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STAR FORMATION AND THE INTERSTELLAR MEDIUM IN

NEARBY TIDAL STREAMS (SAINTS): SPITZER

MID-INFRARED SPECTROSCOPY AND IMAGING OF

INTERGALACTIC STAR-FORMING OBJECTS

S. J. U. Higdon 1, J. L. Higdon1, B. J. Smith2, AND M. Hancock3

ABSTRACT

A spectroscopic analysis of 10 intergalactic star forming objects (ISFOs) and

a photometric analysis of 67 ISFOs in a sample of 14 interacting systems is pre-

sented. The majority of the ISFOs have relative polycyclic aromatic hydrocarbon

(PAH) band strengths similar to those of nearby spiral and starburst galaxies. In

contrast to what is observed in blue compact dwarfs (BCDs) and local giant HII

regions in the Milky Way (NGC 3603) and the Magellanic Clouds (30 Doradus

and N 66), the relative PAH band strengths in ISFOs correspond to models with

a significant PAH ion fraction (< 50%) and bright emission from large PAHs

(∼ 100 carbon atoms). The [Ne iii]/[Ne ii] and [S iv]/[S iii] line flux ratios in-

dicate moderate levels of excitation with an interstellar radiation field that is

harder than the majority of the Spitzer Infrared Nearby Galaxies Survey and

starburst galaxies, but softer than BCDs and local giant HII regions. The ISFO

neon line flux ratios are consistent with a burst of star formation . 6 million

years ago. Most of the ISFOs have ∼ 106 M� of warm H2 with a likely origin

in photo-dissociation regions (PDRs). Infrared Array Camera photometry shows

the ISFOs to be bright at 8 µm, with one third having [4.5] - [8.0] > 3.7, i.e., en-

hanced non-stellar emission, most likely due to PAHs, relative to normal spirals,

dwarf irregulars and BCD galaxies. The relative strength of the 8 µm emission

compared to that at 3.6 µm or 24 µm separates ISFOs from dwarf galaxies in

Spitzer two color diagrams. The infrared power in two thirds of the ISFOs is

dominated by emission from grains in a diffuse interstellar medium. One in six

ISFOs have significant emission from PDRs, contributing ∼ 30 % −60% of the

total power. ISFOs are young knots of intense star formation.
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Subject headings: galaxies: dwarf — galaxies: formation, galaxies: individual

(Arp 72, Arp 84, Arp 87, Arp 105, Arp 242, Arp 284, Stephan’s Quintet, NGC

5291) — galaxies: interactions — infrared: galaxies

1. INTRODUCTION

In addition to triggering starbursts, mergers of dusty, gas rich disk galaxies frequently

lead to the formation of tidal tails that can stretch many disk diameters from the site of

the collision (Toomre & Toomre 1972; Schweizer 1978; Sanders & Mirabel 1996). These

structures are typically HI rich with blue UV/optical color, reflecting both their origin in

the outer spiral disk and on-going star formation (van der Hulst 1979; Schombert et al.

1990; Mirabel et al. 1991; Hibbard & van Gorkom 1996, Smith et al. 2010). Zwicky (1956)

proposed that dwarf galaxies might form out of self-gravitating clumps within tidal tails, and

indeed, concentrations of gas and star forming regions are commonly found there, with HI

masses and optical luminosities comparable with dwarf galaxies. A wide range in HI masses

have been derived for these objects, from 3×108 M� for the HI condensations in NGC 7252’s

plumes (Hibbard et al. 1994) to ≈ 1010 M� in NGC 5291 (Duc & Mirabel 1998), with ≈ 109

M� being typical (e.g., Duc & Mirabel 1994; Hibbard & van Gorkom 1996).

