrical and Magnetic Properties of Ceramics," <u>Ceramic Fabrication Processes</u>, W.D. Kingery, Ed., New York, John Wiley & Sons, 1950, pp. 201-213.

1245