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Abstract

In the graph distance game, two players alternate in constructing a max-

imal path. The objective function is the distance between the two endpoints

of the path, which one player tries to maximize and the other tries to min-

imize. In this note, we examine the distance game for various graphs, and

provide general bounds, exact results for special graphs, and an algorithm

for trees. Computer calculations suggest interesting conjectures for grids.

1 Introduction

There are many games in the combinatorial literature. In many, the winner is

determined by who moves last, as studied for example in [2]. In others, the players

compete to construct a desired goal, by taking one element at a time from the

universe, as studied for example in [1]. Another idea is games where the players
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compete to maximize or minimize some quantity, such as the game chromatic

number introduced in [3], the competition chromatic number introduced in [6],

or graph competition independence introduced in [4]. We consider here a game

that falls in the latter category. (See [5] for more on such competitive games.)

Consider the following game. A graph G is given. Two players alternate in

constructing a path. The first player picks a vertex, the second player picks a

neighbor of the first vertex, the first player picks a neighbor of the second vertex

that has not yet been picked, and so on. This is continued until the path cannot

be extended. One player tries to maximize the final distance from the start, and

the other player tries to minimize this distance. That is, the value at the end of

the game is the distance between the start and the finish, regardless of the path

taken. For a trivial example, in the complete graph the value is always 1. We

call this the distance game.

There are two versions, depending on which of the Minimizer or Maximizer

moves first. We let Sm(G) denote the value of the game on graph G when the

minimizer chooses the first vertex, and SM (G) the value when the maximizer

chooses the vertex. We call the first vertex of the path the source. Clearly if the

graph is vertex transitive, all sources are equivalent. If it does not matter who

goes first, then we drop the subscript and write S(G).

In this note, we explore the distance game for various graphs. We provide

general bounds and exact results for simple graphs. We also show that the

parameter can be calculated in a tree in linear time. Further, we determine

the values for small grids, and present computer calculations that suggest some

interesting conjectures for general grids.

2 Basics

There are obvious upper bounds based on the radius and diameter of the graph.

(The second bound holds since the minimizer can start at a central vertex.)

Observation 1 For any graph G, SM (G) ≤ diam(G) and Sm(G) ≤ rad(G).

One can obtain a slight improvement on these bounds for bipartite graphs by

using a result about another game, given as an exercise in [7]. That exercise is
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about a game with the same idea—building a maximal path—but the objective

of the game is that the person who makes the last move wins. Let us call the

game LPW. The exercise shows that LPW is a win for the first player if and only

if the graph does not have a perfect matching. We have a completely different

objective function, but that result shows the following:

Observation 2 Let graph G be bipartite. If G has no perfect matching, then

SM (G) > 1. If G has a perfect matching and the diameter is even, then SM (G) <

diam(G).

Proof. If there is no perfect matching, then LPW is a win for the first player.

So if the maximizer goes first, she can ensure she moves last. By bipartiteness,

this means the path ends at a nonneighbor of the source. If there is a perfect

matching, then LPW is a win for the second player. Therefore if the minimizer

goes second, he can ensure he moves last, and thus the path ends at odd distance

from the source. Since the diameter is even, this implies the result. 2

These bounds apply to the complete bipartite graphs, for example, as we see

next.

3 Solved Graphs

Observation 3

(a) For a path, SM (Pn) = n − 1 and Sm(Pn) = ⌊n/2⌋.

(b) For a cycle, S(Cn) = 1.

(c) For complete bipartite graph: Sm(Kr,s) = 1; and SM (Kr,s) = 1 if r = s, and

2 otherwise.

Proof. We prove (c). If r = s then the path will use up all vertices and end on

the opposite side to the source, no matter what. If r 6= s, then the path always

ends on the larger side. So the only freedom anybody has is when the first player

chooses the source. The minimizer wants the source on the smaller side, and the

other way around for the maximizer. 2

The result on complete bipartite graphs has a simple extension to complete

multipartite graphs:
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Observation 4 For nonbipartite complete multipartite graphs with n vertices

and largest partite set of size m,

(a) Sm(G) = 1; and

(b) SM (G) = 1 if m < n/2, and SM (G) = 2 otherwise.

Proof. (a) The minimizer’s strategy is the following: let A be any partite set

other than the largest. He chooses a vertex of A as the source, and thereafter the

minimizer takes a vertex in A whenever possible. The only way the minimizer is

unable to take a vertex in A and A is not used up, is that the path is currently

at a vertex of A. It follows that every alternate vertex of the path is in A until

A is used up; and the path continues.

