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Abstract

In this paper we introduce a variant on the long studied, highly entertaining, and very difficult problem of determining the
domination number of the queen’s chessboard graph, that is, determining how few queens are needed to protect all of the squares
of a k by k chessboard. Motivated by the problem of minimum redundance domination, we consider the problem of determining
how few queens restricted to squares on the border can be used to protect the entire chessboard. We give exact values of “border-
queens” required for the k by k chessboard when 1�k �13. For the general case, we present a lower bound of k(2 − 9/2k −√

8k2 − 49k + 49/2k) and an upper bound of k − 2. For k = 3t + 1 we improve the upper bound to 2t + 1 if 3t + 1 is odd and 2t

if 3t + 1 is even.
We generalize this problem to (A, B)-restricted parameters for vertex subsets A and B of V (G) where, for example, one must use

only vertices in A to dominate all of B. Defining upper and lower parameters for independence, domination, and irredundance, we
present a generalization of the “domination chain” of inequalities relating these parameters.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Domination; Restricted domination; Queen’s chessboard

1. Introduction

Corresponding to the chess pieces queen, rook, bishop, knight, and king there are graphs Qj,k , Rj,k , Bj,k , KNj,k ,
and KIj,k , each of order n = jk, where the vertex set corresponds to the jk squares of a j by k board, and two vertices
are adjacent if and only if the given chess piece can go from one of the two vertices’ corresponding squares to the other
corresponding square in one move. We label the vertices according to the Cartesian system and let v1,1 be the vertex cor-
responding to the lower left square. Thus vi,j is the ith square to the right and the j th square up in the usual sense. For ex-
ample, in Q8,8 the vertex v3,2 has the closed neighborhood N [v3,2]={v1,2, v2,2, v3,2, v4,2, . . . , v8,2, v3,1, v3,3, . . . , v3,8,
v2,1, v4,3, v5,4, . . . , v8,7, v4,1, v2,3, v1,4} with cardinality |N [v3,2]| = 1 + deg(v3,2) = 24.

Dating back to 1848 in Bezzel [4], the literature contains hundreds of papers related to problems of the following
two types. (1) What is the maximum number of mutually nonattacking chess pieces of a certain type that can be placed
on the j by k board? (2) How few pieces of a given type can be used to cover the j by k board? That is, we seek (1)
the independence number, �(G), and (2) the domination number, �(G), of the corresponding chessboard graph G. An
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0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.08.065

http://www.elsevier.com/locate/disc
mailto:philliac@email.uah.edu


A. Sinko, P.J. Slater / Discrete Mathematics 308 (2008) 4822–4828 4823

Fig. 1. The left shows a �-set having influence 126 and the right shows a �-set having influence 116.

excellent survey article is that of Hedetniemi et al. [13]. Another wonderful exposition concerning these parameters
is given by Watkins in [21]. Some more recent work on the queens domination problem has been done by Burger,
Mynhardt, Weakley and others in [6–8,16,18,23,24].

Recently, influence parameters have been considered for chessboard graphs in Sinko and Slater [19,20] and Marples
et al. [17]. A vertex v is considered to dominate itself and each of its adjacent vertices in its open neighborhood N(v).
If v has degree deg(v) = |N(v)| then v dominates 1 + deg(v) vertices. For any vertex set S in a graph G, as defined in
Grinstead and Slater [12], the influence of S is I (S) = ∑

v∈S(1+deg(v)), that is, the total amount of domination done
by S. With the goal of dominating every vertex exactly once, one seeks a “perfect code” as defined by Biggs in [5] or
“efficient dominating set” as defined by Bange et al. in [2,3]. Not every graph has such an efficient dominating set,
and the efficient domination number of a graph G, as introduced in [1,3,12] and denoted F(G), equals the maximum
number of vertices that can be dominated by a vertex set S that does not dominate any vertex more than once. Note
that S does not dominate any vertex more than once if any two vertices in S are at distance at least three, that is, S is a
packing. Thus, F(G) = max{I (S) : S is a packing}. However, when every vertex must be dominated at least once, the
redundance of graph G is defined in [12] to be the minimum influence of a dominating set. That is, the redundance of
graph G is R(G) = min{I (S) : S dominates V (G)}. The parameters F and R and some related influence parameters
are studied for chessboard graphs in [17,19].

Note, for example, that the two dominating sets for the queens chessboard Q8,8 illustrated in Fig. 1 have influence
22 + 26 + 28 + 26 + 24 = 126 and 22 + 22 + 22 + 28 + 22 = 116. In fact, R(Q8,8) = 116.

