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Normal transport at positive temperatures in
classical Hamiltonian open systems

S. De Bièvre∗, P. Lafitte†
Université des Sciences et Technologies de Lille
UFR de Mathématiques et Laboratoire Painlevé

59655 Villeneuve d’Ascq, France
and

P. E. Parris‡
Department of Physics, University of Missouri-Rolla, MO 65409

March 26, 2007

Abstract

We study the transport properties of classical Hamiltonian models
describing the motion of an unconfined particle coupled to vibrational
degrees of freedom in thermal equilibrium at zero or positive temperature.
We identify and discuss conditions under which, in such systems, the
particle has a well-defined diffusion constant and mobility. We will in
particular point out some marked differences with the situation where the
particle is confined and described with a Caldeira-Leggett model. We
will more specifically report on results obtained in a classical version of
the Holstein molecular crystal model, speculate on their relevance in the
corresponding quantum system and describe a number of open problems.

1 Introduction
A contribution in a volume dedicated to J.M. Combes can naturally be expected
to address research issues concerning quantum mechanics, and to deal with them
rigorously. In spite of that, the problems addressed here are set in the context
of classical Hamiltonian dynamical systems and dealt with mostly numerically.
Still, they are motivated by a set of interesting open questions in quantum trans-
port theory explained in Section 4; since in addition they are directly related to
some of Jean-Michel’s main research interests over the last two decades, namely
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quantum dynamics and random Hamiltonians, we feel they certainly have their
place in this collection of adventures in mathematical physics dedicated to him.

The behaviour of a system with a finite number of degrees of freedom, such as
a single particle, in contact with an infinite dimensional system has been the sub-
ject of much research for several decades. There exists in particular an extensive
literature (see [FKM] [CL1] [CL2] [DDLL] [JP3] [JP4] [CEFM] and references
therein) in which the particular case of the behaviour of a classical or a quan-
tum particle coupled to a heat bath modeled by harmonic degrees of freedom is
studied. The goal in many of these studies is to shed light on various questions
of non-equilibrium statistical mechanics : return to equilibrium, understanding
possible sources of irreversible behaviour, derivation of an effective dynamics
for the particle (such as Langevin or Fokker-Planck equations), computation
of transport coefficients from microscopic models, etc. Those works have dealt
almost exclusively with confined particles and used a dipole approximation to
describe the interaction between the particle and the reservoir, leading to an
interaction term in the Hamiltonian that is linear both in the bath variables
and in the position coordinate of the particle. Those models – often referred to
as Caldeira-Leggett models – are, as a result, not suitable for studying trans-
port theory for unconfined particles in periodic or fully translationally invariant
media. A class of models adapted to this physically important situation are
easily constructed (Section 2) but their dynamical properties have been much
less studied. In particular, very little is known rigorously about their dynamical
behaviour, in particular at positive temperature or in the quantum mechanical
context. The zero temperature situation is described for a model of radiation
damping in [KKS1] [KKS2] [KS] [S] and for frictional damping in [BDB1].

In [DPS] [SPD] and [LPD] we are concerned with such a model in which
the heat bath consists of a periodic array of monochromatic Einstein oscillators
through which the particle moves. As such, the model can be seen as a clas-
sical version of the Holstein molecular crystal model (Section 3), a well-known
model for electron-phonon interactions in molecular crystals [H] (see Section
4). Alternatively, it can be perceived as an inelastic Lorentz gas in which the
particle scatters inelastically off periodically placed scatterers. It was found in
these works that when no external field is applied to the particle (F = 0), it
executes a normal diffusive motion, with a well-defined temperature dependent
diffusion constant that was analysed in [SPD]. When F 6= 0, on the other hand,
it was established that, on a suitable time scale, the particle reaches a limiting
mean velocity linear in the applied field, with a well-defined low-field mobility
compatible with the Einstein relation [LPD]. The model therefore possesses
normal transport properties, a situation in sharp contrast to what happens in
Caldeira-Leggett models, where it is well known such behaviour cannot occur
when the bath is monochromatic. Indeed, two general ideas have emerged from
the literature cited above concerning particles bilinearly coupled to an oscillator
bath. First, for the harmonic heat bath to efficiently dissipate the particle’s
energy, and to induce a (generalized) Langevin or Fokker-Planck dynamics for
the particle, it has to have a continuous frequency spectrum extending all the
way down to zero. Second, if the particle couples too strongly to the low fre-
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quency modes in its environment, the particle’s damping will be very strong,
and subdiffusive motion will occur, whereas if too few such modes are available,
the particle will be insufficiently damped and its motion will be superdiffusive
or even ballistic [SG] [MOBH]. I neither case does the particle have a diffusion
constant or a mobility. In the classical Holstein molecular crystal model dis-
cussed below, which has a monochromatic heat bath and hence in particular no
low-frequency modes, the situation is therefore radically different.

