
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mathematics and Statistics Faculty Research & 
Creative Works Mathematics and Statistics 

01 Jan 2012 

Absolute Differentiation in Metric Spaces Absolute Differentiation in Metric Spaces 

W. J. Charatonik 
Missouri University of Science and Technology, wjcharat@mst.edu 

Matt Insall 
Missouri University of Science and Technology, insall@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork 

 Part of the Mathematics Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
W. J. Charatonik and M. Insall, "Absolute Differentiation in Metric Spaces," Houston Journal of 
Mathematics, University of Houston, Jan 2012. 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229026859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


Houston Journal of Mathematics
c© 2012 University of Houston

Volume 38, No. 4, 2012

ABSOLUTE DIFFERENTIATION IN METRIC SPACES

W LODZIMIERZ J. CHARATONIK AND MATT INSALL

Communicated by Charles Hagopian

Abstract. In this article, we introduce a new notion of (strong) absolute

derivative, for functions defined between metric spaces, and we investigate

various properties and uses of this concept, especially regarding the geometry

of abstract metric spaces carrying no other structure.

1. Introduction

1.1. Overall Objectives. The concept of a derivative was introduced in the

context of the study of real-valued functions of a real variable, and has had sig-

nificant impact on the development of Mathematics and its applications. Since

then, this concept has been extended in various ways to complex-valued functions

of real variables, or of complex variables, and to real and complex Banach spaces,

to name a few cases. In most cases, an underlying arithmetic structure is used

for the definition of a derivative, and the authors have previously (see [CIP])

extended the definition of derivative to functions from one topological field into

another. For functions defined on differentiable manifolds, there is a concept of

derivative that has been in use for many years, and the manifolds involved do

not generally have an arithmetic structure (such as a topological field structure)

defined on them; however, in this case, derivatives are defined using charts and

atlases, which require the use of the arithmetic of a cartesian power of one of the

classical topological fields, such as the real number field or the complex number

field, to define derivatives of functions on the manifold in question.

2000 Mathematics Subject Classification. 54E35 (Metric spaces), 26A03 (Foundations),

26A24 (Differentiation), 46G05 (Derivatives).
Key words and phrases. Metric, metric space, derivative, Hausdorff measure, Hausdorff-

Besicovitch dimension, metric-preserving functions.
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Nonsmooth calculus, as discussed in [H], and in articles referenced therein,

considers metric spaces equipped with compatible measures in order to relax the

notion of differentiability. But we do not equip our metric spaces with measures.

Also, in both [H] and [AT, pg 55], the notion of a Metric Derivative is investigated,

but in this case, the domains of the functions in question are closed intervals of

real numbers. Our notion of derivative is more general, in that the domain need

not be a subset of the reals. Note as well that discussion of Lipschitz functions

leads to a result of Rademacher (presented, for example in [AT, pg 42]), that such

functions are almost everywhere differentiable with respect to Lebesgue measure.

Even when our spaces are equipped with Lebesgue measure, we have examples

of functions that are Lipschitz, but not anywhere absolutely differentiable in our

sense.

Here we will initiate the investigation of “derivatives” for functions between

arbitrary metric spaces, in which the role of arithmetic is significantly diminished

in comparison to the above-mentioned contexts. (In fact, the only use we make

of arithmetic is to compute using the real numbers, because we use the metric

to define our derivatives.) Thus the metric spaces we consider need not have

any arithmetic structure defined on them at all, and they need not be locally

homeomorphic to Rn or any other topological vector space.

1.2. Organization of this Article. In this article, we introduce the notions of

absolute differentiability and strong absolute differentiability. We describe the

relationships between these new concepts and classical notions of differentiability.

A tool we will use to construct examples is the previously developed notion of a

metric-preserving function (see [D]). Also, we will present various examples illus-

trating the connections between our new theory and the traditional ones. General

results about absolute differentiation will be presented, some of which parallel re-

sults in the traditional setting, and some of which have no clear analogue. We

will define a new class of metric spaces that we call rectifiably connected spaces,

for which any two points can be connected by a segment of finite length. In such

spaces, results such as the following hold: If the absolute derivative is zero then

the function is constant. It is well known that if d is a metric on a space, then√
d also is a metric on that space. Thus, in some cases, a given metric d has the

property that its square is also a metric, but it is also well known that in some

cases, the square of a metric is not a metric. The notions we develop will help

delineate when the square of a metric is not a metric.

