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ABSTRACT

The purpose of this paper is to explore non-abelian finite groups with per-

fect order subsets. A finite groups is said to have perfect order subsets (POS) if

the number of elements of each given order can divide the order of the group.

The study of such groups was initiated by Carrie E. Finch and Lenny Jones.

In this paper, we construct POS-groups by considering semi-direct products

of cyclic groups (and sometimes quaternions).
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CHAPTER 1

INTRODUCTION

In group theory, there are a lot of connections among orders of groups and

orders of their subgroups. Among all of them, the most commonly used and

well-known one is Lagrange’s Theorem, which states a relationship between

the order of a finite group and the order of every subgroup. In the paper A Cu-

rious Connection Between Fermat Numbers and Finite Groups, Carrie E. Finch and

Lenny Jones studied groups with the property that the number of elements of

every given order divides the order of a whole group.They referred to these

groups as having perfect order subsets (POS).

By using techniques in elementary number theory and group theory, I

investigated non-abelian groups, particularly semi-direct products with per-

fect order subsets. I wanted to focus on the semi-direct products because a

fair amount of research has been done on abelian POS groups. Also, S3 is an

easy non-abelian example of a group with perfect order subsets, and S3 can be

expressed in the form of a semi-direct product: Z3 o Z2.

When semi-direct products of groups are involved, it is always necessary

to consider the action. Most of this paper assumes the action is inversion. I

then further explore semi-direct products where the action is not inversion.

While it is not unusual for POS to occur, it is suprising to see how many dif-

ferent categories of groups can be built up by only using a small number of
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prime components.

The introductory sections will mainly discuss Finch and Jones’s orginal

definitions and some simple examples as well as non-examples.

1.1 METHODOLOGY

In the beginning stage of this research, I used GAP to list all non-abelian

groups with perfect order subsets whose orders are less than 250. This allowed

me to look for patterns, make conjectures, and create a big picture of formats

of POS groups. The GAP code I used is included in the last chapter of this

paper.

Most of the groups with perfect order subsets resulting from the GAP

code are categorized and all investigation is proven in detail. References of

results that I used in this research are clearly provided.

1.2 NOTATIONS AND NEWLY INTRODUCED DEF-

INITIONS

Throughout this paper, all groups are finite, and for a group G, we denote

|G| to be the order of G and o(x) to be the order of a group element x in G. As

in [1], the order subset of G determined by an element x ∈ G is defined to be

the set OS(x) = {y ∈ G|o(y) = o(x)}.

The group G is said to have perfect order subsets (in short, G is called a

POS-group) if |OS(x)| is a divisor of |G| for all x ∈ G. We use the standard

notation Zn to denote the cyclic group of order n with elements 0, 1, ..., n− 1

under addition.
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1.3 BASIC EXAMPLES AND NON-EXAMPLES

Example 1.3.1. Let G = Z2 ×Z4 ×Z3. It is easy to see |G| = 24. We can frame

the following table:

Element Order Cardinality of Order Subset

1 1

2 3

3 2

4 4

6 6

12 8

Every element in the right column, i.e. the number of elements of every given

order a divides |G|. Therefore, G has perfect order subsets.

The following is a short list of some abelian groups that have perfect order

subsets that were proven in Finch and Jones’ paper [1]:

• Z2n for all n

• (Z2)
3 ×Z3 ×Z7

• (Z2)
4 ×Z3 ×Z5

• (Z2)
5 ×Z3 ×Z5 ×Z31

• (Z2)
16 ×Z3 ×Z5 ×Z17 ×Z257

Not only abelian groups have perfect order subsets, but non-abelian groups

can also be POS groups.

Example 1.3.2. Let G ∼= S3 ×Z2 ×Z7.Then |G| = 84, and:

3



Element Order Cardinatliy of Order Subset

1 1

2 7

3 2

6 2

7 6

14 42

21 12

42 12

From the table, we know G has perfect order subsets.

Here are more examples of non-abelian POS groups that appear in Finch

and Jones’ paper [2]:

• S3 × (Z2)
2 ×Z5

• SL(2, q), where q ∈ {2, 3, 5, 7, 11, 17, 19, 41, 49, 127, 251} and where SL(2, q)

denotes the group of all 2× 2 matrices with determinant one and entries

from the finite field Fq of q elements, where q = pn for some prime p.

However, it is not difficult to find examples of groups not having perfect

order subsets. Consider Z7; it is not a POS group as it has 6 elements of order

7.

As noticed by Tuan and Hai in [11] and Das in [12], groups that do not

have perfect order subsets include:

• the symmetric group Sn, when n ≥ 4

• D2n, when n is an even integer.

• non-cyclic 2-groups

4



CHAPTER 2

ABELIAN POS GROUPS

In this chapter, we will examine several theorems for abelian POS groups

that have been proved by Finch and Jones.

Lemma 2.0.3. Let G ∼= (Zpa)t × M and Ĝ ∼= (Zpa+1)t × M, where a and t are

positive integers and p is a prime that does not divide |M|. Suppose that d is the order

of an element in Ĝ and that pa+1 does not divide d. Then both G and Ĝ contain the

same number of elements of order d.

Theorem 2.0.4. (Going-Up Theorem) Let G ∼= (Zpa)t ×M and Ĝ ∼= (Zpa+1)t ×

M, where a and t are positive integers and p is a prime that does not divide |M|. If G

has perfect order subsets, then Ĝ has perfect order subsets.

Example 2.0.5. In Example 1.3.1, we know Z2×Z4×Z3 has perfect order subsets.

The Going-Up Theorem allows us to increase the exponent on any of the primes that

appear to create new POS groups. In this case, we also know Z2 ×Z4 ×Z9 has

perfect order subsets.

We can generate new POS groups not only by "going up", but also by

going in the other direction.

Theorem 2.0.6. (Chopping-Off Theorem) Suppose that G has perfect order subsets

and that G ∼= Zpa1 ×Zpa2 × ...Zpas−1 × (Zpas )t ×M, where p is a prime not divid-
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ing |M| and a1 ≤ a2 ≤ ... ≤ as−1 < as are positive integers. Then Ĝ ∼= (Zpas )t×M

also has perfect order subsets.

Theorem 2.0.7. (Going-Down Theorem) Suppose that G has perfect order subsets

and that G ∼= (Zpa)t ×M, where p is a prime not dividing |M|. Then Ĝ ∼= (Zp)t ×

M also has perfect order subsets.

We will illustrate the above two theorems by using the following exam-

ple.

Example 2.0.8. By Example 1.3.1, we know Z2×Z4×Z3 has perfect order subsets.

By applying Chopping-Off theorem, we have Z4×Z3 is a POS group. Then, accord-

ing to the Going-Down Theorem, we know Z2 ×Z3 also has perfect order subsets.

These powerful theorems indicate that we can generate infinitely many

families of abelian groups with perfect order subsets. Therefore, there exist

infinitely many abelian groups with perfect order subsets.

6



CHAPTER 3

EULER PHI FUNCTION

In this chapter, we will introduce the Euler Phi function, which will be

used in this paper to count numbers of elements of given orders.

Definition 3.0.9. Euler Phi Funcion, denoted by Φ(n), is the number of positive

integers less than n and relatively prime to n. [80, Gallian]

We are using an upper Φ here because we have the lower φ reserved for

later use in our notation for functions.

Example 3.0.10. It is true that Φ(10) = 4 because 1,3,7 and 9 are relative prime to

10.