Observe that for vertex vh,i in V (Qk,k) if h ∈ {1, k} or i ∈ {1, k} then vh,i is a border vertex with degree 3k − 3. In
general, for 1�h, i�k let ring(vh,i) = min{h − 1, k − h, i − 1, k − i}, and, for 0�r ��k − 1/2�, let the rth ring of
Qk,k be Rr(Qk,k) = {vh,i : ring (vh,i) = r}. All vertices in Rr(Qk,k) have the same degree, namely 3k − 3 + 2r . To
minimize redundance R(Qk,k), it seems that one should use vertices of small degree. Although one can certainly not
always achieve R(Qk,k) using only border squares, we were led to consider as a separate problem the determination of
how few border vertices one can use to dominate all of V (Qk,k). In the next section, we introduce this queens-border
problem in which one seeks the minimum number of border vertices, that is, R0(Qk,k) vertices, that will dominate
Qk,k . (One can certainly consider the more general problem for Qj,k .)

2. The queens-border problem

In addition to the basic problem of determining the domination number �(Qk,k), two variants have previously been
studied. Cockayne and Hedetniemi [10] and Cockayne et al. [9], respectively, consider the parameters diag(Qk,k) and
col(Qk,k) which are the minimum numbers of queens positions on a diagonal or column, respectively, that dominate
Qk,k . Another problem of this type is the queens-border problem that we consider here.

In particular, we restrict placement of the queens to squares in R0(Qk,k), the border of Qk,k . The border-domination
number of Qk,k is bor(Qk,k) = min{|A| : A dominates Qk,k and A ⊆ R0(Qk,k)}. For example, in Q3,3 we have
N [v2,2] = V (Q3,3) so �(Q3,3) = 1. However, if vi,j is a border vertex then deg(vi,j ) = 6 and |N [vi,j ]| = 7. We have
bor(Q3,3)=2, and example border dominating sets are {v1,1, v2,3}, {v1,1, v3,3}, and {v2,1, v2,3}. Clearly, in general, we
have �(Qk,k)�bor(Qk,k). Also, �(Q4,4) = bor(Q4,4) = 2 and {v1,2, v4,2} is a bor(Q4,4)-set. The first several values
for �(Qk,k) and bor(Qk,k) are presented in Fig. 2, along with solutions for 4�k�10.

From Proposition 1 below we have bor(Q14,14)�12 and bor(Q15,15)�13. For domination we know that �(Q15,15)�9.
From Theorem 2 below, we get bor(Q14,14)�8 and bor(Q15,15)�8. Using computer searches, we have
11�bor(Q14,14)�12 and 9�bor(Q15,15)�13.
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Fig. 2. The table gives �(Qk,k) and bor(Qk,k) for 1�k�13. Some of the possible examples are shown for bor(Qk,k) for 4�k�10.

The solutions presented in Fig. 2 for 5�k�8 generalize to the next result.

Proposition 1. For k�4 we have bor(Qk,k)�k − 2.

Proof. For k = 4, let A = {v1,2, v4,2}. For k = 2t + 1�5, let A = {v2,k, v3,k, . . . , vt,k, vt+1,1, vt+2,k, . . . , v2t,k}. For
k = 2t �6, let A = {v2,k, v3,k, . . . , vt−1,k, vt,1, vt+1,1, vt+2,k, . . . , v2t−1,k}. Each such A is a border-dominating set, so
bor(Qk,k)� |A| = k − 2. �

Note that, while not true for k = 9 and 10, for k = 11 and 12 we again have bor(Qk,k) = k − 2. Also, somewhat
amazingly, the sequence of values is not monotone—we have bor(Q13,13) < bor(Q12,12).

A theorem of P.H. Spencer appearing in Weakley [22] states that �(Qk,k)�(k − 1)/2. Hence we have
bor(Qk,k)��(Qk,k)�(k − 1)/2. The following results improve the lower bound for bor(Qk,k).

We defined the border of Qk,k to be the set of vertices in R0(Qk,k) = {vh,i : {h, i} ∩ {1, k} �= ∅} where 1�h, i�k.
The remaining vertices we call interior vertices, those within the square with corners v2,2, v2,k−1, vk−1,k−1, and vk−1,2.
Note that there are (k − 2)2 interior vertices of Qk,k . Each of the corner vertices v1,1, v1,k, vk,k , and vk,1 dominates
exactly k − 2 interior vertices, while each of the remaining border vertices dominates exactly 2k − 5 interior vertices.
It follows that bor(Qk,k)�(k − 2)2/(2k − 5). By considering the redundant domination of the interior vertices (that
is, the number of times interior vertices get dominated more than once), we improve the lower bound for bor(Qk,k) to
essentially (2 − √

2)k ≈ .585786k, as follows.