This section of the article is organized as follows: First, we describe some

general properties of absolute differentiability and strong absolute differentiability,
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then we discuss connections to classical notions of differentiability and derivatives.

In particular, we have a result for absolute derivatives of functions from Rn into

Rm that in a sense “parallels” the Cauchy-Riemann equations for functions of one

complex variable.

Next, we give examples of spaces and functions for which zero absolute deriva-

tive does not imply that the function is constant, and then investigate when one

can infer that all functions with a zero absolute derivative are constant; this leads

naturally to a new class of metric spaces, namely rectifiably connected spaces, in

which any two points can be joined by a segment of finite length. Specifically we

show that if the domain is rectifiably connected, and the function in question has

a zero absolute derivative, then the function is constant.

In section 4 we use the concept of a semi-rigid space to give sufficient conditions

for continuity to imply absolute differentiability for all functions on a given metric

space.

Finally, in section 5, we relate absolute differentiability to Hausdorff dimension.

For example, this section culminates in a result which implies that, if a function

f is continuously absolutely differentiable and its absolute derivative vanishes

nowhere, then f preserves Hausdorff dimension for compact subsets of its domain.

1.3. Rationale. The uses of derivatives in classical mathematics and its appli-

cations are many and varied. However, many of them relate to the geometric

properties of subsets of the domain of a function, or to the geometric properties

of the codomain, or to geometric properties of the graph of the function itself. For

this reason, it is natural to expect that if one could devise a definition of derivative

that makes sense for metric spaces, it would be of use in the study of geometric

properties of such spaces, and the geometric properties would likely translate into

useful information about functions that are differentiable in this new sense. This

is the fundamental reason, or rationale, for one to study some sort of differentia-

tion in metric spaces. As we shall explain later, it also will make sense to call our

new notion “absolute derivative”, instead of derivative, essentially because these

new “derivatives” can, by their very nature, never be negative.

2. Definitions and Notation

We investigate a new notion of “absolute derivative” of functions defined on

metric spaces, which measures how the distance changes in the image, relative

to distance in the domain. Consider metric spaces (X, dX) and (Y, dY ), and a

function f : X → Y . We say that f is absolutely differentiable at a point p ∈ X,
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provided that the following limit exists in R:

lim
x→p

dY (f(x), f(p))

dX(x, p)
.

In this case, the above limit is called the absolute derivative of f at p, and is

denoted by

f |′|(p).

A somewhat stronger notion of absolute differentiability is obtainable by taking an

appropriate limit over X2 and Y 2: f is said to be strongly absolutely differentiable

at p if and only if the following limit exists:

(1) lim
(x,y)→(p,p)

x 6=y

dY (f(x), f(y))

dX(x, y)
.

Note that this is the type of definition needed to extend the notion of differentia-

bility to the metric space setting, since subtraction is in general not available for

use in the “difference quotients”. In fact, it is natural to call the fraction

dY (f(x), f(y))

dX(x, y)

a distance quotient, in this setting. We will show that with these notions of

differentiability, geometric properties of metric spaces and functions between them

are naturally related to conditions of absolute differentiability and strong absolute

differentiability. Observe that in our definition of strong absolute differentiability,

it is important that in the distance quotients we require x 6= y, as indicated in

(1).

Of course, a function f is absolutely differentiable (respectively strongly ab-

solutely differentiable) provided that it is absolutely differentiable (respectively

strongly absolutely differentiable) at every point of its domain.

It is clear that every strongly absolutely differentiable function is absolutely

differentiable, but the absolute value function is an example that demonstrates

that these notions do not coincide.

