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RESIDENTIAL RADON-222 EXPOSURE AND LUNG CANCER: 
EXPOSURE ASSESSMENT METHODOLOGY 

R. WILLIAM FIELD,* DANIEL J, STECK, t CHARLES F. LYNCH,* 
CHRISTINE P. BRUS,' JOHNS. NEUBERGER,< AND BURTON C. KROSS* 

"Department of Preventive Medicine and Environmental Health 
College of Medicine 
University of Iowa 

Iowa City, Iowa 

tDepartment of Physics 
St. John's University 
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:!:Department of Preventive Medicine 
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Kansas City, Kansas 

Although occupational epidemiological studies and animal experimentation 
provide strong evidence that radon-222 (222Rn) progeny exposure causes lung 
cancer, residential epidemiological studies have not confirmed this association. 
Past residential epidemiological studies have yielded contradictory findings. 
Exposure misclassification has seriously compromised the ability of these 
studies to detect whether an association exists between 222Rn exposure and lung 
cancer. Misclassification of 222Rn exposure has arisen primarily from: 
1) detector measurement error; 2) failure to consider temporal and spatial 
222Rn variations within a home; 3) missing data from previously occupied 
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homes that currently are inaccessible; 4) failure to link 222Rn concentrations 
with subject mobility; and 5) measuring 222Rn gas concentration as a surrogate 
for 222Rn progeny exposure. This paper examines these methodological 
dosimetry problems and addresses how we are accounting for them in an 
ongoing, population-based, case-control study of 222 Rn and lung cancer in 
Iowa. 

INTRODUCTION 

Epidemiological case-control studies of radon-exposed underground uranium and hard-rock 
miners have shown that exposure to radon-222 (222Rn) decay products is a causative factor in 
the development of lung cancer (NRC, 1988; Lubin et al., 1995). The dose-response 
relationship for cumulative 222Rn decay product exposure exhibited a linear trend in the 
miner studies (Lubin et al., 1995), suggesting that even lower-level chronic residential 222Rn 
progeny exposure may carry some risk. Numerous epidemiological studies, using either 
ecological or case-control designs, have been conducted to assess whether an association 
exists between residential 222Rn exposure and lung cancer (Borak and Johnson, 1988; Samet, 
1989; Neuberger, 1991, 1992). 

Ecological studies generally have correlated geographically based lung cancer rates with a 
mean 222Rn concentration obtained from a limited number of 222Rn "screening" tests 

conducted in a given area. The ecological study design has major limitations (Morgenstern, 
1982; Piantadosi et al., 1988; Lubin et al., 1990; Stidley and Samet, 1993; Greenland and 
Robins, 1994; Piantadosi, 1994) and cannot assess an individual's current or retrospective 
222Rn exposure. Because of these limitations, the 1989 Study Design Group of the 
International Workshop on Residential Radon Epidemiology concluded that, "Unless a 
special situation or unique data warrant conducting such a study, future ecological studies are 
not recommended" (U.S.DOE and CEC, 1989) for the study of residential222Rn risk. 

Case-control studies can overcome many of the limitations of ecological studies and have 
been utilized to assess the relationship between residential 222Rn exposure and lung cancer 
(Borak and Johnson, 1988; Samet, 1989; Neuberger, 1991,1992). While the case-control 
study design relies on the availability of existing medical records pertaining to the disease 
under study, the absence of accurate historical exposure data weakens a study's ability to 
detect underlying associations and thereby document criteria for causality. In this paper we 
discuss some substantial 222Rn dose assessment methodological problems associated with 
case-control studies examining the relationship between 222Rn exposure and lung cancer. We 
also present a methodological overview of an ongoing, population-based study of Iowa 
women, that specifically addresses the steps taken to overcome these methodological 
shortcomings. 
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METHODOLOGICAL PROBLEMS WITH 222RN DOSE ASSESSMENT 

Case~control studies examining the relationship between residential 222Rn exposure and lung 
cancer present distinct and formidable obstacles related to accurate 222Rn exposure 
assessment (Lubin eta!., 1990). 