In this paper we use the broad term “intergalactic star forming object” (ISFO), recog-

nizing that some of them may formed as a result of tidal interactions between the parent

galaxies, others from ram-sweeping of debris material, or inflow of material, or the interplay

of more than one of these physical processes. These ISFOs range in mass from super star

clusters (104 − 106 M�) to tidal dwarf galaxies (TDGs; & 109 M�). The bound ISFOs will

become bona-fide TDGs or intergalactic clusters. Many ISFOs and their associated tidal

streams may be accreted back onto the parent galaxy, possibly triggering further star forma-

tion in the disk. Leftover material will enrich the intergalactic medium with metals and dust

(Morris & van den Bergh 1994). The fraction of ISFOs that are gravitationally bound and

long-lived is still an open question (e.g., Hibbard & Mihos 1995, Bournaud & Duc 2006, Duc

et al. 2014). Kaviraj et al. (2012) analysed data from a sample of mergers observed as part

of the Sloan Digital Sky Survey, and concluded that ∼6% of dwarfs in nearby clusters have a

tidal origin. In contrast, Hunsberger et al. (1996) concluded that TDGs may make up 30%

- 50% of the dwarf galaxy population in compact groups. Observations with high spatial

and velocity resolution are necessary to confirm that a ISFO is a physical condensation, and

not just a chance alignment of material along our line of sight. Ideally a rotation curve will

be constructed to determine whether the ISFO is gravitationally bound, i.e., a bona-fide

tidal dwarf galaxy. These observations are generally beyond, or at the limits of the current
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observatories.

Here we are studying ISFOs to look for insights into star formation that is influenced by

an external event, i.e., interacting systems. Computer simulations by Elmegreen et al. (1993)

showed that gas properties play a key role in the formation of TDGs. The elevated velocity

dispersion in the tidal stream leads to an increase in the Jeans mass resulting in massive

clouds which may be more stable and long-lived. TDGs are formed from gas stripped from

the outer portions of the parent galaxy disk. This material has a higher metallicity (e.g.,

the two TDGs in NGC 5291 have log(O/H) +12 = 8.4; Longmore et al. 1979; Pena et al.

1991; Duc & Mirabel 1998) than the gas found in isolated low-metallicity dwarfs hence the

threshold HI column density for star formation may be lower in TDGs. A typical dynamical

timescale is ∼108 yr for the formation of condensations at the tips of tidal tails, indicating

that any young stellar population has been formed in situ, and has not simply been stripped

from the disk of the progenitor galaxy along with the older stars, gas and dust (Elmegreen

et al. 1993). A luminous ISFO at the base of a tidal feature, referred to as a “hinge clump”

(e.g., Hancock et al. 2007) may be produced by orbit crowding in the tidal feature (e.g.,

Struck & Smith 2012). Additional ISFOs can be distributed in a seemingly random pattern

or distributed more regularly, in a “beads-on-a-string” structure, which is a hallmark of large

scale gravitational instability (e.g., Elmegreen & Efremov 1996, Hancock et al. 2007).

Earlier observations have shown that the mid-infrared spectra of ISFOs are rich in atomic

and molecular features from the ISM, including fine structure lines such as [Ne ii] 12.81 µm,

[Ne iii] 15.56 µm, polycyclic aromatic hydrocarbons (PAHs) and warm molecular hydrogen

( Higdon, Higdon & Marshal 2006b, hereafter HHM06). The mid-infrared spectra of star-

forming dwarf galaxies are known to differ substantially from those of spirals, with weaker

PAH emission and higher [Ne iii]/[Ne ii] line ratios (e.g., Thuan et al. 1999; Madden 2000;

Galliano et al. 2003; Houck et al. 2004a; Madden et al. 2006; Hunt et al. 2010). The higher

[Ne III]/[Ne II] ratio is a consequence of the lower metallicity (stars are hotter and dust

absorption is lower) resulting in harder ultraviolet interstellar radiation fields (ISRFs). The

weaker PAH features in dwarfs may also be due to metallicity, either directly as a result of

the paucity of available enriched raw material to build the PAHs or an indirect consequence

of the harder UV field. PAHs can be destroyed in hard UV fields (Plante & Sauvage 2002;

Gordon et al. 2008), while young systems may not have the low mass asymptotic giant branch

(AGB) stars to create PAH precursors in the interstellar medium (e.g., Galliano et al. 2008).