Theorem 3.0.11. If d is a positive divisor of n, the number of elements of order d in a

cyclic group of order n is Φ(d). [80, Gallian]

Furthermore, we would like to know how to calculate Φ(d), where d is a

positive integer.

Theorem 3.0.12. The Euler Phi function is multiplicative. Moreover,

Φ(n) = n ∏
p|n

(1− 1
p
)

[58, Nathanson]
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In particular, if n = pr1
1 pr2

2 ...prk
k is the standard factorization of n, where

p1, p2, .., pk are distinct primes and r1, r2, .., rk are positive integers, then

Φ(n) = n ∏
p|n

(1− 1
p
) =

k

∏
i=1

pri
i (1−

1
pi
) =

k

∏
i=1

pri−1
i (pi − 1)

Example 3.0.13. Consider 7875 = 32537. Then Φ(7875) = Φ(32)Φ(53)Φ(7) =

(3− 1) · 3 · (5− 1) · 52 · (7− 1) = 3600

Example 3.0.14. Consider the group Z384. We have 128|384 and there are Φ(128) =

Φ(27) = (2− 1)26 = 64 elements of order 128.

In this paper, we mostly use the fact that in the group Zm, if pk|m, where pk

is a power of a single prime, then there are Φ(pk) = (p− 1)pk−1 elements of

order pk.
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CHAPTER 4

AN INTRODUCTION TO

SEMIDIRECT PRODUCTS

In this chapter, we will explore the concept of semi-direct products, which

will be frequently used later in this paper.

Let G be a group. Recall that G is a direct product of two groups if and

only if G contains normal subgroups N1, N2 such that N1 ∩ N2 = {e} and

G = N1N2. Semidirect products are a generalization of this notion.

Definition 4.0.15. A group G is a semidirect product of its subgroups N and H if

and only if N C G, G = NH, and N ∩ H = {e}, where e is the identity of G. (Hence

H is a complement of N). [213, Scott]

Note that conjugation of N induces an automorphism of N. So there is a

homomorphism φ : H 7→ Aut(N). Then we can denote a semidirect product

of N and H as N oφ H (or N o H if the action is clear from context).

Suppose G = NH with N and H as above. Notice that every element

has a unique expression nh with h ∈ H and k ∈ K. The uniqueness follows

from N ∩ H = {e}, since if nh = n′h′, then (n′)−1n = h′h−1 ∈ N ∩ H = {e},

so n = n′ and h = h′. And, as N is normal in G, for each h ∈ H we have
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an automorphism φ(h) of N given by n 7→ φh(n) = hnh−1. Furthermore, the

map φ : H → Aut(N) given by h 7→ (n 7→ hnh−1) is a group homomor-

phism. Therefore, given the subgroups N, H and the homomorphism ϕ, we

can write down the multiplication on G. For, given n1h1, n2h2 ∈ G, we have

(n1, h1)(n2, h2) = (n1ϕh1(n2), h1h2).

Finally, if ϕ is not the trivial map, then N oϕ H is non-abelian, even if N and H

are both abelian. To show this, suppose h ∈ H and n ∈ N such that ϕh(n) 6= n.

We then have:

(n, 1)(1, h) = (n, h)

(1, h)(n, 1) = (ϕh(n), h).

So (n, 1)(1, h) 6= (1, h)(n, 1). Using semidirect products is a nice way to con-

struct many but not all non-abelian groups.

We now give several examples of semidirect products.

Example 4.0.16. Let N = Zn, let H = Z2, and let ϕ : H → Aut(N) be the

homomorphism that sends e to e and the nontrivial element of H to the inverse map

of N. The map x 7→ x−1 is a group automorphism of N since N is abelian, and this

automorphism has order 2. Thus, it generates a subgroup of Aut(N) isomorphic to H;

we define the map ϕ to be the isomorphism of H onto this subgroup. Let G = Noϕ H.

We claim that G ∼= Dn, the dihedral group of order 2n. Recall that Dn is the group

generated by elements a, b, subject to the relation an = b2 = 1 and bab = a−1. Let

N = 〈x〉 and H = 〈y〉. Then (x, 1) has order n and (1, y) has order 2. Note that ϕy

is the inverse map on N. So,

(1, y)(x, 1)(1, y) = (ϕy(x), y)(1, y) = (ϕy(x), y2) = (ϕy(x), 1) = (x−1, 1) =

(x, 1)−1.

Therefore, in G we have elements u = (x, 1) and v = (1, y) satisfying un =

v2 = 1 and vuv = u−1. So, there is a group homomorphism Dn → G, and this map

10



is surjective since G is clearly generated by {(x, 1), (1, y)}. However, |G|=|N||H| =

2n, so |G| = |Dn|. This shows that Dn is isomorphic to G.

Example 4.0.17. Let p, q be primes such that p divides q − 1. Then Aut(Zq) ∼=

Zq−1 is a cyclic group of order q − 1, so it has an element of order p. If r is an

integer such that rp ≡ 1 (mod q) but r 6≡ 1 (mod q), then the automorphism f

given by f (α) = αr has order p. If we send a generator of Zp to this element, we

get a homomorphism ϕ : Zp → Aut(Zq). Let G be the semidirect product of these

groups. If Zp = 〈a〉, and Zq = 〈b〉, then ϕa(b) = f (b), we have ap = bq = 1 and

aba−1 = ϕa(b) = f (b) = br. So this semidirect product is a group of order pq, and

since aba−1 = br 6= b (as r 6≡ 1 (mod q)), we see that G is non-abelian.

11



CHAPTER 5

NONABELIAN GROUPS HAVING

PERFECT ORDER SUBSETS

5.1 SOME PROPERTIES OF SEMIDIRECT PROD-

UCTS WITH PERFECT ORDER SUBSETS

Before I start to demonstrate properties of semi-direct product groups

with perfect order subsets, I need to show these two lemmas first.

Lemma 5.1.1 (Z.). If G is a POS group, then |G| has to be even unless |G| = 1.

Proof. If every element in G is of order 1 or 2, |G| is even by Lagrange’s The-

orem. Suppose there exists an element in G of order other than 1 and 2. Then

|OS(x)| is even since every element in |OS(x)| can be paired up with its in-

verse. Since G is POS, OS(x) is a divisor of |G|. Thus, |G| is even.

Lemma 5.1.2 (Z.). If |G| is even, the number of elements of order 2 in G is odd.

Proof. In a group G, there is always one element of order 1 and an even num-

ber of elements of order other than 1 and 2. Thus |OS(2)| = |G|− 1−∑ |OS(ai)|,

with o(ai) 6= 1 or 2. Since |G| is even, |OS(2)| has to be odd.

12



By applying the previous lemmas, we can have the following theorems:

Theorem 5.1.3 (Z.). Let G be a group such that G ∼= Zpm o Zqn , where p,q are

primes and m, n are positive integers, and the action is nontrivial but otherwise ar-

bitrary. If G has perfect order subsets, then p does not equal to 2 and q has to be

2.

Proof. Let the cyclic groups Zpm and Zqn be generated by a and b, respectively.

By Lemma 5.1.1, we know |G| has to be even. Thus at least one of p, q has to

be 2.

Suppose p = q = 2. Then G = Z2m o Z2n . Both (a2m−1
, e) and (e, b2n−1

)

are of order 2. Since G has even size, by Lemma 5.1.2, its number of elements

of order 2 has to be odd, and it has to be greater than 2. So |OS(2)| is odd and

cannot divide |G| = 2m+n. Therefore, G = Z2m o Z2n does not have perfect

order subsets.