Problem 1: Accuracy and Precision of Contemporary 222Rn Gas Measurement 
An important consideration in assessing a cumulative 222Rn exposure is 222Rn detector 
measurement error. Charcoal canisters and alpha track detectors (ATDs) are the primary types 
of 222Rn detectors that have been used for 222Rn measurements in epidemiological studies. 
Charcoal canisters provide a short-term screening 222Rn measurement (two to seven days), 
while ATDs deliver a longer-term (two-month to one-year) integrated 222Rn measurement. 
Although the accuracy of these detectors generally is within a mean absolute relative error 
(MARE) of 25% and a coefficient of variation (COV) of 10% for precision, the error 
frequently is greater (Field and Kross, 1990; EPA, 1991; Martz et al., 1991; Scott and 
Robertson, 1991; Yeager et al., 1991). 

Good professional practice dictates that environmental measurements for a study adequately 
be conceived, documented, and executed so that the resulting data can be used with a high 
degree of confidence (EPA, 1980). It is imperative that the dosimetry used in epidemiological 
studies follow established quality assurance guidelines. These guidelines must include 
internal quality control checks for detector accuracy, detector precision, 222Rn exposure 
occurring outside the placement period, detector placement, and detector reliability (EPA, 
1980, 1992, 1993). Many epidemiological studies inadequately assess, document, and report 
their detectors' accuracy and precision. In addition, few studies document steps taken to 
ensure that the detectors remain appropriately placed during the entire monitoring period. 
Finally, complete quality control and quality assurance procedures rarely are described 
adequately in epidemiological studies. 

Problem 2: Temporal and Spatial Variation of Residentia[222Rn Concentrations 
Many of the national and international residential 222Rn epidemiological studies have 
performed 222Rn gas measurements for periods as short as one week to as long as one year 
(Neuberger, 1991; Stidley and Samet, 1993). Because 222Rn gas and progeny concentrations 
exhibit significant temporal variability, longer-term home 222Rn measurements decrease 
222Rn dose misclassification resulting from short-term measurement. Indoor 222Rn variations 
occur hourly, diurnally, monthly, and seasonally, and are influenced by numerous factors, 
including 222Rn infiltration rates, heating/air conditioning system design and usage, pressure 
differentials, soil characteristics, weather conditions (e.g. rainfall, wind speed), and occupant 
behavior (Hess et al., 1985; EP,( 1990; Field and Kross, 1990; Steck, 1992). In fact, home 
222Rn variations exceeding a factor of five occur over time intervals as long as several years 
in the upper midwest (Steck, 1992). 
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The ratios of 222Rn concentrations between and within the levels of a home are dependent on 
numerous factors, including 222Rn infiltration rates, heating/air conditioning system design 
and usage, pressure differentials, water usage, weather conditions, occupant behavior, house 
construction, and temperature differentials. Preliminary findings of the Iowa Radon/Lung 
Cancer Study have noted 222Rn concentrations differing by a factor of 20 in different areas of 

the same home. 

Because of the magnitude of spatial and temporal 222Rn variations within a home, significant 
sampling error occurs when short-term 222Rn measurements are used to infer 222Rn 

concentrations for a period of time exceeding the duration of the actual measurement Table 1 
presents a tiered classification of the most common epidemiological 222Rn dose assessment 
methods. The majority of 222Rn measurements used by homeowners for risk assessment and 

by epidemiologists for ecological studies are short-term screening samples taken at one 
location in the lowest livable level of the home (Tier 4). 222Rn measurements used in many 

case-control epidemiological studies cover one year or less in one or two locations in a home 
(Tiers 2 and 3). The majority of 222Rn epidemiological studies fall into Tiers 2,3, and 4. 
222Rn exposure misclassification increases from Tier 1 to Tier 4. 

TABLE I. 