We end this note with some speculations on the pertinence of our findings
to the dynamics of the Holstein molecular crystal and hence to the quantum
transport problems alluded to above (Section 4).
Acknowledgements : This work was supported in part by INRIA SIMPAF.
P. Parris thanks the Laboratoire Paul Painlevé and SIMPAF for their hospitality
during his visits to the Université des Sciences et Technologies de Lille. The
numerical simulations represented in this paper were partially carried out on
the Grid’5000 experimental testbed.

2 A family of classical models
A family of classical Hamiltonian models in which a particle is coupled in a
translationally invariant (hence non-linear) manner to the vibrational degrees
of freedom of its environment was introduced in the unpublished Section 6 of
[BDB2] (otherwise published as [BDB1]). These models include as special cases
virtually all models typically studied in the literature in which a heat bath is
described with vibrational degrees of freedom and they can serve to describe
a variety of very different physical situations, as we will see below. They fur-
thermore include a number of new models suitable for the study of transport
properties, one of which will be detailed and studied in Section 3.

We consider a particle moving in Rn. To model the vibrational degrees of
freedom of the particle’s environment, one considers a harmonic system char-
acterized as usual by a positive operator Ω2

R on a real Hilbert space KR =
L2(Rn,dν,L) for some Borel measure ν, and a real Hilbert space L. Very often,
L = R, but for certain models, L is actually itself an infinite dimensional real
Hilbert space, as we will see below. To guide one’s intuition, one should keep
two particular cases in mind: either ν is simply Lebesgue measure or it is the
pure point measure concentrated on the lattice Zn. They are the only ones we
will be interested in here. The operator Ω2

R is then typically a Laplacian or
some finite difference operator. The Hamiltonian of the reservoir is

HR(qR, pR) =
1
2
pR · pR +

1
2
qR · Ω2

RqR.

Here · refers to the inner product on KR and qR and pR are the oscillator
displacement (or field) and momentum respectively. It is often helpful to think
of qR(x) ∈ L, for each x ∈ Rn as being itself an oscillator field attached to the
point x. The Hamiltonian of the combination particle+reservoir is then, with
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X = (qS, qR, pS, pR),

H(X) =
1
2
pS ·pS+V (qS)+

1
2
pR ·pR+

1
2
qR ·Ω2

RqR+
∫

Rn

dν(x)ρ(x−qS)·qR(x). (1)

Here the last term describes the interaction of the two systems and ρ : Rn → L,
called the “form factor”, is typically a smooth rapidly decreasing function of its
argument. The Hamiltonian equations of motion for such a model are

q̇S = pS, ṗS = −∇V (qS) + f(qS, qR),

and
q̇R = pR, ṗR = −Ω2

RqR − ρ(· − qS),

where
f(qS, qR) = −∇qS

∫

Rn

dνρ(x− qS) · qR(x)

is the force exerted by the reservoir on the particle. We make two remarks.
First, even if the potential V is a second order polynomial, the model is non-
linear because of the presence of the form factor. Second, if you substitute
formally ρ(x) = δ(x) and dν = dx, the force f equals −∇qR(qS); so the oscillator
displacement qR(x) plays the role of a potential for the system. It is however
in general impossible to prove existence and uniqueness of the solutions of the
above equations without putting some regularity condition on ρ which amounts
to making an ultraviolet cutoff.

Various models of this type have been studied in detail and they allow for
the description of a wide variety of physical phenomena. Let me sketch two
examples.