Suppose p = 2 and q 6= 2. Then G = Z2m o Zqn . It is commonly known

that Aut(Z2m) ∼= Z2 ×Z2m−2 , and so we have |Aut(Z2m)| = 2m−1. Let σ =

φw ∈ Aut(Z2m) for some w ∈ Zqn . We have o(σ)|2m−1. Also, o(σ)|qn, which is

not possible unless o(σ) = 1. Thus, G does not have perfect order subsets.

From above, if G ∼= Zpm o Zqn is a POS group, then p 6= 2 and q = 2.

Example 5.1.4. The group G ∼= Z9 o Z4 with inversion has perfect order subsets.

In G, there is 1 element of order 1, 1 element of order 2, 2 elements of order 3, 18

elements of order 4, 2 elements of order 6, 6 elements of order 9 and 6 elements of

order 18.

13



5.2 SEMIDIRECT PRODUCTS WITH INVERSIONS

We start this section by a lemma that will be used frequently in the proofs

of theorems afterwards.

Lemma 5.2.1 (Z.). Let G be a group such that G ∼= Zpm oφ Z2n , where p is a

prime and m, n are positive integers. Suppose a, b are generators of Zpm and Z2n

respectively and φb(a) = a−1. For (al, bk) ∈ Zpm oφ Z2n , bk 6∈ ker(φ) if and only

if o(by) = 2n.

Proof. If o(bk) = 2n, then Z2n = 〈bk〉 = 〈1〉. So φ(1) ∈ ker(φ) and therefore

c ∈ ker(φ) for all c ∈ Z2l . This cannot be true, and so a contradiction. Morever,

if o(bk) 6= 2n, then o(bk) = o(b2i
) for some 1 ≤ i < n, and φ(bk) = φ(b2i

) =

[φ(b)]2
i
= eb. Thus bk ∈ ker(φ).

Theorem 5.2.2 (Z.). Let G be a group such that G ∼= Zpm oφ Z2n , where p is a

prime and m, n are positive integers. Suppose a, b are generators of Zpm and Z2n ,

respectively, and φb(a) = a−1. Then G has perfect order subsets if and only if p = 3

or 5. When p = 3, n ≥ 1; when p = 5, n ≥ 2.

The following lemma will be useful in the proof of Theorem 5.2.2.

Lemma 5.2.3 (Z.). Let G ∼= Zpm oφ Z2n , where p is a prime and m, n are positive

integers. Suppose a, b are generators of Zpm and Z2n , respectively, and φb(a) = a−1.

Then the table of sizes of order sets for G is Table 5.1.

Proof. Let (al, bk) ∈ Zpm oφ Z2n . By Lemma 5.2.1, we have bk 6∈ ker(φ) if

and only o(bk) = 2n in Z2n . Then, when o(bk) 6= 2n, we can calculate the

order of (al, bk) the same way as in direct product Zpm ×Z2n , i.e. o(al, bk) =

lcm(o(al), o(bk)). Furthermore, since o(al) is a divisor of pm and o(bk) is a

divisor of 2n, o(al, bk) = o(al) · o(bk).

14



Orders of Elements Cardinalities of Order Subsets

1 1

2i(1 ≤ i ≤ n− 1) 2i−1

2n 2n−1pm

pi(1 ≤ i ≤ m) pi−1(p− 1)

2i pj(1 ≤ i ≤ n− 1, 1 ≤ j ≤ m) 2i−1pj−1(p− 1)

Table 5.1

When o(bk) = 2n, k is an odd positive integer, and (al, bk)(al, bk) = (al+(−1)kl, b2k) =

(e, b2k). So for (al, bk)w, where w is a positive integer, if w is odd, (al, bk)w =

(al, bwk); if w is even, (al, bk)w = (e, bwk). Therefore, o(al, bk) = 2n.

By using the analysis above, we can prove Table 5.1 in detail.

• The identity is the only element of order 1.

• Elements of order 2i(1 ≤ i < n) in G are exactly those in Z2n of order 2i,

and there are Φ(2i) = 2i−1 of them.

• (al, bk) is of order 2n as long as o(bk) = 2n in Z2n . There are Φ(2n) = 2n−1

such y that satisfies this condition. So, there are 2n−1pm elements of order

2n.

• Elements of order pi(1 ≤ i ≤ m) in G are exactly the ones in Zpm
of order

pi, and there are Φ(pi) = (p− 1)pi−1 such elements.

• o(al, bk) = 2i pj(1 ≤ i < n, 1 ≤ j ≤ m) if and only if o(al) = pj in Zpm

and o(bk) = 2i in Z2n . So |OS(2i pj)| = Φ(pj)Φ(2i) = 2i−1pj−1(p− 1).

Proof of Theorem 5.2.2. Suppose G is a POS group with the given action.

15



Lemma 5.2.3 has listed the cardinalities of every order subset. To make

G a POS group, we want all cardinalities of order subsets to divide |G|. In

particular, the number of elements of order 2i pj must divide |G| when i =

n− 1 and j = m, that is, 2n−2pm−1(p− 1) divides 2n pm and p− 1 is a divisor

of 22 = 4. Since p 6= 2 by Theorem 5.1.3, p = 3 or 5. When p = 3, |OS(pm)| =

2 · 3m−1, so we have n ≥ 1. When p = 5, |OS(pm)| = 22 · 5(m−1). We then have

n ≥ 2.

Now suppose G = Zpm oφ Z2n with φb(a) = a−1 and p = 3 or p = 5.

When p = 3, n ≥ 1; when p = 5, n ≥ 2.

Corollary 5.2.4 (Z.). Let G be a group such that G ∼= Z2 × (Z3m oφ Z2n), where

m, n are positive integers. Let a, b be generators of Z3m and Z2n respectively and

φb(a) = a−1. Then G has perfect order subsets .

Proof. According to the previous proofs, we know cardinalities of all order

subsets of the subgroup {0} × (Z3m oφ Z2n). However, in G ∼= Z2 × (Z3m oφ

Z2n), the number of elements of 2i (1 < i < n)is twice the cardinality of order

subset of 2i in Z3m oφ Z2n , since for g ∈ Z3m oφ Z2n , if o(g) = 2i in Z3m oφ Z2n ,

then 0× g and 1× g are both of order 2i in G. The calculation of cardinalities

of subsets of elements of order 2n and 2i3j, where 1 ≤ j ≤ m, is similar. In

addition, different from Z3m oφ Z2n , we have elements of order 2 · 3j, since if

the order of z ∈ Z3m oφ Z2n is 3j, then 1× z has order 2 · 3j. Furthermore, the

number of elements of order 3j equals the number of elements of order 2 · 3j.

16



We then make the following table:

Orders of Elements Cardinalities of Order Subsets

1 1

2 3

2i(2 ≤ i ≤ n− 1) 2i

2n 2n3m

3i(1 ≤ i ≤ m) 2 · 3i−1

2 · 3i(1 ≤ i ≤ m) 2 · 3i

2i3j(2 ≤ i ≤ n− 1, 1 ≤ j ≤ m) 2i+13j−1

Table 5.2

With the sizes of every order subset being a divisor of |G|, we know G is

a POS group.