Recall from [D] that a function f : [0,∞) → [0,∞) is metric preserving pro-

vided that for every set X and every metric d on X, the function f ◦ d also is a

metric on X. It is an easy observation that in this case, the metrics d and f ◦ d
are equivalent metrics if and only if f is continuous at 0.
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3. General Properties of Absolute Differentiability and of Strong

Absolute Differentiability

In this section, we describe various general properties of our notions of absolute

derivatives in metric spaces. Specifically, in subsection 3.1, we discuss elementary

properties and examples, such as when the value of the absolute derivative at a

point can indicate that the function is locally one-to-one, examples of classically

differentiable functions that are not at all absolutely differentiable, and the chain

rule for absolute differentiation. In subsection 3.2, we connect our new concept

with classical partial differentiation, by showing, for instance, that for Rm-valued

functions of n real variables, a variant of the Cauchy-Riemann equations is avail-

able. In subsection 3.3, we relate absolute differentiability to classical notions of

differentiability - we demonstrate that continuous differentiability of a real-valued

function of one real variable implies strong absolute differentiability of the func-

tion, while mere differentiability implies only absolute differentiability (all at a

point p), and that for such functions f , the formula f |′| = |f ′| holds. We give ex-

amples of functions that are absolutely differentiable but not differentiable, and

(on the complex plane), a function that is nowhere differentiable but is every-

where absolutely differentiable, with absolute derivative equal everywhere to 1.

Finally, in 3.4 we consider a stronger notion of connectedness than mere path-

connectedness or arc-wise connectedness, in order to find sufficient conditions for

the traditional calculus implication between having zero (in our case, absolute)

derivative and being a constant function.

3.1. Elementary Properties and Examples. Here we will state and prove

some theorems that elucidate general properties of our new notion of an absolute

derivative. The relationship to continuity is natural:

Theorem 3.1. Let f : X → Y be absolutely differentiable at a point x ∈ X.

Then f is continuous at x.

Next, we explore what happens if the absolute derivative is nonzero. First,

we show a generalization of the classical result that positive derivative implies

monotone increasing behavior and negative derivative implies monotone decreas-

ing behavior:

Theorem 3.2. Let f : X → Y be strongly absolutely differentiable at a point

x ∈ X, and suppose that f |′|(x) is nonzero. Then f is locally one-to-one at x.
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Proof. Since f is strongly absolutely differentiable at x, let V be an open neigh-

borhood of x such that for all y, z ∈ V with y 6= Z, dY (f(y),f(z))
dX(y,z) > f |′|(x)

2 > 0.

Then it is clear that f is one-to-one on V . �

Similarly, we easily have the following:

Theorem 3.3. If f : X → Y is absolutely differentiable at x ∈ X, and if the

absolute derivative of f at x is nonzero, then there is a neighborhood V of x such

that for all y ∈ V \ {x}, we have f(y) 6= f(x).

This is the best we can do when the function is not strongly absolutely dif-

ferentiable: There exist functions, for example, the absolute value function on

the reals, that are absolutely differentiable with nonzero absolute derivative at a

point, but which are not locally one-to-one at that point.

To see the difference, in Rn, between absolute differentiability and differentia-

bility, consider the following example:

Example 3.1. Let f : R2 → R2 be defined by the formula f(x, y) = (x, 2y). Note

that

lim
(x,0)→(0,0)

|f(x, y)− f(0, 0)|
|x− 0|

= 1

and that

lim
(0,y)→(0,0)

|f(x, y)− f(0, 0)|
|y − 0|

= 2

so that f is not absolutely differentiable; however, it is of course, differentiable,

in the traditional sense.

We note that for our notion of absolute derivative and strong absolute deriva-

tive, a chain rule holds, and the proof of the corresponding theorem is completely

analogous to the corresponding proof in traditional calculus:

Theorem 3.4. Let X, Y , and Z be metric spaces, and let f : X → Y and

g : Y → Z be (strongly) absolutely differentiable functions. Then the composite

function g ◦ f : X → Z is also (strongly) absolutely differentiable, and

(g ◦ f)|′|(x) = g|′|(f(x))f |′|(x).