Hard ISRFs may preferentially destroy smaller PAHs, leading to larger PAHs on average

in dwarf galaxies, as indicated by the relative strengths of the different mid-infrared PAH

features in blue compact dwarfs (BCDs; Hunt et al. 2010). Extreme low metallicity systems

have a paucity of PAHs and a hard ISRF, but other factors in the physical environment may

drive the relative PAH strengths in more enriched environments.
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It is unknown whether the mid-infrared spectra of most tidal features more closely

resemble the global spectra of spiral galaxies or those of dwarf galaxies, since only a handful

have been studied in detail with the Spitzer Infrared Spectrograph (IRS, Houck et al. 2004b;

e.g., HHM06, Higdon & Higdon 2008, Higdon et al. 2010). Tidal features tend to have lower

metallicities than the average values for inner disks of spirals, thus may be expected to have

weaker PAH features. However, tidal structures tend to have higher metallicities on average

than classical dwarfs with the same luminosity (e.g., Weilbacher et al. 2003; de Mello et al.

2012). For example, the spectra of the TDGs in NGC 5291 show prominent PAH features

(HHM06).

Since the PAH features contribute significantly to the broadband 8 µm flux as measured

by the Spitzer Infrared Array Camera (IRAC, Fazio et al. 2004b), their emission directly

affects the IRAC colors of galaxies. Low metallicity dwarfs tend to be deficient in 8 µm

flux due to weak PAH emission relative to the underlying continuum (e.g., Engelbracht et

al. 2005, Rosenberg et al. 2006, 2008, Draine et al. 2007, Madden et al. 2006, Wu et al.

2007). ISFOs in NGC 5291 tend to have red Spitzer [4.5] - [8.0] colors (HHM06). This may

be due to higher mass-normalized star formation rates and lower proportions of underlying

older stars.

Here we investigate the Spitzer spectral properties of a set of 10 ISFOs and present a

photometric analysis of a larger sample of 67 ISFOs. In Section 2 we describe our sample

selection. In Section 3 we describe the observations and data analysis. The results are used

in Section 4 to address these key questions pertaining to the properties of ISFOs:

1) Are the relative PAH strengths best matched to models with bright emission from

small or large PAHs? 2) are the PAHs mainly neutral or charged? 3) Are the interstellar

radiation fields (ISRF) hard? 4) How much warm molecular gas do the ISFOs contain?

5) Can ISFOs be identified by their mid-infrared colors? 6) Does the bulk of the infrared

emission arise in dust illuminated by a diffuse ISRF or by dust embedded in intense fields

associated with photo-dissociation regions (PDRs)?

While addressing each question we compare the results for the ISFOs to the global

properties of different galaxy types (starburst, spirals and BCDs) and also to individual

sources in three local giant HII regions, NGC 3603 in the Milky Way, 30 Doradus (hereafter

30 Dor.) in the Large Magellanic Cloud (LMC), and N 66 in the Small Magellanic Cloud

(SMC) and knots of star formation in the disks of nearby interacting galaxies. Our findings

are summarized in Section 5.
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2. THE SAMPLE

The ISFO sample was derived from 12 systems showing clear signs of recent or on-going

gravitational interactions as evidenced by highly extended optical tails and/or bridges, plus

two additional systems with more complex interaction histories (NGC 5291/Seashell and

Stephans Quintet) with known ISFO populations. These are shown in Figure 1 and the 14

systems are briefly described in the figure captions. We purposely chose relatively nearby

systems in order to distinguish individual ISFOs within a given tidal feature subject to the

angular resolution constraints of IRAC and Multiband Imaging Photometer (MIPS). Our

intent is to identify a sufficiently large sample of ISFOs in order to derive basic properties of

the population, rather than conduct a survey of every known system with tails/plumes. The

targets were originally observed as part of Spitzer programs Tidal Dwarf Galaxies (Program

name SJH-TDGS; HHM06, Higdon & Higdon 2008), Spiral Bridges and Tails (Program

name SB&T; Smith et al. 2007a, 2008, 2010, Hancock et al. 2007) and Star Formation and

the ISM in Nearby Tidal Streams (Program name SAINTS; Higdon et al. 2010). Candidate

selection was made using the 3.6µm and 8µm images. This is discussed in Section 3.1. Our

sample consists of 67 ISFOs, which we list in Table 1. Their distances are assumed to be

that of their parent galaxies which are taken from the literature, and range from 28-140 Mpc,

with a corresponding spatial scale of 136-678 pc arcsec−1.

The ISFOs in our spectral sample with published metallicities have values of one third

solar or higher: NGC 5291 N and NGC 5291 S with log(O/H) +12 = 8.4 (Longmore et al.