Theorem 5.2.5 (Z.). Let G be a group such that G ∼= Zm oφ Zn, and a, b are gen-

erators of Zm and Zn, respectively. If φb(a) = a−1 and G is a POS group, then

n = 2α3β, where α is a positive integer, and β is a non-negative integer.

Proof. Since φb is of order 2 in |Aut(Zm)| and o(φb) divides n, by the Unique-

ness of Factorization, we have n = 2α0 p1
α1 p2

α2 p3
α3 ...pk

αk , where pi(1 ≤ i ≤ k)

are all odd primes and 1 ≤ αi for 0 ≤ i ≤ k. .

Suppose n divides m. Then by a proof similar to the proof for Theorem

5.2.2, we have that the number of elements of order n is the sum of m · Φ(n)

and the number of elements of order n in Zm, where Φ is the Euler Phi Func-

tion and

Φ(n) = 2α0−1(p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 ...(pk − 1)pαk−1
k .

In Zm , the number of elements of order n is also Φ(n). Thus, there are

(m + 1)2α0−1(p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 ...(pk − 1)pαk−1
k
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of elements of order n in G. Since G is a POS group, (m + 1)2α0−1(p1 −

1)pα1−1
1 (p2− 1)pα2−1

2 ...(pk− 1)pαk−1
k is a divisor of |G|. mn = m2α0 p1

α1 p2
α2 p3

α3 ...pk
αk .

This is equivalent to saying

(m + 1)(p1 − 1)(p2 − 1)...(pk − 1)|2mp1p2...pk.

Because (m + 1) and m are relatively prime, we should have (m + 1) divides

2p1p2...pk. It is not possible since m is a multiple of n, by assumption. Then

m+ 1 is greater than n, and further greater than 2p1p2...pk. Therefore, n cannot

be a divisor of m.

So in Zm, there is no element of order n, and the number of elements

of order n is m2α0−1(p1 − 1)pα1−1
1 (p2 − 1)pα2−1

2 ...(pk − 1)pαk−1
k . To make it a

divisor of mn, we need (p1− 1)(p2− 1)...(pk− 1) | 2p1p2...pk. As the pi are odd

numbers for all i, the pi − 1 are multiples of 2. So (p1− 1)(p2− 1)...(pk − 1) =

2ku, where u is a positive integer and 2ku | 2p1p2...pk. Thus k = 0 or k = 1.

If k = 0, we are done, since this implies that n = 2α. If k = 1, from the

above we know (p− 1) is a divisor of 2p. So p = 3.

Example 5.2.6. The group G = Z7 o Z12 has perfect order subsets.

In the next theorem, we will further discuss what m can be when G ∼=

Zm oφ Zn is a POS group and n = 2α3β.

Theorem 5.2.7 (Z.). Let G be a group such that G ∼= Zm oφ Z2l3n(l, n ≥ 1), where

a, b are generators of Zm and Zn, respectively. Further, suppose that φb(a) = a−1. If

gcd(m, 2l3n) = 1 and G is a POS-group, then m is a power of 7 and l ≥ 2.

Proof. We can factor m into q1
c1q2

c2q3
c3 ...qk

ck . Since m and 2l3n are relatively

prime, qi 6= 2 or 3 for all 1 ≤ i ≤ k. We count the number of elements of order

18



m2l−13n. Since all elements of the form b2l−13n
in Z2l3n are of order 2, they are

in ker(φ). We now consider two cases:

Case 1: l ≥ 2. There are

2l−13n−1(q1 − 1)qc1−1
1 (q2 − 2)qc2−1

2 ...(qk − 1)qck−1
k

elements of order m2l−13n. Then 2l−13n−1(q1 − 1)qc1−1
1 (q2 − 2)qc2−1

2 ...(qk −

1)qck−1
k divides mn = 2l3nq1

c1q2
c2q3

c3 ...qk
ck . This is equivalent to (q1 − 1)(q2 −

1)...(qk − 1) being a divisor of 6q1q2...qk. Since qi − 1 is an even number for all

i, but 6q1q2...qk = 2 ·w, where w is odd, we have k = 1. Furthermore, q− 1|6q,

so q = 7.

Case 2: l = 1. There are

2 · 3n−1(q1 − 1)qc1−1
1 (q2 − 2)qc2−1

2 ...(qk − 1)qck−1
k

elements in G of order m2 · 3n. Since G is a POS group, we have 2 · 3n−1(q1 −

1)qc1−1
1 (q2− 2)qc2−1

2 ...(qk− 1)qck−1
k must be a divisor of mn = 2 · 3nq1

c1q2
c2q3

c3 ...qk
ck ,

which is equivalent to (q1 − 1)(q2 − 1)...(qk − 1) being a divisor of 3q1q2...qk.

This is not possible, when qi ≥ 5 for 1 ≤ i ≤ k.

Therefore, if G ∼= Zm oφ Z2l3n(l, n ≥ 1) has perfect order subsets, m has to

be a power of 7 and l ≥ 2. So G ∼= Z7c oφ Z2l3n . We have a table summarizing

these results on the next page.

19



Orders of Elements Cardinalities of Order Subsets

1 1

2i((1 ≤ i ≤ l − 1) 2i−1

3j(1 ≤ j ≤ n)) 2 · 3j−1

7k(1 ≤ k ≤ c) 6 · 7k−1

2i3j(1 ≤ i ≤ l − 1, 1 ≤ j ≤ n) 2i3j−1

2i7k(1 ≤ i ≤ l − 1, 1 ≤ k ≤ c) 3 · 2i7k−1

3j7k(1 ≤ j ≤ n, 1 ≤ k ≤ c) 4 · 3j7k−1

2i3j7k(1 ≤ i ≤ l − 1, 1 ≤ j ≤ n, 1 ≤ k ≤ c) 2i+13j7k−1

2l 2l−17c

2l3j(1 ≤ j ≤ n) 2l3j−17c

Table 5.3

In this case, G always has perfect order subsets.

When m and n = 2a3b are not relatively prime, the case is more compli-

cated. Before we consider, we need to see a new related definition and several

lemmas.

Definition 5.2.8. A group G is said to have almost perfect order subsets if the

number of elements in each order subset of G is a divisor of 2|G|.

Lemma 5.2.9. In G ∼= Zpn ×Zpm , where p is a prime, there are (p2 − 1) · p2i−2

elements of order pi, where i ≤ m and i ≤ n.

Proof. We first count the number of elements (x, y), where x is of order pi in

Zpm , and y is of order less than or equal to pi in Zpn . There are

Φ(pi) · (1 + Φ(p) + Φ(p2)... + Φ(pi))
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= (p− 1)pi−1[1 + (p− 1) + (p− 1)p + ... + (p− 1)pi−1] = (p− 1)p2i−1

choices.

Next, we count ordered pairs in Zpm × Zpn with an element of order

strictly less than pi in the first position and an element of order exactly pi

in the second position. There are

[1 + Φ(p) + Φ(p2)... + Φ(pi−1)] ·Φ(pi) = pi−1 · (p− 1)pi−1 = (p− 1)p2i−2

such elements. In sum, we have

(p− 1)p2i−1 + (p− 1)p2i−2 = (p2 − 1) · p2i−2

elements of order pi in Zpm ×Zpn .

The proofs of the following lemma is similar to the proof for the Going-

Up Theorem in Finch and Jones’ paper [1].