If, for example, you set L = R, dν = dx and Ω2
R = −∆x, you obtain the

standard model in which a scalar field is coupled to a moving particle. Its clas-
sical mechanics is studied in detail and with full rigour in [KS] [KKS1] [KKS2]
[S], where it is proven this is a model for radiation damping. In particular, when
V = 0, and for finite energy initial conditions, the particle reaches as t → ∞
an asymptotic speed the value of which depends on the initial conditions. This
reflects the fact that in such a model non-accelerating particles do not radiate,
meaning they do not exchange energy with the field. To put it differently, the
field exercises no force on the particle if the latter moves at constant speed.
When in this model the potential V is confining, the particle will asymptoti-
cally come to rest at one of the critical points of the potential, as proven in [KS]
[KKS1] [KKS2] for finite energy initial conditions. At positive temperatures,
one would expect the full system to have the property of return to equilibrium,
but this has not been proven rigorously, to the best of our knowledge. The
property of return to equilibrium for quantum versions of this model has been
proven in [BaFS] [JP1] [JP2], but it should be noted that the particle is then
replaced by a system with a finite number of levels.

Now, in the case of a confining potential, it is reasonable to make a dipole
approximation in this model, which then leads to a coupling term which is lin-
ear both in the particle position qS and in the oscillator displacement qR: in
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this form, possibly with different choices of the reservoir, the model is stud-
ied both classically and quantum mechanically and both at zero and positive
temperatures in [FKM] [CL1] [CL2] [SG] [DDLL] [JP3] [JP4] [CEFM].

In [BDB1], a model for frictional damping by a medium with continuous
translational invariance is introduced. This time we still have dν = dx, but
now L = L2

r (Rd, dy) and Ω2
R = −c2∆y. The field qR can then be seen as a

function of (x, y) ∈ Rn ×Rd, and hence qR(x, y) thought of as representing, for
each x ∈ Rn, the displacement of a vibrating membrane. Since ΩR does not
contain any derivatives in the x-variables, the membranes at different points in
the ambient space of the particle (which is Rn) are not coupled, unlike what
happens in the previous model for radiation damping. The behaviour of the
system is very different from the one observed in the case of radiation damping.
It is indeed proven in [BDB1] that if d = 3, V = 0, if c is large enough and if the
initial conditions have finite total energy then the particle comes asymptotically
to rest at some point in its ambient space Rn. This is due to the fact that now
the particle will lose energy to the field as long as it keeps moving, which in the
end forces it to stop. Also, in the presence of an external driving potential of
the type V (qS) = F · qS , for some F ∈ Rn, the particle reaches an asymptotic
velocity vF which depends on F but not on the initial conditions. In addition,
as shown in [BDB1], this asymptotic velocity is proportional to the applied force
F for small F . So this system exhibits a finite and non-zero low-field mobility
µ := limF→0 vF /F which depends on the coupling through the form factor ρ and
on the reservoir via ΩR. Finally, when the potential V is confining, the particle
will come to rest at a critical point of the potential, with an exponential rate
given by the mobility µ. In conclusion, the results of [BDB1] show that the
particle behaves as if it obeyed the effective equation

q̈S = −∇V (qS)− µ−1q̇S. (2)

So in this situation, the particle undergoes a friction force linear in its velocity,
due to the presence of the environment. We remark that the conditions d = 3
and c large ensure in this case that the model is essentially Markovian: distur-
bances sent into the membranes by the particle are quickly evacuated to infinity.
Note also that the frequency spectrum of the bath is continuous and stretches
down all the way to zero.

The analysis of [BDB1] leaves several questions unanswered. First of all, it is
restricted to the zero temperature case. This explains the absence of a random
force term in the right hand side of (2) which would be present at positive
temperatures and would then yield a Langevin equation. If one believes the
Einstein relation µ = βD ought to be valid for this model, then the fact that the
model has a non-zero mobility at zero temperature suggests that the particle
behaviour must be diffusive for positive temperatures and that its diffusion
constant must depend linearly on the temperature for small temperatures. This
question is not addressed in [BDB1] since only finite energy initial conditions
are considered there. Second, the analysis in [BDB1] strongly suggests that the
existence of a finite mobility is directly related to both the complete translational

5



invariance of the model and to the low frequency behaviour of the oscillator
bath. It is in particular necessary for the bath to contain sufficiently many low
frequency components for it to be able to slow down slow particles sufficiently
(See [BDB1] and Section 6 of [BDB2]). This of course is reminiscent of the
findings in models with linear coupling described in the introduction.

In order to explore what happens at positive temperatures, to analyze the
interesting situation when the medium is periodic, but has no continuous trans-
lational invariance, and to understand the role of possible cut-offs in the fre-
quency distribution of the bath on the behaviour of the particle, we have stud-
ied in [DPS] [SPD] and [LPD] the transport properties of a model of the type
(1), that can be understood as a classical version of the quantum mechanical
Holstein molecular crystal model described in Section 4.