Tier 

2 
3 
4 

Classification of Epidemiologicai222Rn Dose Assessments 

Quality 

Advanced 

Intermediate 
Basic 
Rudimentary 

Description 

One~ year 222Rn measurements in several areas of the home with 
linkage to the subject's temporal and spatial mobility 
One~ year home 222Rn measurements 
Less than one~year home 222Rn measurements 
Surrogate 222Rn measurements or screening 222Rn measurements 

The degree of temporal and spatial 222Rn variation is of particular concern in 222Rn 

epidemiological studies measuring homes that no longer are occupied by the participant. High 
mortality rates make this a special problem for case houses. It is likely that the mean home 
222Rn concentrations that exist after the participant no longer lives in the home are not 
reflective of 222Rn concentrations that prevailed when he/she was in residence. Changes in 

222Rn concentrations may be caused simply by behavior differences between the new and 
former occupant, such as opening the windows more frequently. The new owner also may 
make structural changes in the home that affect 222Rn concentrations, such as modifications 
of the heating system. It is noteworthy that Alavanja et al. (1994) failed to find an association 
between 222Rn exposure and lung cancer in a Missouri-based radon/lung cancer 
epidemiological study of nonsmoking women. Yet when the researchers restricted the 
analyses to the 37% subgroup of living cases, a positive dose-response trend was noted. One 
reason an association was found in this subgroup may have been that their contemporary 
home 222Rn concentrations were more representative of historical 222Rn concentrations. 
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Problem 3: Missing Data Due to Inability to Measure Previous Homes 

The current biological effects of ionizing radiation (BEIR) dose-response model (NRC, 1988) 
finds that risk is proportional to cumulative exposure. Although this model weighs exposures 
occurring 5 to 15 years in the past more heavily than earlier exposures, the effect of the 
exposure time in the distant past makes it important to reconstruct exposures beyond the 
15-year interval. Because many residential studies try to obt8.in 222Rn measurements for every 
dwelling occupied by the study participant over the previous 30 years, gaps in the 
participants' exposure history occur. These gaps seriously decrease the studies' statistical 
power to reveal an association (Lubin eta!., 1990). 

Problem 4: Missing Exposure Estimates Due to Occupancy Patterns 
The variation of 222Rn withln the home can lead to serious exposure misclassification unless 
the spaces most frequently occupied are measured directly (Table 1, Tier 1). Most 
epidemiological studies have relied on 222Rn measurements in one or two rooms to 
characterize the entire domestic exposure, without demonstrating that this characterization is 
adequate. To date, epidemiological studies have not attempted to link temporal and spatial 
home occupancy patterns with multiple 222Rn measurements within a home, which would 
allow calculation of retrospective cumulative 222Rn exposures over a given time period. Nor 
have studies attempted to gather information on historical cumulative 222Rn exposures 

occurring outside the home. 

Problem 5: Measuring 222Rn Gas Concentrations as a Surrogate for 222Rn Progeny Exposure 

All major epidemiological studies examining the relationship between 222Rn exposure and 
lung cancer have estimated the radiation exposure derived from 222Rn progeny exposure by 
measuring 222Rn gas concentrations in the participants' homes (Samet, 1989; Neuberger, 
1991, 1992). Because 222Rn decay products, rather than 222Rn gas itself, deliver the actual 
radiation dose to the lung tissues (NRC, 1988), better residential radiation dose estimates for 
humans require the measurement of actual airborne 222Rn decay product concentrations. To 
calculate the effective dose-equivalent to bronchial tissues from 222Rn progeny in dwellings, 
it is necessary to know the activity-size fraction distribution of the airborne 222Rn progeny. 