Theorem 2. bor(Qk,k)�ak · k where ak = 2 − 9/2k − √
8k2 − 40k + 49/2k. (Note that limk−→∞ak = 2 − √

2.)

Proof. We will show that the number of border queens required to dominate the (k − 2)2 interior vertices is at least
ak · k. Assume some set A of border locations dominates all (k − 2)2 interior vertices of Qk,k and that |A| = j . Define
Ac = {vhi ∈ A : h ∈ {1, k}} for 1� i�k and Ar = {vhi ∈ A : i ∈ {1, k}} for 1�h�k. Using Proposition 1, we can
assume that 1�j �k − 2. Initially, suppose that A ∩ {v1,1, v1,k, vk,k, vk,1} = ∅. By rotating the board 90 degrees, if
necessary, we can assume that |Ac|� |Ar |. That is, the combined number t of vertices in Ac of Qk,k satisfies t �j/2.
Finally, the result can be verified for k�4, so we assume k�5.

As noted, each v ∈ A dominates 2k − 5 interior vertices. We consider the number of times two elements of A
dominate a common square. Let v1 and v2 be two of the t elements of Ac in A. If they are on the same row, say v1 =v1,i

and v2 = vk,i , then they both dominate the (k − 2)�3 interior vertices of row i. If v1 and v2 are on different rows, they
each dominate one square in the other’s row. The redundant domination of interior vertices by these t elements of A is
at least 2 · (

t
2

)
. For the j − t elements of Ar in A we count the redundant domination of these with the t elements of

Ac also in A. For each of the t elements of Ac in A, if the other end of its row is not in A we get j − t common interior
vertices dominated. Consider the redundant domination if the other end is also in A. There are at most t/2 rows with
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both ends in A which implies that there are t/2(k − 4) remaining redundancies from the horizontal pairs and t/2(j − t)

redundancies vertically. But, t/2(k −4)− t/2(j − t)�j/4(j −2)− j/4(j/2) since t �j/2 and k�(j +2). This value
is positive if j �2 which implies that k�4. Since k�5, the total redundance is at least 2

(
t
2

)+ t (j − t). It follows that:

j (2k − 5) −
[

2

(
t

2

)
+ (j − t)t

]
�(k − 2)2. (1)

From (1), letting j = akk, and noting that the left-hand side is maximized when t = j/2 we get

k2a2
k + (9k − 4k2)ak + (2k2 − 8k + 8)�0. (2)

Hence, we get ak = 2 − 9/2k − √
8k2 − 40k + 49/2k.

Clearly, a minimal set of border vertices dominating the (k − 2)2 interior vertices of Qk,k does not contain both v1,1
and vk,k or both v1,k and vk,1.

If |A ∩ {v1,1, v1,k, vk,k, vk,1}| = 1, then we can assume vk,k ∈ A and there are t �j − 1/2 other Ac vertices in A. As
above, we get

(j − 1)(2k − 5) + (k − 2) −
[

2

(
t

2

)
+ (j − t)t

]
�(k − 2)2. (3)

From (3), letting akk = j , the left-hand side is maximized at t = (j − 1)/2, and we get

k2a2
k + (8k − 4k2)ak + (2k2 − 6k + 9)�0. (4)

Hence, ak = 2 − 4/k − √
8k2 − 40k − 28/2k�ak .

If |A∩ {v1,1, v1,k, vk,k, vk,1}|= 2, then we can assume {vk,1, vk,k} ⊆ A and there are t �(j − 2)/2 other Ac vertices
in A. As above, we get

(j − 2)(2k − 5) + 2(k − 2) −
[

2

(
t

2

)
+ (j − t)t

]
�(k − 2)2. (5)

From (5), letting akk = j , the left-hand side is maximized at t = (j − 2)/2, and we get

k2a2
k + (7k − 4k2)ak + (2k2 − 4k − 2)�0. (6)

Hence, ak = 2 − 7/2k − √
8k2 − 40k + 57/2k�ak . Thus, j �ak = 2 − 9/2k − √

8k2 − 40k + 49/2k, and the proof
is complete. �

Note that from Theorem 2 we get a10 = .490519, so we can only conclude bor(Q10,10)�5. A slightly more detailed
analysis using the same techniques shows bor(Q10,10)�6.