Lemma 5.2.10 (Z.). Let G ∼= (Zpa)2 × M and Ĝ ∼= (Zpa+1)2 × M, where a is a

positive integer and p is a prime that does not divide |M|. If G has almost perfect

order subsets, then Ĝ has almost perfect order subsets, i.e the Going-Up Theoren in

[1] can be applied to almost POS groups.

Proof. Let (x, y) ∈ Ĝ, where x is an element of (Zpa+1)2 and y is an element of

M. Let d be the order of (x, y). We prove this lemma from two cases.

Case 1: We can assume that d is not divisible by pa+1. Since G is almost POS,

then by Lemma 2.0.3, the cardinality of the order subset of Ĝ determined by

(x, y) divides 2 · |Ĝ|.

Case 2: Suppose d is divisible by pa+1. Then we have that the order of x in

(Zpa+1)2 is exactly pa+1, and we can factor d as pa+1m, where m is the order of

y in M. Next, we let k be the number of elements in M that have order m. By

Lemma 5.2.9, we know the total number of elements of order d is (pa)2(p2 −
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1)k. Lemma 5.2.9 tells us that the number of elements in G having order pam is

(pa−1)2(p2− 1)k, which divides 2|G| since G is almost POS, Since |Ĝ| = p2|G|,

it follows that p2(pa−1)2(p2 − 1)k = (pa)2(p2 − 1)k divides |Ĝ|.

Similarly, the Chopping-Off Theorem holds in the case of almost POS

groups.

Lemma 5.2.11. Suppose that G has almost perfect order subsets and that G ∼=

Zpa1 ×Zpa2 × ...Zpas−1 × (Zpas )2 × M, where p is a prime not dividing |M| and

a1 ≤ a2 ≤ ... ≤ as−1 < as are positive integers. Then Ĝ ∼= (Zpas )2 ×M also has

almost perfect order subsets.

Proof. Let (x, y) ∈ Ĝ, with x an element of (Zpas )2 and y an element of M. So

the order of (x, y) can be factored as pbm with b ≤ as, where pb is the order of

x and m is the order of y. Also, suppose that pck, where p does not divide k,

is the number of elements in M that have order m. Then by Lemma 5.2.9, the

number of elements in Ĝ that have order pbm is (p2 − 1)(pb−1)2 · pck.

Next, we intend to show (p2 − 1)(pb−1)2 · pck is a divisor of 2 · |Ĝ|. We

calculate the number of elements in Ĝ of order pas m to be pa(p2 − 1)(pas−1)2 ·

pck, where a = ∑s−1
i=1 ai. This number divides 2 · |G| since G is almost POS. We

conclude that (p2 − 1)k is a divisor of |M|. Thus (p2 − 1)(pb−1)2 · pck divides

2 · |Ĝ|, hence Ĝ has perfect order subsets.

The Going-Down Theorem is also true for almost POS groups. This is a

corollary of Lemma 5.2.11.

Lemma 5.2.12. Suppose that G has almost perfect order subsets and that G ∼=

(Zpa)2 × M, where p is a prime not dividing |M|. Then Ĝ ∼= (Zp)2 × M also

has almost perfect order subsets.
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Theorem 5.2.13 (Z.). Let G be a group such that G ∼= Z2c3dm oφ Z2e3 f (e, f ≥ 1),

and a, b are generators of Z2c3dm and Z2e3 f , respectively. φb(a) = a−1. If G is a POS

group, G has to be the following case:

c < e− 1, d 6= f .

Further, in order to be ba POS group, G has to be in the form

Z3 f × ((Z2c ×Z3d ×Z7n)o Z2e)

Proof. Let m = qn1
1 qn2

2 ...qnk
k , where qi 6= 2 or 3 for all 1 ≤ i ≤ k, and the qi are

primes. Then G ∼= Z2c3dm oφ Z2e3 f
∼= Z3 f × ((Z2c ×Z3d ×Zq

n1
1
×Zqn2

2
...×

Zq
nk
k
)o Z2e).

Case 1: Suppose c ≥ e. Then we count the number of elements of order 2e, i.e.

|OS(2e)|. Let G′ ∼= (Z2c ×Z3d ×Zq
n1
1
×Zqn2

2
...×Zq

nk
k
)o Z2e and (x, y) ∈ G′.

Then o(x, y) = 2e if y /∈ ker(φ). There are 2e−12c3dqn1
1 qn2

2 ...qnk
k of such ordered

pairs. If y ∈ ker(φ), then o(x, y) = 2e if o(x) = 2e in Z2c × Z3d × Zq
n1
1
×

Zqn2
2

... ×Zq
nk
k

. There are 2e−12e−1 = 22e−2 of them. Adding them together,

we have 2e+c−13dm + 22e−2 elements in G′. By the definition of POS-groups,

we need to have 2e+c−13dm + 22e−2 divide |G| = 2e+c3 f+dqn1
1 qn2

2 ...qnk
k , which is

equivalent to having

22e−2(2c−e+13dqn1
1 qn2

2 ...qnk
k + 1) | 2e+c3 f+dqn1

1 qn2
2 ...qnk

k .

It is true if 2c−e+13dqn1
1 qn2

2 ...qnk
k + 1 divides 2c−e+23 f+dqn1

1 qn2
2 ...qnk

k . This is not

possible since 2c−e+23 f+dqn1
1 qn2

2 ...qnk
k is a multiple of 2c−e+2, while 2c−e+2 can-

not divide 2c−e+13dqn1
1 qn2

2 ...qnk
k + 1. Therefore, G does not have perfect order

subsets when c ≥ e.

Case 2: Suppose c = e− 1 and f = d. Then G ∼= Z3 f × ((Z2c ×Z3 f ×Zq
n1
1
×

Zqn2
2

...×Zq
nk
k
)o Z2c+1). In G, there are 8 elements of order 3, and by Lemma
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5.2.9, there are 3 · 22c−2 elements of order 2c and q1 − 1 elements of order q1.

We then have that the number of elements of order 3 · 2c · q1 is 8 · 3 · 22c−2 ·

(q1 − 1) = 22c+2 · [(q1 − 1)/2]. But 22c+2 · [(q1 − 1)/2] does not divide |G| =

22c+132 f qn1
1 qn2

2 ...qknk since 22c+2 > 22c+1. Therefore, G does not have perfect

order subsets in this case.

Case 3: Suppose c < e− 1 and f = d. We know y 6∈ ker(φ) if and only if o(y) =

2e in Z2e , and o(x, y) = 2e in G′ when y 6∈ ker(φ). Let (z, x, y) ∈ G, where

z is an element in Z3 f , x is an element in Z2c ×Z3d ×Zq
n1
1
×Zqn2

2
...×Zq

nk
k

,

and y is an element in Z2e . If y 6∈ ker(φ), o(z, x, y) = 3i2e for some i, with

1 ≤ i ≤ d = f . For each i, there are 2 · 3i−1 · 2e−1 · 2c · 3d · qn1
1 · q

n2
2 · ... · q

nk
k

elements of order 3i2e. This number divides |G|, so we only need to consider

(z, x, y) when o(y) 6= 2e in Z2e . All elements of this property form an abelian

subgroup of G:

Ḡ ∼= Z3 f × (Z2c ×Z3d ×Zq
n1
1
×Zqn2

2
...×Zq

nk
k
×Z2e−1).

If G is a POS group, Ḡ has to be an almost POS group, as previously defined

in this section.