Current dosimetric models (James, 1989; NRC, 1991) use effective-dose conversion factors 
that depend on aerosol size. Activity-size distribution (ASD) measurements made in a small 
sample of homes show a continuous distribution, with two, and sometimes three, major size 
fractions (Porstendorfer eta!., 1987; Knutson, 1988; Li and Hopke, 1991; Wasiolek eta!., 
1991). The smaller-sized fraction (<10 nm in diameter), sometimes called the molecular 
fraction, has higher effective-dose conversion factors than the larger size fraction, often called 
the aerosol- attached fraction. The molecular-sized particles are quite mobile and are removed 
easily from the air when they come in contact with a surface. The aerosol-attached particles 
tend to remain in the air longer than the molecular-sized particles. The ASD varies with 
changes both in 222Rn concentrations and in the characteristics of the domestic atmosphere 
(Porstendorfer eta!., 1987; Knutson, 1988). Both 222Rn concentrations and these atmospheric 
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characteristics can change dramatically over short periods of time in response to natural or 
human activities (Reineking and Porstendorfer, 1990; Li and Hopke, 1991). 

The manner in which the dose delivered to the lungs is partitioned between the size fractions 
is complex and not fully understood. In some circumstances, the enhanced nasal deposition of 
the molecular fraction, along with higher activity in the aerosol-attached fraction, can 
combine such that dose may be divided almost equally between the two fractions (Li and 
Hopke, 1991). The estimated partitioning is, however, quite sensitive to both the atmospheric 
conditions and the dosimetric model assumptions such as fraction of mouth-to-nose breathing, 
hygroscopic growth in the airways, etc. The dose to the airway tissues can be a factor of two 
higher or lower in the same room (Hopke et a!., 1995) when the atmospheric conditions 
change. To obtain accurate dose assessment, it is vital to characterize the average ASD of the 

airborne radionuclides. 

OVERVIEW OF THE IOWA RADON/LUNG CANCER STUDY (IRLCS) 

The IRLCS is a five-year, population-based, case-control study that evaluates the association 
between exposure to residential 222Rn and 222Rn progeny and the incidence of lung cancer 
among females in the state of Iowa. The study is funded by the National Institutes of 
Environmental Health Sciences and is scheduled to end in October 1997. The IRLCS has four 
major components: 1) rapid-reporting of cases, 2) a mailed questionnaire followed by a face­
to-face review and facilitated interview, 3) a comprehensive 222Rn exposure assessment, and 
4) independent histopathological review of lung cancer tissues. Iowa is an excellent location 
to perform such a study for several reasons: I) a substantial proportion of Iowa's population 
resides in the same home for 20 years or more; 2) Iowa has a high-quality, National Cancer 
Institute-supported Surveillance, Epidemiology, and End Results (SEER) registry for cancer 
reporting which allows rapid identification of newly diagnosed lung cancer cases; and 3) Iowa 
homes contain the highest mean screening 222Rn concentrations in the United States (White et 
a!., 1992; Field eta!., 1993). 

Lung Cancer Case and Control Eligibility and Ascertainment 

Lung cancer cases enrolled in the study meet the following eligibility criteria: 1) newly 
diagnosed between May 1, 1993 and April 30, 1996 with a microscopically confirmed, 
primary, invasive lung cancer without any prior lung cancer; 2) female Iowa resident at time 
of diagnosis; 3) 40 to 84 years of age; 4) either alive or deceased at initial contact (next-of-kin 
are contacted for deceased cases); 5) has resided for 20 or more consecutive years in the 
current home; and 6) has not made modifications to the home as a result of previous 222Rn 
testing. An estimated total of 450 cases will be included in the study. Lung cancer cases are 
rapidly reported through the State Health Registry of Iowa (SHRI), a National Cancer 
Institute SEER Program participant since 1973 (Karnell et a!., 1995). SHRI field 
representatives, using rapid-reporting, check all hospitals and laboratories in the state at least 
monthly for pathology reports of primary or suspected primary lung cancer. Thus far, rapid-
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reporting has allowed for a median of 25 days between lung cancer diagnosis and SHRI 

identification. 