It is interesting to note that strong absolute differentiability is closely related to

continuity of the absolute derivative, as we see in the following. The authors are

indebted to a gracious referee for furnishing corrected versions of the calculations

in the following argument.
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Theorem 3.5. Let f : X → Y be absolutely differentiable. If x0 ∈ X and

f is strongly absolutely differentiable at x0, then the absolute derivative of f is

continuous at x0.

Proof. We work in the extended real number system for now. Assume that

the hypothesis holds, but not the conclusion. Then two cases arise: Either some

sequence xn that converges to x0 satisfies f |′|(xn)→∞ or some sequence xn that

converges to x0 satisfies f |′|(xn)→ L <∞, where L 6= f |′|(x0). We leave the first

case to the reader, and treat the second case. Let ε > 0 with |L− f |′|(x0)| > 3ε,

and let δ > 0 be such that if x, y ∈ B(x0, δ) are distinct, then∣∣∣∣dY (f(x), f(y))

dX(x, y)
− f |′|(x0)

∣∣∣∣ < ε.

Let n be such that xn ∈ B(x0, δ) and |L− f |′|(xn)| < ε. Let δ1 > 0 be such that

if y is any member of B(xn, δ1) \ {xn}, then∣∣∣∣dY (f(xn), f(y))

dX(xn, y)
− f |′|(xn)

∣∣∣∣ < ε.

Let y ∈ [B(x0, δ) ∩ B(xn, δ1)] \ {xn}. Then∣∣∣L− f |′|(x0)
∣∣∣ ≤ ∣∣∣L− f |′|(xn)

∣∣∣+

∣∣∣∣f |′|(xn)− dY (f(xn), f(y))

dX(xn, y)

∣∣∣∣
+

∣∣∣∣dY (f(xn), f(y))

dX(xn, y)
− f |′|(x0)

∣∣∣∣
< 3ε,

a contradiction. �

The converse of the preceding result fails. For example, the absolute value

function on the real line is absolutely differentiable on its domain, and its absolute

derivative (the constant function 1) is continuous, but of course the absolute value

function is not strongly absolutely differentiable at 0.

3.2. Connections with Classical Partial Differentiation. In the introduc-

tion, we mentioned that there is an analogue, for our absolutely differentiable

functions, of the Cauchy-Riemann equations for complex analytic functions. We

state and prove this result here, even though it is not a result about general metric

spaces and their absolutely differentiable functions:

Theorem 3.6. If f : Rn → Rm is absolutely differentiable at ~x0 ∈ Rn, and

f = (u1, ..., um), where each uj : Rn → R has first-order partial derivatives at ~x0,

then for each k ≤ n,
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f |′|(~x0) =

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

∂uj
∂xk

(~x0)~ej

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Proof. Let ~x0 =
(
x

(0)
1 , ..., x

(0)
n

)
, and let S =

{
x

(0)
1

}
× ... ×

{
x

(0)
k−1

}
× R ×{

x
(0)
k+1

}
× ...×

{
x

(0)
n

}
. We have

f |′|(~x0) = lim
~x→~x0,~x∈S

∣∣∣∣∣∣∑m
j=1 uj(~x)~ej −

∑n
j=1 uj(~x0)~ej

∣∣∣∣∣∣
||~x− ~x0||

= lim
~x→~x0,~x∈S

∣∣∣∣∣∣∑m
j=1 [uj(~x)− uj(~x0)]~ej

∣∣∣∣∣∣∣∣∣xk − x(0)
k

∣∣∣
= lim

~x→~x0,~x∈S

∣∣∣∣∣∣
∣∣∣∣∣∣
∑m

j=1 [uj(~x)− uj(~x0)]∣∣∣xk − x(0)
k

∣∣∣ ~ej

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

∂uj
∂xk

(~x0)~ej

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Note that here we mean by ~ej the jth vector in the standard ordered basis for

Rm. �

The following example shows that absolute differentiability does not imply

continuity of partial derivatives.

Example 3.2. Define ϕ : R→ R by

ϕ(t) =

{
t2 sin

(
1
t

)
for t 6= 0

0 for t = 0
.

Then set f(x, y) = (ϕ(x), ϕ(y)) = (u(x, y), v(x, y)), for (x, y) ∈ R2. The function

f is absolutely differentiable at the origin of the plane, and the component func-

tions u and v have first-order partial derivatives at the origin, but ux and vy are

not continuous at (0, 0).