(b) If m > n/2, then the maximizer chooses a vertex in the largest partite

set B as the source. No matter what happens thereafter, the path will end in B.

If m = n/2, then the maximizer again chooses a vertex in the largest partite set

B. At her second move, since G is not bipartite, she is able to choose a vertex

not in B, and thereafter, no matter what happens, the path will end in B. If

m < n/2, then the minimizer follows the strategy of choosing a vertex in the same

partite set as the source whenever possible. By the same argument as above, the

minimizer is able to use up these vertices before the end of the path. 2

3.1 Dense Graphs

We observed earlier that the value of the game for the complete graph is triv-

ially 1. It is not surprising that one gets a similar result for all very dense graphs:

Theorem 5 For any graph G with n vertices and minimum degree δ, if δ ≥

(4n − 4)/5, then S(G) = 1.

Proof. The diameter of such a graph is (at most) 2. The minimizer adopts the

following strategy: move to a non-neighbor of the source whenever possible (else

make any move). We argue that he is able to use up all such vertices before the

end of the path.

Suppose the path starts at v. Let X be the non-neighbors of v. Note that

|X| ≤ n−1−δ. Any maximal path has length at least δ. So let P be the portion
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of the path constructed consisting of the first δ − 2 vertices. The minimizer has

at least δ/2 − 2 moves (ignoring the first move, if he starts, but counting the

last vertex of P if it’s minimizer’s move there). Suppose some vertex x ∈ X is

neither in P nor the vertex immediately after it. Then the minimizer moves to X

at most |X| − 1 times. But x has at most n− δ − 2 non-neighbors excluding the

source. Since

(δ/2 − 2) − ((n − 1 − δ) − 1) > n − δ − 2,

there is a point where P is at a neighbor of x with minimizer to move and

minimizer does not choose a vertex of X, a contradiction. 2

This bound can probably be improved.

4 Grids and Related Graphs

Consider the k × m grid Gk,m. We number the rows from 1 to k (from top to

bottom), and the columns from 1 up to m (from left to right). The vertex in

row i and column j is labeled (j, i). We use Cj to denote column j

4.1 Grids with two rows

Theorem 6 SM (G2,m) = 1.

Proof. Let C be the unique hamiltonian cycle. The minimizer’s strategy is to

always choose the next vertex along C going clockwise. The only thing to note

is that when we reach the other vertex in the same column as the source, it is

maximizer’s turn to move; so at the next vertex, it is minimizer’s turn and he

can ensure that the final neighbor of the source is not used prematurely. See

Figure 1 for an example path so constructed. 2

Theorem 7 Sm(G2,m) = 2⌊m/4⌋ + 1.

Proof. The radius of the grid is r = ⌊m/2⌋+1. This provides the upper bound

when m is congruent to 0 or 1 modulo 4.
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SM = 1

minimizer
maximizer

}

chooses next vertex

Sm = 5

Figure 1: Example paths on the 2 × 8 grid

So assume m is congruent to 2 or 3 modulo 4. Then r is even. The upper

bound in this case is provided by the following observation. For a vertex v, we

define its eccentric vertices as those at maximum distance from it.

Claim. If graph G is bipartite with δ(G) ≥ 2, the radius is even, and there

exists a central vertex v whose eccentric vertices are mutually distance at least 3

apart, then Sm(G) < rad(G).

Proof of claim. The minimizer employs the strategy of starting at v, and then

whenever possible, he moves to an eccentric vertex of v (else makes any move).

If the path is to end at an eccentric vertex of v, say w, then by the bipartiteness

and the radius being even, it is the maximizer who first moves to a neighbor of

w, say y. When that occurs, the minimizer immediately chooses w, and the path

continues since w has at least two neighbors. Because the eccentric vertices are

far enough apart, there can be at most one eccentric vertex adjacent to y; so this

does not interfere with the strategy elsewhere. This proves the claim.

The maximizer can achieve the stated value by the following strategy. After

the minimizer chooses the source, start by going along C towards the nearest

degree-2 vertex; continue around the hamiltonian cycle C (it does not matter if

the minimizer uses a chord of C) until we reach the other vertex in the same

column as the source. It will now be minimizer’s move. So he must move to

a new column, and then the maximizer takes the other vertex in that column.