By Lemma 5.2.10, Lemma 5.2.11 and Lemma 5.2.12, we know if Ḡ has

almost perfect order subsets, then Ḡ′ ∼= Z2 ×Z3 ×Z3 ×Zq1 ×Zq2 ... ×Zqk

is almost POS too. However, Ḡ′ has 8 elements of order 3, and 8 is not a

divisor of 2|Ḡ′|. Therefore, Ḡ′ is not an almost POS group, which comes to the

conclusion that Ḡ cannot be almost POS. So G is not POS when c < e− 1 and

f = d.

Case 4: Suppose c = e− 1 and f 6= d. We can first let f < d. Similar to Case 3,

we want Ḡ ∼= Z3 f × (Z2c ×Z3d ×Zq
n1
1
×Zqn2

2
...×Zq

nk
k
×Z2e−1) to be an almost

POS group. In Ḡ, the number of elements of order 2c3max{ f ,d}qn1
1 qn2

2 ...qnk
k is

22c−13 f+d−1(q1 − 1)qn1−1
1 (q2 − 1)qn2−1

2 ...(qk − 1)qnk−1
k .
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If the number of elements of order 2c3max{ f ,d}qn1
1 qn2

2 ...qnk
k can divide 2|Ḡ|, k has

to be equal to 1 and q = 7. So Ḡ ∼= Z3 f × (Z2c ×Z3d ×Z7n ×Z2c). By Lemma

5.2.9, we have that in Ḡ, there are (3 · 22c−2 elements of order 2c and 8 · 32 f−2

elements of order 3 f . Then, the number of elements of order 2c · 3 f · 7n equals

(3 · 22c−2)(8 · 32 f−2)(6 · 7n−1) = 22c+2 · 32 f · 7n−1. But 22c+2 · 32 f · 7n−1 cannot

divide |G| = 22c · 3 f+d · 7n. Therefore, G is not POS in this case.

When f > d, the proof is similar since Ḡ ∼= Z3 f × (Z2c ×Z3d ×Zq
n1
1
×

Zqn2
2

...×Zq
nk
k
×Z2e−1) is an abelian direct product.

The only situation left is c < e− 1 and f 6= d. So, if G ∼= Z2c3dm oφ Z2e3 f

has perfect only subset, it has to be this case. Next we discuss the form of G if

G is a POS group.

Case 5: Suppose c < e − 1 and f 6= d. Without loss of generality, we can

assume that f < d. By Lemma 5.2.11, we have if Ḡ ∼= Z3 f × (Z2c ×Z3d ×

Zq
n1
1
×Zqn2

2
...×Zq

nk
k
×Z2e−1) is almost POS, Ḡ′ ∼= Z2×Z3×Zq1×Zq2 ...×Zqk

is almost POS too. In Ḡ′, there are 2 · (q1 − 1)(q2 − 1)...(qk − 1) elements of

order 2 · 3 · q1q2...qk, and so 2 · (q1 − 1)(q2 − 1)...(qk − 1) divides 2|Ḡ′| = 12 ·

q1q2...qk. So k = 1 and q = 7 and Ḡ ∼= Z3 f × (Z2c ×Z3d ×Z7n ×Z2e−1). By

Lemma 5.2.9, we have that in Ḡ, there are 3 · 22c−2 elements of order 2c and

8 · 32 f−2 elements of order 3 f , and the number of elements of order 2c · 3 f · 7m

is (3 · 22c−2)(8 · 32 f−2)(6 · 7n−1). Then Ḡ is almost POS if

(3 · 22c−2)(8 · 32 f−2)(6 · 7n−1) | 2 · |Ḡ| = 2e+c · 3 f+d · 7n.

This is always true whenever c < e− 1 and f 6= d. Therefore, in order for Ḡ to

be almost POS and G to be POS, G ∼= Z3 f × ((Z2c ×Z3d ×Z7n)o Z2e).
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CHAPTER 6

OPEN QUESTIONS

Though this research has been fruitful in terms of results, many interest-

ing questions remain unsolved. These investigations mainly focused on the

constructions of semidirect products with perfect order subsets. But we know

little about the relationship of the two groups that are factors in semidirect

product POS groups or the existence of actions other than inversion that can

make groups such as Zpm oφ Z2n POS.

I conclude with a brief list of open questions:

• Let G be a group such that G ∼= Zm oφ Zn, and a, b are generators of

Zm and Zn, respectively. If φb(a) = a−1 and m is a multiple of n, is it

possible for G to be a POS group?

• Let G be a group such that G ∼= Zm oφ Z2n , and a, b are generators of Zm

and Z2n , respectively. If φb(a) 6= a−1 and φb(a) 6= a, is it possible for G

to have perfect order subsets?

• Let G be a group such that G ∼= Zm oφ Z2n , and a, b are generators of Zm

and Z2n , respectively. If o(φb(a)) 6= 2, can G have perfect order subsets?

• Let G be a group such that G ∼= Z2m × (Z7n oφ Z3l . a, b are generators of

Z7n and Z3l , respectively. If φb(a) 6= a2, is G POS?
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APPENDIX A

SEMIDIRECT PRODUCTS WITH

NON-INVERSIONS

When semidirect products have non-inversion actions, perfect order sub-

sets can still occur. We can support this by examining the following cases.

Theorem A.0.14 (Z.). Let G be a group such that G ∼= Z3p × (Z2m oφ Z2n). a,b

are generators of Zm
2 and Zn

2 , and φb(a) = a1+2m−1
. Then G is a POS-group.

Before we start to verify it, I would like to introduce a theorem that will

be useful to the proof:

Theorem A.0.15. Let G be a cyclic group with n elements and generated by a. Let

b ∈ G and let b = as. Then b generates a cyclic subgroup H of G containing n
d

elements, where d is the greatest common divisor of n and s. [64, Fraileigh]

Proof of Theorem A.0.14. Let (al, bk) ∈ Z2m oφ Z2n . We may write l = 2rα,

k = 2sβ, where 0 ≤ r ≤ m, 0 ≤ s ≤ n, 2 - α, and 2 - β. Then the order of

bk in Z2n is 2n−s. By calculation, we have

φbk(al) = al(1+2m−1)k
(1.1)

. Repeated application of (1.1) indicates (al, bk)2n−s
= (aγ, eb), where

γ = l[1 + (1 + 2m−1)k + (1 + 2m−1)2k + ... + (1 + 2m−1)2n−sk−1]
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This is a geometric series and equal to

γ = l
(1 + 2m−1)2nβ − 1
(1 + 2m−1)2sβ − 1

= 2rα
(1 + 2m−1)2nβ − 1
(1 + 2m−1)2sβ − 1

.

We have (1+ 2m−1)2nβ− 1 = [1+(2nβ
1 )2m−1 +(2nβ

2 )(2m−1)2 + ...+(2nβ
2n )(2m−1)2nβ]−

1 = ∑
2nβ
i=1 (

2nβ
i )(2m−1)i = 2m−12nβu, where u is an odd positive integer. Sim-

ilarly, (1 + 2m−1)2sβ − 1 = 2m−12sβv and v is an odd positive integer. Since

2sβ is a divisor of 2nβ, (1 + 2m−1)2sβ − 1 divides (1 + 2m−1)2nβ − 1. Hence

γ = 2r2n−sw, where w is a positive odd integer.

If m − r ≤ n − s, that is, m ≤ n + r − s, γ = 2r2n−sw ≡ 0 (mod 2m).

Therefore o(al, bk) = 2n−s.

If m− r > n− s, γ = 2r2n−sw 6≡ 0, (mod 2m). Then o(aγ, eb) = 2m−r−n+s.