3.3. Connections to Classical Notions of Differentiability and Deriva-

tives. In the real line and the complex plane, as well as in many other classically

important settings, a metric is available, so we can consider absolute differentia-

bility in that context. In fact, the last result in the previous section deals with
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one such case. Here we focus on these connections to classical notions of differen-

tiability. The following two results relate differentiability and (strong) absolute

differentiability on the real line, and in the complex plane, and help the reader

understand why we call our notion “absolute” derivative:

Proposition 3.1. If X ⊆ R and p ∈ X is a limit point of X, then for any

f : X → R, we have the following:

(1) If f is continuously differentiable at p then f is strongly absolutely differ-

entiable at p, and in this case,

f |′|(p) = |f ′(p)|.

(2) If f is differentiable at p then f is absolutely differentiable at p, and in

this case,

f |′|(p) = |f ′(p)|.

The proof of the above is a straightforward argument, and a mild revision of

it yields the next one, so both are left as exercises for the reader.

Proposition 3.2. If X ⊆ C and z0 ∈ X is a limit point of X, and if f : X → C
is complex-analytic at z0, then f is strongly absolutely differentiable at z0, and

f |′|(z0) = |f ′(z0)|.

But there are absolutely differentiable functions on the real line that are not

strongly absolutely differentiable. For example, recall that the absolute value

function is such a function. On the other hand, on the complex plane, there

are functions that are nowhere differentiable, but everywhere strongly absolutely

differentiable. A canonical example of such a function is complex conjugation.

(Note that complex conjugation is an isometry, and all isometries on metric spaces

are everywhere strongly absolutely differentiable, with absolute derivative 1.)

Conversely, one might like to know when strong absolute differentiability im-

plies differentiability. The following theorem and example address this issue. The

referee’s insightful observations led the authors to significantly revise the argu-

ment for the following result, for which we are quite appreciative.

Theorem 3.7. Let X ⊆ R be connected and closed, and let f : X → R be both

strongly absolutely differentiable at a point x0 ∈ X and continuous sufficiently

close to x0. Then f is differentiable at x0, and of course,

f |′|(x0) = |f ′(x0)|.



1322 W LODZIMIERZ J. CHARATONIK AND MATT INSALL

Proof. Assume that f is not differentiable at x0, say x is a sequence such that

xn → x0 strictly, but the sequence
{

f(xn)−f(x0)
xn−x0

}
n∈ω

does not converge. Since f

is (strongly) absolutely differentiable at x0, let p ∈ (0,∞) satisfy

p = lim
n→∞

|f(xn)− f(x0)|
|xn − x0|

.

Let k, j be strictly increasing sequences of positive integers such that

(1) xkn
→ x0 and xjn → x0 monotonically and strictly,

(2) limn→∞
f(xkn)−f(x0)

xkn−x0
= p and limn→∞

f(xjn)−f(x0)

xjn−x0
= −p.

We consider two cases:

Case 1: xkn , xjn < x0 or xkn , xjn > x0. Without loss of generality assume the

latter. For each positive integer n, let In denote the interval [xkn
, xjn ]∪ [xjn , xkn

],

and define ϕ : X → R by ϕ(t) = f(t)−f(x0)
t−x0

. We will apply ϕ on the intervals In.

Let N be a positive integer such that

n > N =⇒ f(xjn) < f(x0) < f(xkn
).

By the Intermediate Value Theorem, let t be a sequence such that

(1) n > N =⇒ tn ∈ In and

(2) n > N =⇒ ϕ(tn) = 0.

Then ϕ ◦ t→ 0, contrary to the assumption that p > 0.