3 A classical version of the Holstein molecular
crystal model

Consider a one-dimensional periodic array (with period a) of identical oscillators
of frequency ω and a particle which interacts with the oscillator at ma if it is
within a distance σ < a

2 . The Hamiltonian of this system is

H =
1
2
p2
S +

∑

m∈Z

1
2

(
p2

m + ω2q2
m

)
+ α

∑
m

qmnm (qS)− FqS, (3)

where nm (qS) vanishes outside the interaction region associated with the oscil-
lator at ma and is equal to unity inside it. This model clearly belongs to the
family (1): the measure ν is now the sum of Dirac delta measures on the lattice
aZ and the form factor ρ is the characteristic function of the interval [−σ, σ].
Comparing to the model of [BDB1], one sees that the continuous family of mem-
branes is now replaced by a discrete family of single oscillators, all of the same
frequency. Finally, the analogy of the above classical model with the Holstein
molecular crystal model that will be discussed in Section 4 is equally obvious.

The dynamics generated by this Hamiltonian is easily described: the motion
of the particle is decoupled from that of the oscillators, except when the particle
crosses in and out of an interaction region |qS −ma| < σ. At those times, the
particle sees a potential energy barrier ±αqm and its change in momentum is
determined by conservation of energy. The oscillators all oscillate about their
equilibrium position qm = 0 when the particle is not within their interaction
region, and about a displaced equilibrium position qm∗ = −α/ω2 when it is.
These features make an efficient numerical simulation of the dynamics for very
long times readily accessible, even at positive temperatures. Note that the
Hamiltonian is bounded below by the energy −α2/2ω2, which corresponds to
the situation where all oscillators are at rest, and the particle finds itself also at
rest in one of the interaction regions. This corresponds to a self-trapped state
of the particle in the sense that applying a small electric field to the particle
will, in this situation, not allow it to escape from the cell in which it finds itself.
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It follows that the zero temperature mobility of this model vanishes, unlike in
the model described in [BDB1]. This is due to the fact that there are now free
regions between the oscillators.

In order to study the transport properties of this model, a thermal distri-
bution of particles (at inverse temperature β) was injected into the array of
oscillators at m = 0, with the oscillators also drawn from their equilibrium dis-
tribution at the same temperature. The mean square displacement 〈q2

S(t)〉 was
then computed numerically and it was observed [SPD] that

〈q2
S(t)〉 ∼ 2Dt,

where the diffusion constant D depends on the temperature and on the two
dimensionless parameters of the model, which are EB/E0 and 2σ/L. Here
EB = α2/2ω2 is the binding energy of the particle, E0 = σ2ω2 and L = a −
2σ is the size of the non-interacting region in a cell. At high temperatures
(βEB >> 1) the diffusion constant D behaves as D ∼ D0

H(βEB)−5/2 where
D0

H = 105
162 a

√
9πEB/2

(
EB

E0

)
. At low temperatures the diffusion is thermally

activated:

D ∼ a2

2

√
EB

2πE0
(βEB)−1/2 exp−βEB .

Although a rigorous proof of these observations is missing, the numerical
results described give firm footing to the conjecture that the motion of the
particle in this classical version of the Holstein molecular crystal model is in-
deed diffusive when the particle is in equilibrium with the oscillators at some
strictly positive temperature. The appearance of the different power laws in
temperature at low and high temperatures and of the thermal activation was
theoretically explained in [SPD] by analyzing the Hamiltonian dynamics of the
system. The high temperature behaviour is the easiest to understand. We give
a simple version of the argument here, since we will use a variant of it in Sec-
tion 4. The reasoning starts from the observation that at high temperatures
the typical kinetic energy of the particle (which is kT ) is much higher than
the typical barrier height it encounters (which is of the order of

√
kT ). As a

result, typically a particle will traverse many cells before slowing down enough
to receive a randomizing “kick” from one of the oscillators. This implies that it
is reasonable to apply a relaxation time approximation in the following form.
One computes easily (see [DPS]) that the average energy loss of a fast particle
of velocity v when traversing one oscillator cell is

∆E

∆n
= −4EBE0

v2
. (4)

From this
∆v

∆t
=

∆v

∆n

∆n

∆t
=

1
v

∆E

∆n

v

a
.