So o(al, bk) = 2n−s2m−r−n+s = 2m−r.

Let’s compare this situation to the corresponding direct product: (al, bk) ∈

Z2m ×Z2n . By Theorem A.0.15 and the fact that max{ 2m

gcd(l,2m)
, 2n

gcd(k,2n)
} = 2s,

o(al, bk) = 2n−s if m− r ≤ n− s. Similarly, o(al, bk) = 2m−r if m− r > n− s. So

the orders of element in Z2m oφ Z2n correspond to the orders of elements in

Z2m ×Z2n . Therefore, instead of counting the number of elements of a given

order in G, we can count them in G′ ∼= Z3p × (Z2m ×Z2n).

Without loss of generality, we assume n ≥ m. In G′ ∼= Z3p × (Z2m ×Z2n),

when 0 ≤ i ≤ p, 1 ≤ j ≤ m, |OS(3i2j)| is equal to the multiplication of

Φ(3i) and the number of elements of order 2j in Z2m ×Z2n . By Lemma 5.2.9,

there are 3 · 22j−2 ordered pairs of order 2j in Z2m ×Z2n . Therefore, there are

Φ(3i) · 3 · 22j−2 = 3i22j−1 elements of order 3i2j in G.

Next we count the number of ordered triples of order 3i2j when 0 ≤ i ≤ p

and m < j ≤ n. There are Φ(3i) = 2 · 3i−1 elements of order 3i in Z3p . In

Z2m ×Z2n , we count ordered pairs with elements of order 2j in the second

position and any element in the first position since j > m. There are 2mΦ(2j)

such choices. So, there are 3i−12m+j elements of order 3i2j.
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We can now make the following table:

Orders of Elements Cardinalities of Order Subsets

1 1

2j(1 ≤ j ≤ min{m, n}) 3 · 22j−2

2j(min{m, n}+ 1 ≤ j ≤ max{m, n}) 2min{m,n} · 2j−1

3i(1 ≤ i ≤ p) 2 · 3i−1

3i2j(1 ≤ i ≤ p, 1 ≤ j ≤ min{m, n}) 3i22j−1

3i2j(1 ≤ i ≤ p, min{m, n}+ 1 ≤ j ≤ max{m, n}) 3i−12min{m,n}+j

Table A.1

It is easy to see that G′ ∼= Z3p× (Z2m oφ Z2n) is a POS-Group. Therefore,G ∼=

Z3p × (Z2m oφ Z2n) is a POS-group.

The above theorem can be further generalized.

Theorem A.0.16 (Z.). Let G be a group such that G ∼= Z3p × (Z2m oφ Z2n). a,b are

generators of Z2m and Z2n , respectively; and φ(b) = a1+2m−1+2m−2+...+2m−i
, where

0 ≤ i ≤ min{m− 1, n− 1}. Then G is a POS-group.

Proof. Let (al, bk) ∈ Z2m ×φ Z2n . We may write l = 2rα, k = 2sβ, where

0 ≤ r ≤ m, 0 ≤ s ≤ n, 2 - α, and 2 - β. Similar to the previous proof, we have

(al, bk)2n−s
= (aγ, eb), where

γ = l
(1 + 2m−1 + ... + 2m−i)2nβ − 1
(1 + 2m−1 + ... + 2m−i)2sβ − 1

= 2rα
(1 + 2m−1 + ... + 2m−i)2nβ − 1
(1 + 2m−1 + ... + 2m−i)2sβ − 1

.

Then (1+ 2m−1 + ...+ 2m−i)2nβ− 1 = 2m−i2nu and (1+ 2m−1 + ...+ 2m−i)2sβ−

1 = 2m−i2sv, where u and v are two positive odd integers. We can have

γ = 2r2n−sw, where w is a positive odd integer.
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The rest is the same as in Theorem A.0.14. So G in this case has perfect

order subsets.
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APPENDIX B

SEMIDIRECT PRODUCTS WITH

THE QUATERNION GROUP

First, I will consider the definition of the quaternion group as well as its

important properties that will be used in the theorems in this secion.

The quaternion group is a non-abelian group of order eight, isomorphic

to a certain eight-element subset of the quaternions under multiplication. It

is often denoted by Q or Q8, and is given by the group presentation: Q =

〈−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = −1〉, where 1 is the identity element and

−1 commutes with the other elements of the group.[8]

Property B.0.17. The elements i,j,k are all of order 4 and any two of them can generate

Q8. So another notation for Q8 is Q8 = 〈i, j|i2 = j2, j−1ij = i−1〉. [9]

Property B.0.18. Every element in Q8 can be uniquely written as iα jβ, where 0 ≤

α ≤ 3 and β ∈ {0, 1}. [10]

With the help of properties above, we can invesitigate POS of semidirect

products with the quaternion group.

Theorem B.0.19 (Z.). Let G ∼= Q8 oφ Z3n , and c is the generator of Z3n . If φ(c) =

ψc, where ψc(i) = j, and ψc(j) = ij, then G has perfect order subsets.
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Proof. First, we show that for x ∈ Z3n , o(x) 6= 3n if and only if x ∈ ker(φ).

If o(x) = 3n, then Z3n = 〈x〉 = 〈1〉. So φ(1) ∈ ker(φ) and therefore

y ∈ ker(φ) for all y ∈ Z3n . This is not possible.

If o(x) 6= 3n, then x = c3αy, where 1 ≤ α < n and 3 - y. Then φ(c3) = ψc3 ,

and ψc3(i) = ψc(ψc(ψc(i))) = ψc(ψc(j)) = ψc(ij) = ψc(i)ψc(j), since ψc is an

automorphism. Further ψc(i)ψc(j) = jij = i. For a similar reason, ψc3(j) = j.

So c3 ∈ ker(φ). Also, we have x = c3αy ∈ 〈c3〉, and therefore x ∈ ker(φ).

From c3 ∈ ker(φ), we know o(ψc) = 3. Therefore 〈ψc〉 ∼= Z3. For ck such

that 3 - k, ψck(i) is ψc(i) or ψ−1
c (i). Similarly, ψck(j) is ψc(j) or ψ−1

c (j).

Every element in Q8 can be expressed as ip jq, where p = 0, 1, 2, 3 and

q = 0, 1. Let (ip jq, ck) ∈ G ∼= Q8 oφ Z3n . Since if ck ∈ ker(φ), the order

of (ip jq, ck) would be easy to calculate, here we only consider the case when

o(ck) = 3n. There are Φ(|Z3n |) = Φ(3n) = 2 · 3n−1 such ck, where Φ is the

Euler Phi Function. We separate it into four cases, depending on ψck and q:

Case 1: When ψck = ψc and q = 0.Then ψck(i) = ψc(i) = j and ψck(j) =

ψc(j) = ij. We have

(ip, ck)3n
= (ipψck(ip)ψc2k(ip)..ψc(3n−1)k(i)p, 0)

= (ip jp(ij)pip jp(ij)p...ip jp(ij)p, 0) = ((ip jp(ij)p)3n−1
, 0).

We consider four subcases:

• If p = 0, then ip = jp = (ij)p = 1 and ip jp(ij)p = 1. So ((ip jp(ij)p)3n−1
, 0) =

(1, 0), which is the identity of Q8 oφ Z3n . So o(ip, ck) = 3n, since o(ck) =

3n.