Case 2: xkn
< x0 < xjn or xjn < x0 < xkn

. Again, we assume the latter. Let

In = [x0, xkn
]. Without loss of generality we assume that f(xjn) ≤ f(xkn

) for

all n. Define ϕn(t) =
f(t)−f(xjn )

t−xjn
. For t sufficiently close to x0, ϕn(t) < 0, while

ϕn(xkn
) ≥ 0, so by continuity of ϕn and the Intermediate Value Theorem, let

tn ∈ In satisfy ϕn(tn) = 0. Since f is strongly absolutely differentiable at x0, we

have limn→∞ ϕn(tn) = 0, contrary to the assumption that p > 0. �

On the other hand, strong absolute differentiability does not imply differentia-

bility, even on the real line, as the following example shows. Thus the connected-

ness assumption in the preceding theorem is essential.

Example 3.3. There are a closed set X ⊆ R, and a continuous function f : X →
R such that for some x0 ∈ X, f is strongly absolutely differentiable at x0, but is

not differentiable at x0.

Proof. To see this, let x0 = 0, let p0 = (0, 0), let p1 ∈ {(a, a)|a > 0}, and let

q1 ∈ {(a,−a)|a > 0}, be such that the slope of the line p1q1 is 1 + 1
2 = 3

2 . For

each n > 0, let pn+1 be on the segment p0pn such that the slope of the segment

qnpn+1 is −1− 1
2n+1 , and then let qn+1 be on the segment p0qn so that the slope
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of the segment pn+1qn+1 is 1 + 1
2n+2 . Let f = {pk|k ≥ 0}∪ {qk|k > 0}, and let X

be the domain of f . Then X, x0 = 0, and f possess the desired properties. �

However, for real-valued functions on an interval in the reals, strong absolute

differentiability and continuous differentiability coincide:

Theorem 3.8. Let I be an interval in the real line, and let f : I → R. Then f is

strongly absolutely differentiable on I if and only if f is continuously differentiable

on I.

Proof. We have already seen that if f is continuously differentiable at a point,

then it is strongly absolutely differentiable at that point. Thus only the converse

remains to be shown. Thus suppose that f is strongly absolutely differentiable

on I. Then f is continuous on I, since it is absolutely differentiable on I. Also,

f is differentiable on I, and f |′| = |f ′|, and we know that |f ′| is continuous on

I. Suppose that f ′ is not continuous at some x0 ∈ I. Let xn and yn, n > 0,

be sequences in I that converge to x0, for which f ′(xn) → f ′(x0), and f ′(yn) →
−f ′(x0) 6= f ′(x0). By the intermediate value property for derivatives of real-

valued functions on an interval (Darboux’s theorem), let zn, n > 0 be a sequence

such that for each n, zn is between xn and yn, and f ′(zn) = 0. Then continuity

of |f ′| implies that f ′(x0) = 0. But this is a contradiction. �

3.4. When Does Zero Absolute Derivative Imply that the Function is

Constant? As is well known among students of calculus, any real-valued function

defined on the real line for which the derivative is zero must be a constant function.

However, as the authors have observed previously (in [CI]), more general settings,

such as that for functions on an arbitrary topological field, admit the existence

of functions one may refer to as “pseudo-constants” (because they have a zero

derivative everywhere), which are nowhere locally constant, a term we will not

explain in detail here. The same is true here: There are metric spaces X, and

functions f defined on X, such that f is absolutely differentiable everywhere on

X, with absolute derivative identically zero, but for which f is not constant in

any neighborhood of any point of X. But we may prescribe a condition on the

space X which guarantees that every such “pseudo-constant” is actually constant.

This new property of a metric space is the geometric property of being rectifiably

connected.

Definition 3.1. Let X be a metric space. We say that X is rectifiably connected

provided that for any points a and b of X, there is a path of finite length from a

to b.
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Definition 3.2. Let p be a point in a metric space X, and let B ⊆ X be a ball

centered at p in X. Let C be the component of B that contains p. Then we call

C the central component of B.

We can prove the following result. Our original argument only yielded the

desired conclusion for strongly absolutely differentiable functions, and the referee

noticed a gap in the argument. We are very grateful for this, as we then discovered

a much better argument that applies, as we originally intended, to all absolutely

differentiable functions on rectifiably connected spaces.

Theorem 3.9. Let X be a rectifiably connected metric space, and let Y be any

metric space, with f : X → Y absolutely differentiable. If f |′| = 0, then f is

constant.