Integrating this relation, the characteristic time a particle of high initial speed
v needs to slow down is estimated to be

τ(v) =
v3a

12EBE0
,

7



and the distance it travels while slowing down then turns out to be

`(v) =
1
4
vτ(v).

Averaging this over the thermal distribution yields the following estimates for
the mean free time and the mean free path squared of the particle:

τ =
a

3E0

√
EB

2π
(βEB)−3/2, `2 = 105

(
aE0

16EB

)2

(βEB)−4

From this, one obtains for the diffusion constant the estimate

D =
`2

2τ
=

105
162

a
√

9πEB/2
(

EB

E0

)
(βEB)−5/2.

This simple argument successfully explains the power law dependence on βEB ,
and the numerical data presented in [SPD] show that the prefactor has the right
order of magnitude. The simple derivation given above therefore contains the
essential physics of the problem.

In [LPD] we study the motion of the particle when an external driving field
F is applied, with the intent of checking if in this model linear response theory
holds for the particle’s average velocity and if, as a result, the Einstein relation
between the mobility and the diffusion constant holds as well.

A first observation that we made in this context is that for this model,
as for all models of the type (1), no stationary current can establish itself in
the presence of the field, due to the following phenomenon. Indeed, we know
from (4) that a particle of speed v will lose on average an energy ∆E ∼ v−2

when traversing one cell. On the other hand, the particle picks up a potential
energy Fa from the field when traversing the cell, so that whenever Fa > ∆E,
which will always be the case for fast enough particles, the result will be a net
acceleration of the particle. Now any thermal distribution of particles contains
particles with arbitrary high momenta, and those will therefore be accelerated
indefinitely by the field F , however small it is. So one may expect that, for
times beyond some critical time tF , the thermally averaged particle position
〈qS(t, F )〉 is of order t2. Here qS(t, F ) is the particle’s position at time t, under
the Hamiltonian evolution of the system in the presence of the driving field F .

In this sense, one may fear that models of this type can never have good
transport properties. The situation is however more subtle than that, as we
now explain. Indeed, as shown in [LPD], tF behaves like exp(c/F ) for some
c > 0, and is therefore very large at small fields. It is then further shown
numerically in [LPD] that on time scales shorter than the critical time tF , the
thermally averaged mean velocity vF (t) of the particle, defined via

vF (t) =
〈qS(t, F )〉

t

is constant in time, and proportional to the applied field. Here 〈·〉 refers to the
thermal averaging. In fact, linear response theory applied to this system yields
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Kubo’s formula in the form

vF (t)
F

= β
〈q2

S(t, F = 0)〉
2t

+ Ot(F ).

Our numerical findings indicate that the error term can be expected to be uni-
form for t << tF . So, taking t → +∞ and F → 0 in such a way that t/tF → 0,
one may expect to find that the right hand side has a limit since in absence of
the field the motion is diffusive, as shown above. This then yields the Einstein
relation for the mobility µ of the system in the form:

µ := lim
t→∞,t/tF→0

〈qS(t, F )〉
Ft

= βD.

Again, these statements lack rigorous proof, but are supported by the numerical
evidence presented in [LPD].

4 Quantum transport in the Holstein molecular
crystal model

The Holstein molecular crystal model is a well known, much studied and simple
model for electron transport in the presence of electron-phonon interactions [H].
Its Hamiltonian is given by

Hα,0 = Hel + Hph + αHint

= V
∑
m

(|m〉〈m + 1|+ |m + 1〉〈m|) + ω
∑
m

a†mam + α
∑
m

|m〉〈m|Qm,

(5)

where Qm = 1√
2
(a†m + am) is the displacement of the oscillator at site m. This

Hamiltonian describes the motion of a particle in a tight-binding band, linearly
coupled at each site of a one-dimensional crystal to a single vibrational mode of
frequency ω.

The Hilbert space H on which this Hamiltonian acts is

H = Hel ⊗Hph = `2(Z)⊗F(`2(Z)).

The first factor `2(Z) corresponds to the Hilbert space for the electronic degree
of freedom, whereas F(`2(Z)) is the symmetric Fock space over `2(Z), describ-
ing the harmonic degrees of freedom representing the phonons. In the usual
language of solid state physics, a†m and am correspond to the creation and an-
nihilation operators for a phonon at site m ∈ Z of the lattice. We have used the
bra-ket notation with |m〉 (m ∈ Z) designating the canonical basis vectors of
`2(Z), so that Hel designates the standard tight-binding Hamiltonian with near-
est neighbour coupling only (i.e. the discrete Laplacian). We will systematically
omit the tensor product notation when no confusion can arise. In particular,
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when A is an operator on Hel, we will write A as well for the operator A ⊗ 1l
on H = Hel ⊗ Hph. Similarly, when B is an operator on Hph, we write B for
1l⊗B.