From there on, she causes the path to repeatedly snake until it ends in the last

column after the maximizer has moved. See Figure 1 for an example path so

constructed.
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So the distance from the source to the finish is odd. Indeed, it is whichever is

odd out of x or x + 1, where x is the horizontal distance from the source column

to the farthest column. Since x is always at least ⌊m/2⌋, we get the lower bounds

from the theorem. 2

4.2 Grids with three rows

Our first result handles the case where the maximizer moves first in the three-row

grid with an odd number of columns:

Theorem 8 SM (G3,m) = m + 1 for odd m.

Proof. The proof is by induction on m, with the added stipulation that maxi-

mizer always starts in the top-left corner (1, 1). The claim is true for m = 1 (as

we have a path). So assume true for m−2 and test for m. Let G denote the whole

grid and G′ the grid without the rightmost two columns. Our basic strategy for

the maximizer is to play the optimal strategy for G′ as long as possible.

This means that, if the minimizer never voluntarily moves out of G′, that

we will reach the bottom right corner (m − 2, 3) of G′ with the path unable to

continue in G′. In particular, this means that the square (m − 2, 2) has been

used. By bipartiteness, it is then minimizer’s move. It is easy for the maximizer

to end the game in the corner (m, 3), because it is her turn at both (m − 1, 1)

and (m − 1, 3) (if the path reaches the latter) where she moves up and right

respectively.

The other possibility is that the minimizer moves out of G′ before the game

on G′ finishes. This must be a move from (m − 2, 1), by bipartiteness. Further,

since the path could have been forced to (m − 2, 3) if we were playing in G′, by

planarity, we must have reached (m − 2, 1) from its left. So after the minimizer

moves to (m− 1, 1), the maximizer plays right, the minimizer can only go down,

and the maximizer plays left. If the minimizer goes down, then maximizer wins

immediately by going right. But if the minimizer goes left to (m−2, 2), then max-

imizer can resume the strategy on G′ and force the path to (m− 2, 3), as before.

Thereafter two right moves are forced and so the path ends at (m, 3). 2
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Next we consider the remaining cases for grids with three rows. The proof

idea is similarly inductive.

Lemma 1

(a) If Sm(G3,m−2) ≤ m/2 − 2, then Sm(G3,m) ≤ Sm(G3,m−2).

(b) If SM (G3,m−2) ≤ m/2 − 3, then SM (G3,m) ≤ SM (G3,m−2).

(c) Sm(G3,m) ≥ Sm(G3,m−2).

(d) SM (G3,m) ≥ SM (G3,m−2).

Proof. (a) Let d = Sm(G3,m−2). Let G = G3,m and let G′ be G without

the rightmost two columns. Our basic strategy for the minimizer is to play his

strategy T for G′. By symmetry of G′, we can assume the source is in the first

⌈(m − 2)/2⌉ columns of G (and in particular is not in Cm−2).

There are two events that require a change: (α) the maximizer moves out

of G′, or (β) the strategy T calls for a move by the minimizer up or down

from (m − 2, 2). If neither (α) nor (β) occurs, then the path will reach a point

where it cannot continue in G′ and is within distance d of the source; since

⌈(m− 2)/2⌉+ (m/2− 2) < m− 2, it follows that the path is to the left of Cm−2,

and is actually finished.

So we need to consider two cases depending on which event occurs first.

1. Event α occurs. With the maximizer to move, the path was in Cm−2.

Assume it was in the top or bottom row, say the top. Then since (β) did

not occur, the previous vertex in the path was (m − 3, 1). Further, since

the path in G′ does not end here, vertex (m − 2, 2) is unused. Then in G,

the minimizer moves the path (m − 1, 1) → (m, 1) → (m, 2) → (m, 3) →

(m − 1, 3) → (m − 1, 2) → (m − 2, 2), where the maximizer’s moves are all

forced, and the path continues as if the game was being played in G′, and

ends within d of the source.

Assume then the maximizer moves (m − 2, 2) → (m − 1, 2). Then there

are two possibilities. Assume first that the previous move was in Cm−2, say

from (m−2, 1). Then the minimizer moves the path (m−1, 1) → (m, 1) →

(m, 2) → (m, 3) → (m − 1, 3) → (m − 2, 3), and the path continues as if
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the game was being played in G′. Assume second that the previous vertex

was (m − 3, 2). Then the other two vertices in Cm−2 are unused. Then

the minimizer makes any move and the path continues back to a vertex in

Cm−2 and T is resumed. By the assumption, the maximizer cannot force

the path back to the final vertex in Cm−2, since in G′ the path would end

there, and that vertex is more than d from the source.