Proof. Suppose not, and let x0, x1 ∈ X with f(x0) 6= f(x1). Let A be a

rectifiable arc from x0 to x1 in X, with length L > 0, and let

ε =
dY (f(x0), f(x1))

L
.

Because f is absolutely differentiable, for each x ∈ A, let rx > 0 be such that for

all y ∈ B(x, rx),
dY (f(x), f(y))

dX(x, y)
<
ε

2
.

Let B = {B(x, rx)|x ∈ A}. Now, A is compact and locally connected (so that

components of open subsets of A are open), and so the collection

S = {C|C is a central component of some member of B}

is an open cover of A, so let C = {C1, ..., Cm} ⊆ S be a finite cover of A. Without

loss of generality, we may assume that these central components C1, ..., Cm are

chosen so that their respective centers c1 ∈ C1, ..., cm ∈ Cm are ordered along

the arc A in the direction from endpoint x0 to endpoint x1. Since each member

of C is connected, it follows that for each j ∈ {1, ...,m}, Cj ∩ Cj+1 6= ∅, i.e. C is

a chain of the arc A.

Let p0, p1, ..., pm ∈ A satisfy the following:

(1) p0 = x0 and pm = x1

(2) for each j ∈ {1, 2, ...,m − 1}, pj ∈ Cj ∩ Cj+1 and pj separates cj from

cj+1

Then for each j,

dY (f(pj), f(cj+1)) + dY (f(cj+1), f(pj+1)) < ε(dX(pj , cj+1) + dX(cj+1, pj+1),
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so that

dY (f(x0), f(x1)) = dY (f(p0), f(pm))

≤
m−1∑
j=0

(dY (f(pj), f(cj+1)) + dY (f(cj+1), f(pj+1)))

<

m−1∑
j=0

ε(dX(pj , cj+1) + dX(cj+1, pj+1)

≤ Lε = dY (f(x0), f(x1)),

a contradiction. The desired result follows. �

To see that rectifiable connectivity of the domain is essential, recall first that

for any positive real number p < 1, the pth power function is a metric-preserving

function, and then observe the following:

Example 3.4. Let p < 1 be a positive real number, let (X, d) be a metric space,

and let f : (X, dp) → (X, d) be the identity function on the set X. Then f is

absolutely differentiable, and f |′| = 0.

As a consequence, it follows that if q > 1 in R, and if d is a metric on a set X

that makes (X, d) rectifiably connected, then dq is not a metric!

4. When does Continuity Imply Strong Absolute Differentiability?

We use here the terminology of [Tr]. Let X be a topological space, and let

p ∈ X. Then p is a rigid point of X if every continuous f : X → X with p ∈ f [X]

is constant or the identity. The space X is semi-rigid if it has a rigid point. The

space X is rigid if every point of X is rigid. Observe then that, trivially, every

continuous self-map of a rigid space is strongly absolutely differentiable. The

following result shows that this can occur when the space is not rigid.

Theorem 4.1. There is a non-rigid, semi-rigid metric space (X, d) such that

every continuous function f : X → X is strongly absolutely differentiable.

Proof. Let C ⊆ R3 be the cone over [0, 1]2 × {1}, with vertex v = (0, 0, 0), and

let R,S be rigid, arc-like (so one-dimensional and embeddable in R2) continua

with endpoints (for the existence of such continua, see [Co] and [M]), and let

Y = R ∪̇(S \ {p, q}) ∪̇R be the disjoint union of R, (S \ {p, q}), and R, where p

and q are endpoints of S, and compactified so that Y is an arc-like continuum

(i.e. a copy of R replaces p and a copy of R replaces q). Let R0 be a copy of

R embedded in the square [0, 1]2 × {1}, let R1 be 1
2R0 = { 1

2x|x ∈ R0}, and let
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ϕ0,0 : R → R0 and ϕ0,1 : R → R1 be homeomorphisms. Let C0 = {(x1, x2, x3) ∈
C | 1