Proposition 3. bor(Q10,10) = 6.

Proof. As shown in Fig. 1, bor(Q10,10)�6. By the above statements, bor(Q10,10)�5. To show bor(Q10,10)�6 we
will consider similar techniques used in Theorem 2. Here, we have k = 10 and each noncorner border vertex dominates
2 · 10 − 5 = 15 interior vertices.

Take A ⊆ V (Q10,10) to be a dominating set with j = 5 border queens.
First, assume |A ∩ {v1,1, v1,10, v10,1, v10,10}| = ∅. Let j, the total number of vertices in the dominating set A, be 5.

Recall from above that t, the number of vertices in A on the left and right edges, satisfies t �j/2. Then, j (2 · 10 − 5) −
[2 (

t
2

)+ (j − t)t]�(10 − 2)2. The left side of this equation is maximized when t = j/2, so let t = 3. Then the equation
reduces to 63�64, a contradiction.

Next, assume |A ∩ {v1,1, v1,10, v10,1, v10,10}| = 1. The equation becomes (j − 1)(2 · 10 − 5) + (10 − 2) − [2 (
t
2

) +
(j −1− t)t]�(10−2)2 by Eq. (3) above. Here t �j −1/2, and the left-hand side is maximized when t =(j −1)/2=2.
Then the equation reduces to 62�64, another contradiction.
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Fig. 3. The Q3t+1,3t+1 graph divided into four disjoint sections.

Last, assume |A ∩ {v1,1, v1,10, v10,1, v10,10}| = 2. Then, (j − 2)(2 · 10 − 5) + 2(10 − 2) = 61 which is clearly less
than (10 − 2)2 even without considering redundance.

So, bor(Q10,10)�6. Therefore, bor(Q10,10) = 6. �

Recall that the only stated upper bound for bor(Qk,k) is k − 2. However, for the infinite family of Q3t+1,3t+1, an
improved upper bound can be given.

Theorem 4. bor(Q3t+1,3t+1)�2t + 1 if 3t + 1 is odd and bor(Q3t+1,3t+1)�2t if 3t + 1 is even.

Proof. To form a border dominating set A ⊆ V (Q3t+1,3t+1), first let {v1,1, v3t+1,1} ⊆ A, that is, the two bottom
corner vertices are elements of A. Then, add {v1,4, v3t−2,1, v3t+1,3t−2, v4,3t+1} to A. Note that these are the fourth
vertices on each side moving clockwise. Next, the seventh vertex on each side is placed in A, that is,
{v1,7, v3t−5,1, v3t+1,3t−5, v7,3t+1}. This pattern continues adding every third set of vertices. If 3t + 1 is odd, the
last set to be added contains v1,3t+2/2. If 3t + 1 is even, the last set to be added contains v

1,� 3t
2 �. Also, if 3t + 1 is odd,

only the first three vertices of this last set in the pattern are placed in A, and if 3t + 1 is even, the usual four are added.
We will show that A dominates V (Q3t+1,3t+1). Assume A does not dominate Q3t+1,3t+1. Then there exists vertex

vi,j such that N [vi,j ] ∩ A = ∅. Consider the set R = {4, 7, . . . , 3t − 5, 3t − 2}. Notice that, except for the two corner
vertices, this set represents the nonborder label of the vertices in A. Since vi,j is not dominated, i �= j and j �= 3t +2− i

as these are the vertices dominated by the two corner vertices in A. Also, i, j �= 3c + 1 where c = 1, . . . , t − 1 as these
vertices are dominated horizontally or vertically, respectively, by vertices in A.

Consider Q3t+1,3t+1 divided into four sections as shown in Fig. 3.
Consider Section 1, that is 2 < i < j < 3t +2−i. The border neighbors of vi,j are vi+j−1,1, vi−j+3t+1,3t+1, v1,j+i−1,

and v1,j−i+1 beginning with the upper left neighbor and moving clockwise.
Case 1: i = 3a, j = 3b or i = 3a + 2, j = 3b + 1 where a �= b. Then, the lower left neighbor is v1,3(b−a)+1. Since

b > a, 3(b − a) + 1 > 2. So, 3(b − a) + 1 is an element of R. Also, since 2 < i < j < 3t + 2 − i, v1,3(b−a)+1 ∈ A.
Case 2: i = 3a, j = 3b + 2. Then the lower right neighbor is v1,3(b+a)+1 and the upper left neighbor is v3(b+a)+1,1.