2. Event β occurs. Say T calls for minimizer to move up (m−2, 2) → (m−2, 1).

Then instead, the minimizer plays right (m− 2, 2) → (m− 1, 2). Then, no

matter which of the three options the maximizer plays next, the minimizer

can force the path back to (m−2, 1), and the path continues as if the game

was being played in G′. As above, the maximizer cannot force the path

back to (m − 2, 3) if untaken, since that would contradict the assumption

about the final vertex.

This completes the proof.

(b) The proof is identical to that of (a), except that we can only assume the

source is in the first ⌈m/2⌉ columns of G.

(c,d) The proof is almost the same as the above parts. That is, the maximizer

plays the same strategy on G3,m−2 and adjusts it as above if events (α) or (β)

occur, where now (α) means the minimizer moves out of G′, and (β) means the

strategy T calls for a move by the maximizer up or down from (m − 2, 2).

The difference is that the path may indeed return to the final vertex of Cm−2,

say x. However, if so, the path in G′ would finish here, so x is distance at least d

from the source. Now, in G the path continues. The only vertex in the final

two columns that can be closer than x to the source, is the one in Cm−1 in the

opposite row, say y. But in both cases α and β it is easily checked that the path

cannot later end at y in G. 2

Theorem 9

(a) SM (G3,m) = 1 for even m.

(b) Sm(G3,m) = 1 for even m and Sm(G3,m) = 2 for odd m ≥ 3.
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Proof. (a) The case of m = 2 is easily argued by hand. The upper bounds for

cases m = 4 and m = 6 can be checked by hand, or by computer, or by a more

careful induction than in the above lemma. We omit the calculations. So assume

m ≥ 8. Then the result follows by induction using the above lemma.

(b) The proof is similar to (a). Handle small m separately, and use the above

lemma for m ≥ 8. 2

4.3 General grids

We used a computer to calculate the values of the game for other small grids.

See Table 1.

MAXimizer moves first
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 4 1 6 1 8 1 10 1 12 1 14 1 16 1 18 1 20 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – –

5 1 6 1 8 1 10 1 12 1 14 1 16 – – – – – – –

6 1 1 1 1 1 1 1 1 1 – – – – – – – – – –

7 1 8 1 10 1 12 1 14 – – – – – – – – – – –

minimizer moves first
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 1 3 3 3 3 5 5 5 5 7 7 7 7 9 9 9 9 11

3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

4 3 1 3 3 5 5 5 5 7 7 7 7 9 9 9 – – – –

5 3 2 3 2 5 2 5 2 5 2 5 2 – – – – – – –

6 3 1 5 5 5 5 7 7 7 – – – – – – – – – –

7 3 2 5 2 5 2 5 2 – – – – – – – – – – –

Table 1: Values for grid

This data suggests the following conjecture:

Conjecture 1 For k × m grid Gk,m:
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SM = 1 if km is even, and k + m − 2 if km is odd.

Sm = 2 if km odd.

4.4 Other computer calculations

We also calculated values for the torus, being the cartesian product of two cycles.

See Table 2. It is to be noted that the data supported a similar conjecture for

Sm being 2 when the number of vertices of the graph is odd, until we calculated

the value for the 5×11 torus. This suggests that the earlier conjectures for grids

might simply be patterns that only hold for small numbers.

MAXimizer moves first
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5

4 1 1 1 1 1 1 1 1 1 1 1 – – – –

5 2 1 3 2 3 2 3 3 4 – – – – – –

6 1 1 2 1 2 1 2 – – – – – – – –

7 3 1 3 2 4 3 – – – – – – – – –

minimizer moves first
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 1 2 2 3 2 3 2 3 2 4 2 5 2 5 2

4 2 3 4 5 5 5 6 5 7 7 8 – – – –

5 2 4 2 4 2 4 2 4 3 – – – – – –

6 3 5 4 5 4 5 6 – – – – – – – –

7 2 5 2 4 2 5 – – – – – – – – –

Table 2: Values for torus

For another family, we consider the rook’s graph, being the cartesian product

of two complete graphs (also known as the line graph of the complete bipartite

graph). This graph has diameter 2, so the only question is whether the value is

1 or 2. See Table 3.

We also calculated the values for the first five hypercubes Qk by computer.