Controls enrolled in the study meet the following eligibility criteria: 1) no prior malignant 
(invasive) lung cancer as determined by the SHRI data base; 2) no malignant lung cancer 
within the last two years as reported by the control at time of initial contact; 3) female Iowa 
resident; 4) 40 to 84 years of age; 5) alive at time of initial contact; 6) has resided for 20 or 
more consecutive years in the current home; and 7) has not made modifications to the home 
as a result of previous 222Rn testing. An estimated total of 600 controls will be included in the 
study. Controls aged 40-64 are selected from current driver's license (DL) tapes provided by 
the Iowa Department of Transportation. Controls aged 65-84 are selected from Health Care 
Financing Adutinistration (HCFA) records. Both DL and HCFA controls are age frequency­
matched with the lung cancer cases by five-year age groups. 

Histopathological Review 
For each eligible case, two surgical pathologists from the Department of Pathology at the 
University of Iowa review pathological material upon which the lung cancer diagnosis was 
based to obtain a consistent histological diagnosis based on World Health Organization 
histological typing of tumors (WHO, 1982). The reviewers are blinded to the diagnosis on the 
pathology report, as well as to each other's review diagnosis. If the histological type of tumor 
designated differs between the two reviewers, they review the pathological material together 
and render a consensus diagnosis. 

Questionnaire Instmments 
A mail-out questionnaire is sent to each participant prior to a home visit. Participants 
complete the questionnaire at their leisure, thereby reducing fatigue and improving recall, 
since the participants are able to check their records. Detailed information is obtained on 
demographics, occupational history, occupational exposure to toxicants, smoking history 
(both active and passive), personal health history, family health history, vitamin usage, diet, 
cooking practices, home characteristics, drinking water sources, heating and cooling systems, 
ventilation patterns, weatherization, and other factors that may affect home 222Rn 
concentrations. Particular attention is paid to historical changes in the home or in participant 
behavior that may affect 222Rn concentrations over time. 

Subsequent to consent and receipt of the questionnaire, a field research technician visits each 
study site to review the questionnaires for completeness, facilitate a mobility interview, and 
place dosimetry. They also record home floor plans, room location of detector placement, 
detector placement location within a room, house level of placement, time of placement, date 
of placement, detector control numbers, and household identification number on both a 
sample custody form and detector logbook. The technicians conduct an on-site residential 
assessment survey which documents home characteristics, location of rooms and dimensions, 
number of home levels, and environmental gamma levels. The field technicians chart each 
source of potential air flow, such as circulating fans, windows, cold air returns, and heat 
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supply ducts observed in each room where contemporary and historical progeny 
measurements are performed. 

Dose Assessment Methodology 
1. Accuracy, precision, and reliability of contemporary 222Rn gas measurements. Landauer's 
Radtrak Alpha Track Detector (ATD) was chosen as the primary device to provide an 
integrated mean 222Rn concentration of temporally varying residential 222Rn gas 
concentrations. This particular long-term measurement device was selected for two reasons: 
1) it provides superior accuracy and precision when compared to several other commercially 
available ATDs (Pearson et al., 1992), and 2) it exhibited excellent accuracy and precision in 
a recent epidemiological study of 222Rn and lung cancer, performed in Missouri. l 

A detailed written Quality Assurance (QA) Plan for the IRLCS is maintained at the 
University of Iowa. The plan includes QA information concerning receiving, tracking, 
editing, entering, and filing of study data. The dosimetry QA portion of the plan is guided by 
the following EPA publications where applicable: Interim Guidelines and Specifications for 
Preparing Quality Assurance Plans (EPA, 1980), Protocols for Radon and Radon Decay 
Product Measurements in Homes (EPA, 1993 ), and Indoor Radon and Radon Decay 
Measurement Device Protocols (EPA, 1992). 

Five percent of study detectors are exposed to known 222Rn concentrations to assess detector 

accuracy and precision; ten percent of the ATD placements have a collocated placement to 
test the precision of the measurement; and five percent of detectors are designated field 
control detectors (blanks). Long-term E-PERMs (Electret-Passive Environmental Radon 
Monitors), which are exposed for one year, also are collocated with study ATDs at about 5% 
of study homes and serve as a field intercomparison with the ATDs. All E-PERM placement 
locations are monitored for gamma background using a Ludlum Measurements, Inc., Model 
19 micro R meter. 