2 ≤ x3 ≤ 1}, and for each k ∈ N, let Ck+1 = 1
2Ck. Let ϕ0 : Y → C0

extend ϕ0,0 ∪ ϕ0,1 so that Y is embedded by ϕ0 into C0. Let X0 = ϕ0[Y ]. For

each k ∈ N, let Xk+1 = 1
2Xk. Then let X = {v} ∪

∞⋃
k=0

Xk, with the subspace

topology and metric it inherits from R3. The resulting metric space, (X, d), has

the desired properties. (In fact, every continuous self-map f of X is defined by

f(x) = 1
2k x, for some k ∈ N.) �

5. Absolute differentiability and Hausdorff Dimension

In this section, we explore the relationship between strong absolute differentia-

bility and the Hausdorff dimension of a space. In particular, we give conditions

under which a strongly absolutely differentiable function preserves Hausdorff di-

mension.

5.1. Preliminary notions. We refer to [B] for the following definitions and no-

tation.

Definition 5.1. Let A be a subset of our metric space X, let ε be a

positive real number, and let p be a nonnegative real number. Let A =

{{Ai}∞i=1 |A =
⋃
{Ai}∞i=1 }. Then

M(A, p, ε)

= inf

{ ∞∑
i=1

(diam(Ai))
p

∣∣∣∣∣ {Ai}∞i=1 ∈ A and i ∈ N \ {0} ⇒ diam(Ai) < ε

}
.

Definition 5.2. Let A ⊂ X, and p ≥ 0. Then the p-dimensional Hausdorff

measure of A is

M(A, p) = sup{M(A, p, ε)|ε > 0}.

Definition 5.3. Let A ⊆ X. Then the Hausdorff dimension of A is (see page

198 of [B]) the number DH(A) such that

M(A, p) =

{
∞ if p < DH(A)

0 if p > DH(A)
.

Theorem 5.1. Assume that the metric space X is compact, and let C ∈ (0,∞).

Let f : X → Y be a function that is strongly absolutely differentiable on X, and
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satisfies f |′| < C. Then there is ε > 0 such that for any p, q ∈ X, if dX(p, q) < ε,

then

dY (f(p), f(q)) < CdX(p, q).

Proof. For each p ∈ X, let εp > 0 be such that for all x, y ∈ X with dX(x, y) <

εp, dY (f(x), f(y)) < CdX(x, y), and for each p ∈ X, let Up be the ball of radius

εp about p. The collection C = {Up|p ∈ X} forms a covering of the space X, so

let ε be the Lebesgue number of C. Then ε is the desired positive number for

which if p, q ∈ X and d(p, q) < ε, then

dY (f(p), f(q)) < CdX(p, q).

�

In a similar manner, we may prove the following:

Theorem 5.2. Assume that the metric space X is compact, and let C ∈ (0,∞).

Let f : X → Y be a function that is strongly absolutely differentiable on X, and

satisfies f |′| > C. Then there is ε > 0 such that for any p, q ∈ X, if dX(p, q) < ε,

then

dY (f(p), f(q)) > CdX(p, q).

As a consequence, we have the following result:

Theorem 5.3. Let C ∈ (0,∞), and let X be any metric space, with f : X → Y

strongly absolutely differentiable on some compact subset A of X. Then we have

(1) if f |′| < C on A, then M(f [A], p) < CpM(A, p), and

(2) if f |′| > C on A, then M(f [A], p) > CpM(A, p).

Proof. For (1), it is enough to observe that by Theorem 5.1, we have that P ⊆ X
implies diam(f[P]) ≤ Cdiam(P) and use the definition of M(A, p). Similarly, for

(2), we use Theorem 5.2. �

Corollary 5.1. Let X be any metric space, with f : X → Y strongly absolutely

differentiable on some compact subset A of X.Then we have

(1) if for some C ∈ (0,∞), f |′| < C on A, then DH(f [A]) ≤ DH(A),

(2) if for some C ∈ (0,∞), f |′| > C on A, then DH(f [A]) ≥ DH(A),

(3) if for some C1, C2 ∈ (0,∞), C1 < f |′| < C2 on A, then DH(f [A]) =

DH(A), and

(4) if on A, f |′| is continuous and nowhere zero, then DH(f [A]) = DH(A).
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