1979; Pena et al. 1991; Duc & Mirabel 1998); Arp 72 with log(O/H) +12 = 8.7 (Smith et

al. 2010); Arp 105S with log(O/H) +12 = 8.4 and Arp 105N with log(O/H) +12 = 8.6 (Duc

& Mirabel 1994; and Arp 245 with log(O/H) +12 ∼8.65 (Duc et al. 2000).

Ten ISFOs from this list with F8µm & 1 mJy were observed with the IRS: Arp 72-S1,

Arp 82-N1, Arp 84-N1, Arp 87-N1 (Higdon et al. 2010), Ambartzumian’s knot (Arp 105-S2,

Higdon & Higdon 2008, Boquien et al. 2009), Arp 242-N3 in The Mice (Higdon et al. 2010),

Arp 284-SW, SQ-A in Stephan’s Quintet (Higdon & Higdon 2008, Higdon et al. 2010), and

TDG N and S in NGC 5291 (HHM06).

3. OBSERVATIONS AND DATA ANALYSIS

3.1. Spitzer Photometry

Infrared images for the majority of the sample were obtained as part of our earlier

programs. The IRAC 3.6 µm, 4.5 µm, 5.8 µm and 8 µm data for NGC 5291 were presented
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in HHM06; for Stephan’s Quintet in Higdon & et al. (2008; Boquien et al. 2009; Higdon et

al. 2010; Cluver et al. 2010) and Arp 105 in Higdon & et al. (2008; Boquien et al. 2009;

Higdon et al. 2010). The MIPS (Rieke et al. 2004) observations are presented here for

Arp 102 and NGC 5291 (also presented in Higdon et al. 2010, Boquien et al. 2010). The

remainder were presented in Smith et al. (2007a).

The IRAC data were processed using the IRAC pipeline. To be considered a ISFO a

source must satisfy the following criteria: (1) it must coincide with a tidal feature, either in

the optical or HI, (2) it must be point like in the 8 µm images, with at least 6 contiguous

pixels ≥ 3σ relative to the sky background, and (3) it must be detected to ≥ 3σ in both the

3.6 µm and 8 µm bands using aperture photometry.

To estimate the likelihood that our ISFO candidates are unrelated background sources

we multiply their corresponding 8µm source surface densities (Fazio et al. 2004a) times the

surface area of the plume or tail they are found in. For example, the four ISFO candidates

in the northern plume of Arp 65 have 8 µm magnitudes from 14.02 to 13.85, with an average

of 13.94. From the 8 µm source counts in Fazio et al. (2004a) we would expect a surface

density of 0.13 arcmin−2 for objects in this magnitude range. The northern plume covers

0.13 arcmin2, which gives a less than 2% probability that one of the four is an unrelated

background source. We derive similar estimates for our other ISFOs, except for Arp 102,

where because of the relative faintness of the ISFOs we estimate a 20% probability that one

of the two candidates is unrelated. Interestingly enough, one of these (Arp 102-N2) appears

to be a background elliptical (or possibly an old stellar cluster) based on its declining 3.6

µm through 8 µm spectral energy distribution (SED, see Table 2).

Flux densities and limits were derived using circular apertures. We adopt the zero-

point flux densities in the four IRAC bands as given in Reach et al. (2005), i.e., 280.9+
−4.1,

179.7+
−2.6, 115.0+

−1.7, and 64.13+
−0.94 Jy at 3.6, 4.5, 5.8, and 8.0 µm, respectively. For

most sources the aperture radii are either 3′′ or 5′′, with background measurements derived

from annuli with inner/outer radii of 3′′ − 7′′ or 5′′ − 10′′ respectively. A small subset of

sources (e.g., Arp 105-N1) were more extended (though still core dominated) and required

larger sized apertures. Aperture corrections were applied using the recommended values in

the Spitzer Observers Manual (SOM)1. Measured positions are listed in Table 1, while flux

densities and 1σ uncertainties for 67 ISFOs along with the object and sky aperture sizes used

are listed in Table 2. For non-detections we calculate upper-limits (3σ) defined as 3σ
√
N ,

where σ and N are the rms and number of pixels in the source aperture respectively. These

are also listed in Table 2. It is worth noting that in Stephan’s Quintet there are six objects

1http://ssc.spitzer.caltech.edu/documents/som/

http://ssc.spitzer.caltech.edu/documents/som/
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detected in 12CO(J=1-0) by Petitpas & Taylor (2005) that are not detected at 8 µm.