IRLCS study staff call participants at least twice during the year-long exposure period to 
assess whether detectors continue to be placed according to study protocols. A field research 
technician performs a tennination survey at the end of the monitoring period to retrieve 
dosimetry and administer a final questionnaire that ascertains information on changes in home 
construction or behaviors that may have affected 222Rn concentrations during the monitoring 
period. In addition, any detector movement from site of original placement is noted on the 

floor plan for the home. A QA officer from outside the study periodically reviews all aspects 
of 222Rn measurements, including field procedures, data management, data collection, 
laboratory correspondence, data analyses, reports, and data archives. 

To date, the IRLCS ATDs exposed to known 222Rn concentrations in an EPA 222Rn chamber 
have been well within the limits established for detector precision and accuracy by the EPA 

1 ALA V ANJA, M. (1993). Personal communication. National Cancer Institute. 
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(EPA, 1991). Field control detectors, "blanks," have demonstrated that the detectors have not 
picked up any extraneous 222Rn exposure either in the field or during shipment to the 
laboratory. 

2. Temporal and spatial variation of 222Rn concentrations. The IRLCS residential 222Rn gas 
exposure assessment has two components: 1) a participant mobility interview and 2) 
measurement of on-site 222Rn and 222Rn progeny. The residential exposure assessments are 

conducted by three research technicians based in regionally dispersed areas of Iowa. To avoid 
the effects of temporal residential 222Rn variation, contemporary 222Rn gas concentrations are 
measured for a period of one year using up to seven Landauer ATDs per home and an average 
of four per home. In addition, 222Rn gas measurements are performed in approximately 25% 
of study homes for a second year using new A TDs that replace the previous year's ATDs. 
These replacement ATDs are located in the participant's bedroom and in the lowest level of 
the home. They provide an estimate of the yearly residential 222Rn vatiability. 

In view of the short survival rate of lung cancer victims, many epidemiological radon/lung 
cancer studies are limited to placing the majority of detectors in the most recently occupied 
homes of now deceased cases (Neuberger, 1992; Alavanja et al., 1994). Of particular interest 
to the researcher is whether or not the mean home 222Rn concentrations existing after the 
participant is no longer living in the home are representative of 222Rn concentrations when 
she/he was in residence. The representativeness of 222Rn concentrations that prevailed when 

the study participant was living in the house can be ascertained in the IRLCS with second 
year 222Rn monitoring, because the proportion of the lung cancer cases still alive during the 
first and second year of the measurement period are 75% and 35%, respectively. 

Spatial differences in residential 222Rn concentrations are accounted for by placing up to 
seven detectors in each home, weighted by occupant mobility. At least one ATD is placed on 
each level of the home, in the participant's current bedroom, in the participant's historic 
bedroom(s), if applicable, and in the home work area, if applicable. 

3. Missing data due to inability to measure previous homes. To be eligible for the IRLCS, a 
participant must have resided for 20 or more consecutive years in the current home. To date, 
the mean participant residency period is 32 consecutive years. This requirement for inclusion 
in the study eliminates missing data attributable to the inability to access homes occupied in 
the past twenty years. 

4. Missing exposure estimates due to occupancy patterns. Historical participant mobility 
within the home, as well as time spent outside the home and in another building, is 
ascertained by a face-to-face interview with the study participant. Beginning with the year the 
participant moved into the current home, the interviewer prompts the participant to 
chronologically identify time periods where his/her mobility patterns remained relatively 
stable. Within the temporally stable time periods, hours spent in another building, outside, and 
within the home are collected using task-linkage (e.g., retrieval of hours based on time spent 
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involved in specific duties or activities). Each participant-reported time period is identified 
using autobiographical memory cues and facilitated using task-linkage, until the present (Brus 
et al., 1993). Using this methodology, all time (168 hours per week) is accounted for from the 
year of arrival in the current home until the present. Both a comprehensive contemporary and 
historic 222Rn (and 222Rn progeny) exposure assessments are obtained by linking in-home 
ATD 222Rn measurements and historic 222Rn measurements, described below, with 

participant mobility information. 