It is clear from the above that the Hamiltonian (5) has the typical structure
of an open system Hamiltonian, in which a “small system”, here the electron, is
coupled to a heat bath, here modeled by the oscillators. It is also clear that the
Hamiltonian (5) is a quantum mechanical version of (1), except for the fact that
the kinetic energy term p2

S/2 there is replaced here by a tight-binding dispersion
relation of the form 2V (1− cos k) where ~ak = pS.

A first question that comes to mind is the following one. If initially, the
oscillators are in thermal equilibrium at inverse temperature β and the particle
is injected into the lattice in an initially localized state close to m = 0, what
is the asymptotic behaviour in time of the particle’s mean square displacement
〈X2(t)〉? Here X is the particle’s position operator, defined on `2(Z) by

X =
∑
m

m|m〉〈m|.

Note that in the absence of the electron-phonon interaction (meaning that the
coupling constant α in (5) vanishes), the answer to this question is trivial since
then the motion is ballistic so that X2(t) behaves like t2. But the coupling to
the phonons introduces a scattering mechanism into the dynamics, and one may
expect that now the motion of the particle becomes diffusive, meaning that

〈X2(t)〉 ∼ 2Dt,

for some diffusion constant D > 0, depending on β and on the parameters of
the model, a situation that can be refered to loosely as “quantum Brownian
motion”. As far as we can tell, and in spite of the simplicity of the model, this
expectation is not as yet corroborated by rigorous proof, nor even by numerical
results. Indeed, if one works numerically on an M -site lattice and truncates the
harmonic oscillator Hamiltonians at each site to N levels, one is still dealing
with a linear space of size MN which is too large to be tractable on today’s
computers, especially since one needs to study the dynamics for large M and
long times.

The numerical results obtained for the classical model described in the pre-
vious section are an indication that the particle does indeed diffuse. One should
nevertheless expect that the different band structure of the free particle Hamil-
tonian leads to a different temperature dependence of the diffusion constant, as
we now argue for the high temperature regime. Consider for that purpose a
semi-classical version of the Holstein molecular crystal model in which

H = 2V (1− cos
apS

~
) +

∑

m∈Z

1
2

(
p2

m + ω2q2
m

)
+ α

∑
m

qmnm (qS)− FqS, (6)

where HS = 2V (1− cos apS
~ ) is the standard one-band dispersion relation. Note

that, beyond EB and E0, the model has an extra parameter with the dimension
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of an energy, namely the bandwidth 4V and that the electron has a maximal
possible speed, given by 2V a

~ . This model reduces to (3) in the regime βEB <<
1 << βV, βE0 << 1, in which the particle’s thermal energy is much smaller
than the bandwidth 4V , but much larger than the other characteristic energies
EB , E0 of the model. We will now consider a different parameter regime, as
follows. We will first of all suppose the electron band is large, so that V >> ~ω,
which means that the fastest particles cross the interaction region in a time
much shorter than the oscillator period. We consider in addition the situation
where the temperature is high, in the sense that βV << 1. In this asymptotic
regime the Boltzmann factor for the particle, given by 1

Z exp−βHS, converges to
a constant, so that the momentum is distributed uniformly in the first Brillouin
zone. We finally suppose that the electron-phonon coupling is weak, meaning
that EB

V << βV . This last condition guarantees that the typical barrier height
seen by the particle, which is of the order (EBkT )1/2 is much less than V , which
is the typical particle energy in the regime considered. The analysis of the
previous section concerning the energy loss of fast particles now applies and in
particular (4) holds, but with v = 2V a

~ sin
(

apS
~

)
. Since this time the Boltzmann

distribution becomes temperature independent in the regime considered, this
argument predicts that the mean free time, the mean free path and hence the
diffusion constant also saturate to a temperature independent value. This leads
for D to the order of magnitude estimate

D ∼ a4V 4

~3EBE0
.