The value is 1 if maximizer goes first; The value is 1, 1, 3, 3, 3 if minimizer goes

first.
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MAXimizer moves first

2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1

3 1 2 2 2 2 2 2 2 –

4 1 2 2 2 2 2 – – –

5 1 2 2 2 – – – – –

minimizer moves first

2 3 4 5 6 7 8 9 10

2 1 2 2 2 2 2 2 2 2

3 2 1 2 2 2 2 2 2 –

4 2 2 2 2 2 2 – – –

5 2 2 2 2 – – – – –

Table 3: Values for rook’s graph Kr × Ks

5 Trees

We saw above that SM (G2,m) ≤ Sm(G2,m). In other words, both minimizer and

maximizer prefer to be the second player on such a grid. For trees, however, both

minimizer and maximizer always prefer to go first.

Theorem 10 For all trees T on at least three vertices, SM (T ) > Sm(T ).

Proof. If x and y are leaves, then we call them “nearby” if the path between

them has (at most) one vertex v of degree more than 2.

Claim: if leaves x and y are nearby, then Sm(T ) ≤ 1 + ⌊d(x, y)/2⌋ ≤ 1 +

⌈d(x, y)/2⌉ ≤ SM (T ), where d(x, y) is the distance between them.

To show the upper bound on Sm , let the minimizer choose as source a vertex

closest to the center of the x–y path P , subject to the constraint that the vertex

is in the opposite partite set to v. The constraint ensures that if the growing

path ever reaches v, then it is minimizer’s move there, and thus minimizer can

keep the path inside P . So the final length of the path is at most the distance

from the source to the farther of x and y.

To show the lower bound on SM , let the maximizer choose as source whichever

of x or y is farthest from v. Then no matter what happens, the path continues

for at least 1 + ⌈d(x, y)/2⌉ steps.
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Thus sm(T ) = sM (T ) requires every pair of nearby vertices to have exactly

the same distance D, and D must be even, and v must be the center of the path.

But then, if maximizer starts with the source as a leaf as before, then when the

path reaches v it is maximizer’s move and so maximizer can ensure the path has

length at least D. Hence we need D/2 + 1 = D, that is D = 2. But if the tree

has diameter more than 2, then the maximizer can make another choice at v and

so SM ≥ 3; on the other hand if the tree has diameter 2, then the tree is a star

and Sm = 1. In each case, Sm(T ) < SM (T ). 2

5.1 Tree algorithm

In this section we show that there is a linear-time algorithm for calculating the

value of the distance game in trees.

Given a particular source, it is easy to compute the value of the result by

the obvious minimax algorithm. For each vertex v, define f(v) as the length

of the down path starting at v when minimizer goes first after v (and players

alternate after that), and g the same except that maximizer goes first after v.

Do a postorder traversal of the tree calculating the two values. Leaves have

values f = g = 0. At each vertex v, we get:

f(v) = 1+min{ g(c) : c is child of v } and g(v) = 1+max{ f(c) : c is child of v }.

Then the value S at the root/source is f or g, depending on who is the first

player. This takes linear time.

Now to extend this to a full algorithm, we have to consider all other sources.

For each vertex v and every neighbor c of v, define f(v, c) as the length of the

path starting at v when minimizer chooses the neighbor of v subject to the

constraint that it is not c, and g(v, c) the same except that maximizer chooses

the neighbor. For example, the original f(v) is f(v, c) where c is v’s parent. So

after the postorder traversal, continue with a preorder traversal of the tree that

calculates f(v, c) at each vertex v for every neighbor c. This gives us enough

information to calculate the result of each vertex being the source, and we can

in linear-time perform a traversal to find the best source.
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However, in order to obtain a linear-time algorithm, we need to calculate

at each vertex v the values of all f(v, c) and g(v, c) in time proportional to

the number of neighbors. But this can be done. The point is that we start by

calculating which neighbor has the highest and second-highest f -value and which

has the lowest and second-lowest g-value. Then, when we calculate f(v, c) at v, it

is 1 more than the minimum g-values of its neighbors, c excluded. This minimum

must be either the minimum or second-minimum value among the original g-

values. The value of g is similarly calculated. Thus the overall algorithm runs in

linear time. 2
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6 Conclusion

We considered the value of the game for some special graphs and obtained rather

primitive bounds. We were unable to prove the general conjecture about grids.

We were also unable to determine the general complexity of the game.
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