The IRLCS, in addition to having the attributes of a Tier 1 study (Table 1), also 
systematically measures outdoor 222Rn concentrations at 100 ambient measuring stations 
dispersed geographically across Iowa. The IRLCS's comprehensive 222Rn gas and 222Rn 
progeny monitoring, linked to the participant's temporal and spatial occupancy of the home, 

accounts for approximately 90% of the average participant's exposure. The only potential 
retrospective participant 222Rn exposure that does not have a 222Rn concentration to link with 
mobility is the time the participant spends in another building. Sensitivity analyses 
(imputational techniques) currently are underway to assess the effect of a theoretical range of 
"other building" 222Rn concentrations on the overall participant exposure estimate. 

5. Measuring 222Rn gas concentrations as a surrogate for 222Rn progeny exposure. A 
technique has been developed for reconstructing past 222Rn progeny atmospheres that is 
inexpensive enough to be useful for dose assessment in an extensive survey. T.he technique 

relies on alpha activity that is implanted in and deposited on glass surfaces (Lively and Steck, 
1993). A prototype of these historic reconstruction detectors (HRDs) was tested in the pilot 
project for the IRLCS (Steck et al., 1993). 

These detectors use the same kind of track registration material routinely used in 222Rn 
ATDs, using three chips. One chip, which is inside a filtered container, measures the 
contemporary 222Rn concentration. The second chip measures the implanted surface alpha 
activity by being held in intimate contact with the glass. The third chip faces into the room 
and can distinguish between 218Po and 214Po deposited on its surface. Although this 

technique is more complicated and labor-intensive than conventional 222Rn ATDs, the 
material cost per module is only slightly higher. The measured 222Rn, 210Po, 218Po, and 214po 

activities are combined with room data in the model described below to reconstruct the 
contemporary and historical average doses. To our knowledge, these are the only inexpensive 
detectors available to reconstruct past and present 222Rn decay product exposures. 

Contemporary 222Rn progeny measurements are expensive and difficult to perform directly. 
Measurements of the surface-deposited activity of two short-lived alpha emitters (218Po and 
214Po) and the airborne 222Rn concentrations are used to reconstruct a bimodal airborne ASD. 

The reconstruction model requires four atmospheric parameters: the surface-to-volume ratio, 
the air-exchange rate, the aerosol-attachment rate, and the particulate-deposition rate. The 
first two parameters are estimated from room characteristics and the latter two are determined 
from the surface-deposited activity measurements. The HRDs measure surface-deposited 
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activities over a one-year period in order to include atmospheric changes associated with the 
full range of domestic activities. 

222Rn and 222Rn progeny exposure assessments can be extended to periods as long as several 
decades, using the above atmospheric parameters combined with measurement of a long-lived 
222Rn decay product, 210pb, that implants into room surfaces. The long life of 2!0Pb provides 

a convenient integrating reservoir for reconstructing the average historical activities of both 
222Rn and its short-lived decay products. Part of the surface-deposited 2IOPb is implanted in 

glass, just below the surface, where it remains trapped for decades. One of the decay products 
of 2!0Pb, 210Po, is easier to measure than 210Pb itself, since it emits an alpha particle. Thus, 
the implanted 210po activity can be combined with the atmospheric model to reconstruct 
222Rn decay product exposures in a room for as long as the glass has been in the room. 

Two of these historic 222Rn detectors are placed at each study home for a one-year exposure 

period. One HRD is installed in the subject's current bedroom, while the other is placed in a 
high-occupancy room on another level. The HRD is affixed to a historic glass piece with a 
known history. 