Note that, at most, b < t − 1 when a = 1 which implies that 3(b + a) + 1 < 3t + 1 ⇒ 3(b − a) + 1�3t − 2. So,
3(b + a) + 1 is an element of R. With the symmetry on the bottom row and first column from selecting vertices for
A, {v3(b+a)+1,1, v1,3(b+1)+1} ∩ A �= ∅.

Case 3: i = 3a + 2, j = 3b. Then, the lower right neighbor is v1,3(b+a)+1 and the upper left neighbor is v3(b+a)+1,1.
As above, the restrictions on i and j imply that 3(b + a) + 1�3t − 2. Thus 3(b + a) + 1 is an element of R and, from
symmetry, {v1,3(b+a)+1, v3(b+a)+1,1} ∩ A �= ∅.

Similarly, the same can be shown for the other three sections. So N [vi,j ] ∩ A �= ∅. Thus, vertex vi,j is dominated,
and A dominates Q3t+1,3t+1.

Therefore, there exists a dominating set A such that bor(Q3t+1,3t+1)�2t +1 if 3t +1 is odd and bor(Q3t+1,3t+1)�2t

if 3t + 1 is even. �

3. Generalization and other parameters

For the border-domination of Qk,k introduced in this paper, the problem is to dominate all of the vertices while using
only vertices from a specified set A, in this case A = R0(Qk,k). More generally, we define the following problem.

(A, B)-restricted domination: Given vertex subsets A and B of V (G) the (A, B)-domination number is the minimum
cardinality of a subset A′ ⊆ A that dominates B. We let �(A,B)(G) = min{|A′| : A′ ⊆ A, B ⊆ N [A′]}. If B = V (G),
we let �A(G) = �(A,V (G))(G). If A does not dominate B, then �(A,B)(G) = ∞.
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Fig. 4. Some lower bounds for BOR(Qk,k).

An example of (A, B)-restricted domination would be bipartite domination as discussed by Hedetniemi and Laskar
in [14,15]. For our problem, bor(Qk,k) = �R0(Qk,k)

(Qk,k).
Likewise, other graphical parameters can become A-restricted or (A, B)-restricted. While A-restricted independence

might not seem to directly offer questions of interest (see below), A-restricted packing does. We can let �A(G) be
the maximum cardinality of a subset A′ of A that is a packing in G. For the upper-domination parameter � we define
�(A,B)(G) to be the maximum cardinality of a subset A′ of A such that A′ is a minimal dominating set for B. Some
lower bounds, mostly from computer generated examples, for �B0(Qk,k) ≡ BOR(Qk,k) are presented in Fig. 4.

Also of interest are the as yet uninvestigated lower and upper border-irredundance parameters irR0(Qk,k) and
IRR0(Qk,k). Generalizing again, for subsets A and B the upper and lower (A, B)-irredundance numbers, denoted
IR(A,B)(G) and ir(A,B)(G), are the maximum and minimum cardinalities, respectively, of a subset A′ ⊆ B which is
maximal with respect to the property that for each v ∈ A′ there is a vertex w ∈ B with N [w] ∩ A′ = {v}. That is, each
v in A′ is the sole dominator of a vertex w in B, in which case w is called a private neighbor of v. If A ∩ N [B] = ∅,
then ir(A,B)(G) = IR(A,B)(G) = 0. The next result follows directly.

Theorem 5. For any graph G and any subsets A and B, we have ir(A,B)(G)��(A,B)(G)��(A,B)(G), and if B ⊆ N [A]
(that is, �(A,B)(G) is finite) then �(A,B)(G)�IR(A,B)(G).

Considering the concept of independence, the upper and lower independence numbers �(G) and i(G) are the
maximum and minimum cardinalities, respectively, of maximal independent sets. Recall that an independent set is
maximal if and only if it minimally dominates. We can therefore generalize parameters � and i as follows. Let A and
B be vertex subsets of V (G), then the upper and lower (A, B)-independence parameters �(A,B)(G) and i(A,B)(G) are
the maximum and minimum cardinalities of an independent set A′ ⊆ A such that A′ minimally dominates B. Our
concluding result generalizes the domination chain in Cockayne et al. [11].

Theorem 6. If A and B are subsets of V (G) and A contains an independent subset A′ that dominates B, then
ir(A,B)(G)��(A,B)(G)� i(A,B)(G)��(A,B)(G)��(A,B)(G)�IR(A,B)(G).
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