Let us now return to the full quantum mechanical model (5). Beyond the
above question about diffusion, the second problem that presents itself naturally
is what will happen to the particle dynamics if one adds an external electric field
F to the Hamiltonian in (5) to obtain

Hα,F = Hα − FX. (7)

It should be noted that this time again, when α = 0, the dynamics can be
computed explicitly and one has that

sup
t
〈|X(t)|〉 < +∞,

a phenomenon due to the Bloch oscillations inherent to a tight binding model.
So the dc electric field F actually localizes the particle, which had a ballistic
behaviour before the field was turned on. This is of course very different from
what happens in the classical model with Hamiltonian (3) but it also occurs
for the semi-classical model (6). The common wisdom concerning the particle’s
asymptotic behaviour is now that the phonon scattering is responsible for a
diffusion of the particle’s quasi-momentum in the Brillouin zone (which here
is simply [0, 2π/a]). This combines with a slight bias on the quasi-momentum
induced by F , leading finally to a drift of the particle’s average position, so that

〈X(t)〉 ∼ vF t.
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A formal application of Kubo’s linear response theory suggests that vF should
be linear in F at small F so that the mobility µ = limF→0

vF

F is well defined.
A further question is what the precise relation of this mobility to the diffusion
constant is, in the present quantum context. Let us mention that in the semi-
classical model above, we do not expect runaway to occur for small enough fields,
since the condition Fa < ∆E can now be satisfied because ∆E has a strictly
positive lower bound which is reached when the particle attains its maximal
speed 2V .

There are in fact, to the best of our knowledge, no quantum mechanical
models at all in which such behaviour has been rigorously proven to occur.
Indeed, in the quantum mechanical context, virtually all rigorous work in which
an electron is coupled to a heat bath of oscillators is done under the hypothesis
the electron is confined, or more restrictively still, only has a finite number of
energy levels. A dipole approximation is also often made. As already pointed
out, for the transport problems we have addressed here, this is inadequate: the
particle is then not confined and it is natural to suppose that the interaction
between the particle and the heat bath is translationally invariant, so that the
dipole approximation is inappropriate. A rigorous approach to transport theory
via quantum kinetic theory is reviewed in [B]. In this work the scattering
mechanism with the phonons is however taken into account phenomenologically,
through the relaxation-time approximation for example, rather than through a
fully Hamiltonian treatment of the coupled system consisting of the electron and
the phonons. In particular, transport coefficients such as the mean free time or
the diffusion constants are not computed from first principles but added as free
parameters to the models.

Several variations of the above questions are of obvious interest, in particu-
lar with respect to Anderson localization and random Hamiltonians. For that
purpose one may consider the same Hamiltonian, to which an external random
potential is added:

Hλ
α,F = Hα,F + λW

= V
∑
m

(|m〉〈m + 1|+ |m + 1〉〈m|) + λ
∑
m

wm|m〉〈m| − FX

+ ω
∑
m

a†mam + α
∑
m

|m〉〈m|Qm. (8)

Here the wm are a family of independent identically distributed random vari-
ables. The question of interest is now to understand how the behaviour of the
particle changes when λ 6= 0 from the one described above when λ = 0. For
that purpose, recall first that when α = 0 = F , we recover the usual Anderson
Hamiltonian for which dynamical localization is a well-understood phenomenon:

sup
t
〈|X(t)2|〉 < ∞. (9)

What happens now when the phonon scattering is turned on, meaning that
α 6= 0? Presumably, the electrons remain dynamically localized in the above
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sense, or perhaps they will undergo a slow subdiffusive motion. And now, even
if F is turned on, no drift should install itself, so that, at least

lim sup
t→+∞

〈X(t)〉β
t

= 0. (10)

True to the common wisdom according to which one fool (and a fortiori
three fools) can ask more questions than ten wise men can answer, it is easily
seen that one can change the model by replacing the single oscillator at each
site by a collection of such oscillators, or more generally by a free Bose field.
For mathematically rigorous work the use of a continuous frequency spectrum
can be expected to be important to ensure good ergodic properties of the heat
bath. One can further consider the same set of questions when a time-dependent
electric field is used or write down the analogous continuum models where the
electron’s configuration space is R rather than Z. The answers in that latter
case could be quite different since now the free particle undergoes a uniform
acceleration when the field is turned on, in contrast to the confined motion
induced by the Bloch oscillations.

At any rate, unable to answer any of the above queries, we have turned our
attention to a similar set of questions, but in analogous classical Hamiltonian
systems, and obtained a few answers, as described in the previous section.
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