Multifaceted Dosimetry Approach 
To address the problem of 222Rn exposure misclassification, a multifaceted approach to 
residential 222Rn dose assessment has been developed that can be represented by the faces of 
a pyramid (Figure 1). There are three faces to the pyramid: I) a 222Rn gas exposure face; 2) a 
222Rn progeny exposure face; and 3) a 222Rn dose face. Each face is tiered in a manner 
similar to Table 1. Moving up the pyramid, misclassification decreases as a greater portion of 
an individual's exposure is accounted for by improved measurement protocols. Measuring 
more of the lived-in spaces would elevate a protocol to a higher tier. Different residential 
studies have approached the problem of assessing integrated lifetime dose by measuring 
exposures over intervals that are short compared to a lifetime. An assessment that uses a 
longer measurement interval would be placed in a higher tier. Since a variety of 
measurements are being taken, it will be possible to compare the reliability of different tiers 
and faces and explore differences between cases and controls. An example of a rudimentary 
measurement would be a short~term measurement in the lowest level. An advanced 
measurement would be a year-long measurement in all spaces that were occupied for 
significant lengths of time. Though both examples might use the average 222Rn concentration 
as the exposure variable, they differ on both spatial and temporal coverage. 

Because screening measurements using E-PERMS are conducted in 30% of study homes, one 
can compare Tier 1 time- and occupancy-weighted annual average radon gas exposure with 
the lower-level room short-term measurements to illustrate exposure misclassification. 
Current radon-lung cancer models are cast in terms of integrated radon progeny exposure 
rather than radon gas exposure (NRC, 1988). The portioning of the radioactivity among the 

different species of radon progeny, often given as the equilibrium fraction, must be known in 



192 Field et al. 

lifetime Dose Pyramid - A Bird's Eye View 

Radon Progeny 
Exposure 

ASD =Activity Size Distribution 
OM = Dose Model 
ER = Equilibrium Ratio 

Dose 

Radon Gas Exposure 

FIGURE 1. The ultimate goal of dosimetric assessment is a measure of the total dose related to the 
222Rn exposure received by an individual over a lifetime. Since direct measurements of this quantity are 
not feasible in a retrospective study, different measurement-modeling approaches have been taken to 
estimate the quantity. This figure illustrates the approaches and their interrelationships through tiers 
along each of three measurement-modeling faces. Along a given face, measurements with a higher 
fractional coverage of an individual's total exposure are placed on a higher tier. Most residential 
epidemiological studies use the TI2Rn gas (pCi!L) exposure face with an average concentration 
determined from contemporary measurements over a short time, while the underground miner studies 
use the radon progeny exposure face integrated over the workplace exposure interval expressed as 
working-level month (WLM). The faces can be related through modeling. For example, the equilibrium 
ratio (ER) connects the radon gas face to the radon progeny exposure face, while the ASD and a 
dosimetric model (DM) convert radon gas exposures to doses. 
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order to move from the radon gas exposure face to the radon progeny exposure face. Since 
HRD detectors can estimate the equilibrium fraction from deposited radon progeny, there will 
be a measure of an annual average radon progeny exposure in approximately two rooms per 
house, to compare with other radon assessments. 

Calculating the dose requires a lung deposition model and a knowledge of the airborne ASD 
of the short-lived radon progeny. Since HRDs can estimate the bimodal ASD, contemporary 
and historical average radon progeny dose will be calculated for comparison with estimates 
produced from radon gas exposure measurements and "standard" assumptions about 
residential ASDs. 

CONCLUSION 

The IRLCS addresses many of the methodological problems associated with 222Rn and 222Rn 

progeny dose assessment. The modified exposure assessment methodology described above 
allows for the ascertainment of a substantial proportion of an individual's 222Rn and 222Rn 

progeny exposure. In addition, a major benefit of improving the linkage between 
measurement of 222Rn and 222Rn progeny and participant mobility is the reduction of 
personal 222Rn exposure misclassification. 

The IRLCS utilizes innovative techniques for estimating the cumulative radiation dose from 
persistent 222Rn gas and 222Rn progeny exposure. Through this framework we can compare 

the performance of the new methodology with the conventional techniques in the various 
tiers. Comparing the results of the above tier-exposure methods will improve the 
interpretation of short-term, limited coverage measurements and enhance the future ability to 
pool information from previous and contemporary epidemiological studies. 
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