• If p = 1, we have ip = i, jp = j and (ij)p = ij. So ip jp(ij)p = ij(ij) = −1.

Then ((ip jp(ij)p)3n−1
, 0) = (−1, 0). We further have o(ip, ck) = 2 · 3n.
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• If p = 2, then ip = −1, jp = −1 and (ij)p = −1. ip jp(ij)p = ij(ij)− 1.

Hence ((ip jp(ij)p)3n−1
, 0) = (−1, 0), and o(ip, ck) = 2 · 3n.

• If p = 3, ip = −i, jp = −j and (ij)p = −(ij). ip jp(ij)p = −ij(ij) = 1. We

have ((ip jp(ij)p)3n−1
, 0) = (1, 0) and o(ip, ck) = 3n.

Case 2: When ψck = ψc and q = 1.

(ip j, ck)3n
= (ip jψck(ip j)ψc2k(ip j)..ψc(3n−1)k(ip j), 0)

= (ip(j) · jp(ij) · (ij)p(i) · ip(j) · (j)p(ij) · (ij)p(i)...ip(j) · jp(ij) · (ij)p(i), 0)

= ((ip(j) · jp(ij) · (ij)p(i))3n−1
, 0).

Similar to Case 1, we also divide it into four small cases:

• When p = 0, ip = jp = (ij)p = 1. So ip(j) · jp(ij) · (ij)p(i) = −1, which

indicates ((ip(j) · jp(ij) · (ij)p(i))3n−1
, 0) = (−1, 0). We have o(ip(j), ck) =

2 · 3n.

• When p = 1, ip(j) = ij, jp(ij) = j(ij) = i and (ij)p(i) = ij(i) =

j. We have ip(j) · jp(ij) · (ij)p(i) = (ij)ij = −1. Then ((ip(j) · jp(ij) ·

(ij)p(i))3n−1
, 0) = (−1, 0).We have o(ip, ck) = 2 · 3n.

• When p = 2, ip(j) = −j, jp(ij) = −ij and (ij)p(i) = −i. ip(j) · jp(ij) ·

(ij)p(i) = −j(ij)i = 1. Then ((ip(j) · jp(ij) · (ij)p(i))3n−1
, 0) = (1, 0).

o(ip, ck) = 3n.

• When p = 3, ip(j) = −ij, jp(ij) = −jij = −i and (ij)p(i) = −iji = −j.

ip(j) · jp(ij) · (ij)p(i) = 1. We have ((ip(j) · jp(ij) · (ij)p(i))3n−1
, 0) = (1, 0)

and o(ip, ck) = 3n.

So when ψck = ψc, (1, ck), (i3, ck), (i2 j, ck), and (i3 j, ck) are of order 3n,

while (i, ck), (i2, ck), (j, ck), and (ij, ck) are of order 2 · 3n. So we have 4 · 3n−1

elements of order 3n and 4 · 3n−1 elements of order 2 · 3n.
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We can use the similar reasoning to calculate the order of (ip, ck) when

ψck = (ψc)−1:

Case 3: When ψck = (ψc)−1 and q = 0. Then ψck(i) = ψc2(i) = ij and ψck(j) =

ψc2(j) = i. We have

(ip, ck)3n
= (ipψck(ip)ψc2k(ip)..ψc(3n−1)k(ip), 0)

= (ip(ij)p(j)p(i)p(ij)p(j)p...(i)p(ij)p(j)p, 0) = ((ip(ij)p(j)p)3n−1
, 0)

.

• If p = 0, then ip = jp = (ij)p = 1. So jp(ij)p(i)p = 1 and o(ip, ck) = 3n.

• If p = 1, we have ip = i, jp = j and (ij)p = ij. Therefore, jp(ij)p(i)p =

ij(ij) = −1. So o(ip, ck) = 2 · 3n.

• If p = 2, we have jp = −1, (ij)p = −1 and ip = −1. It follows that

jp(ij)pip = −1. o(ip, ck) = 2 · 3n.

• If p = 3, then ip = −i, jp = −j and (ij)p = −ij. jp(ij)pip = 1. We have

o(ip, ck) = 3n.

Case 4: When ψck = (ψc)−1 and q = 1.

(ip j, ck)3n
= (ip jψck(ip j)ψc2k(ip j)..ψc(3n−1)k(ip j), 0)

= (ip(j) · (ij)p(i) · (j)p(ij) · ip(j) · (ij)p(i) · (j)p(ji)...ip(j) · (ij)p(i) · (j)p(ij), 0)

= ((ip(j) · (ij)p(i) · jp(ij))3n−1
, 0).

• If p = 0, ip = jp = (ij)p = 1. We have o(ip(j), ck) = 2 · 3n.

• If p = 1, then ip(j) = ij, (ij)pi = iji = j and jp(ij) = jij = i. ip(j) ·

(ij)p(i) · (j)p(ij) = 1. We have o(ip, ck) = 3n.
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• If p = 2, then ip(j) = −j, (ij)p(i) = −i and (j)p(ij) = −ij. Hence

o(ip, ck) = 3n.

• If p = 3, then ip(j) = −ij, (ij)p(i) = −j and (j)p(ij) = −i. Therefore, we

have (−ij)(−j)(−i) = −1 and o(ip, ck) = 2 · 3n.

When ψck = (ψc)−1, (1, ck), (i3, ck), (i2 j, ck), and (i3 j, ck) are of order 3n.

(i, ck), (i2, ck), (j, ck), and (ij, ck) are of order 2 · 3n. Therefore, 4 · 3n−1 elements

are of order 3n and 4 · 3n−1 elements of order 2 · 3n.

Considering all cases, in G ∼= Q8 oφ Z3n , there are always 8 · 3n−1 ele-

ments of order 3n and 8 · 3n−1 of order 2 · 3n.

Now, we calculate orders of elements (ip jq, ck), when 3 - k. When 3|k, ck ∈

ker(φ). Then (ip jq, ck) acts the same way as in the direct product Q8×φ Z3n . In

Q8, there is one element of order 1, one element of order 2 and six elements of

order 4. In Z3n , the order of every element, other than the identity and those

of order 3n is in form 3i, with 1 ≤ i ≤ n− 1. And there are Φ(3i) = 2 · 3i−1

elements of order 3i.

From the above information, we have the table on the next page:
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Orders of Elements Cardinalities of Order Subsets

1 1

2 1

4 6

3i(1 ≤ i ≤ n− 1) 2 · 3i−1

2 · 3i(1 ≤ i ≤ n− 1) 2 · 3i−1

4 · 3i (1 ≤ i ≤ n− 1) 4 · 3i

3n 8 · 3n−1

2 · 3n 8 · 3n−1

Table B.1

Every number in the right column can divide |G| = 8 · 3n, i.e. the num-

ber of elements of every given order can divide the size of the whole group.

Therefore, G ∼= Q8 oφ Z3n is POS.
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APPENDIX C

GAP CODE

OrderFrequency:=function(g)

local h,w;

w := [ ];

w := h−〉 Collected(List(Elements(h), Order));

return w(g);

end;

POS:=function(n)

local i, j, p, x, Small;

for i in [1..n] do

Small:=AllSmallGroups(i);

for j in Small do

if not IsAbelian(j) then

p:=OrderFrequency(j);

if ForAll(p, x−〉i mod x[2] = 0) then

Print(StructureDescription(j)," (", IdGroup(j),") is non abelian POS

\ n");
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fi;

fi;

od;

od;

end;
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