Preliminary data processing and calibration were performed on the MIPS 24 µm data

using the standard pipeline, producing a set of basic calibrated data products. The data were

further processed using the MOPEX software package (version 18.2.2; Makovoz & Marleau

2005). This consisted of deleting the defective first frames in each scan, recalculating flat-

fields and background levels, and re-mosaicing each field. The diffraction limited resolution

at 24 µm is 5.7′′, and a few targets are sufficiently bright to show faint Airy diffraction

rings (see Table 2). The 1σ sensitivities vary from one target field to another, but are

typically ∼ 0.1 MJy sr−1. We adopt a zero-point flux density of 7.14 Jy at 24 µm, though

it should be noted that this value is uncertain at the +
−5% level (see Engelbracht et al. 2007

for a discussion of this and other calibration issues). 24 µm flux densities (or 3σ limits)

were derived for each ISFO candidate using circular apertures of radii 6′′ or 13′′, depending

on the source brightness and degree of isolation. Local sky emission was measured within

annuli with inner/outer radii of 20′′ and 32′′. These are also listed in Table 2. Point-source

aperture corrections have been applied using the recommended values in the MIPS Users

Guide. 3σ upper-limits are calculated for non-detections with 3σ
√
N as with IRAC. As a

check of our photometry we derived flux densities using the point-source fitting algorithm

APEX in the MOPEX photometry package and found very good agreement (i.e., within the

quoted 1σ uncertainties). In this work we will quote the flux densities obtained using circular

aperture photometry to be consistent with the IRAC data, for which point-source fitting is

not recommended.

3.2. Spitzer Spectroscopy

In this paper we present Spitzer spectra of ten ISFOs (sees Tables 3-5). The IRS low

resolution spectra (IRS-LORES) were obtained with the Short-Low module (IRS-SL), which

operates between 5.2 and 7.7 µm (IRS-SL2) and 7.4 and 14.5 µm (IRS-SL1) and the IRS

Long-Low module (IRS-LL), which operates between 14 and 21.3 µm (IRS-LL2) and 19.5

and 36.0 µm (IRS-LL1). IRS-SL and IRS-LL have a resolving power, R = λ
∆λ
∼60-130. The

high resolution data (IRS-HIRES) were obtained using the IRS Short-High module (IRS-

SH), which encompasses the range 9.9 - 19.6 µm, and the IRS Long-High module (IRS-LH),

which spans 18.7 - 37.2 µm. IRS-HIRES has a resolving power, R = λ
∆λ
∼ 600.

Observations were made in the IRS Staring Mode AOR with a high accuracy blue peak-

up using a star from the Two Micron All Sky Survey catalog (Cutri et al. 2003). We obtained

a series of 4 × 60 s exposures in each of the two IRS-SL bands, and 4 × 120 s exposures

in the two IRS-LL bands. The IRS HIRES data was obtained with 3 × 120 s and 14 ×
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60 s for IRS SH and IRS LH respectively. The Staring Mode AOR splits the integration

time between two nominal nod positions on each slit. Only Arp 87-N1 was observed in

all the IRS apertures. Some of the data obtained as part of the SAINTS program is not

presented here as it was either of too low signal to noise to be useful, or the slit orientation

resulted in data where emission from the ISFO was blended with the parent galaxy. IRS-

SL spectra were obtained for Arp 72-S1, Arp 82-N1, Arp 84-N1 Arp 87-N1 (Higdon et al.

2010), “Ambartsumian’s knot” (Arp 105-S2, Higdon & Higdon 2008; Boquien et al. 2009;

Higdon & Higdon 2010), Arp242-N3 in the Mice (Higdon et al. 2010), Arp284-SW, SQ-A in

Stephan’s Quintet (Higdon & Higdon 2008; Higdon et al. 2010), and TDG N and TDG S

in NGC 5291 (HHM06). There are IRS-LL spectra for Arp 72-S1 and Arp 82-N1, and no

HIRES observations of Arp 105-S2 and Arp 242-N3.

The spectral data were processed as far as the un-flat-fielded two dimensional image

using the standard IRS S18.5 pipeline (see the SOM for further observing mode and pipeline

details). Due to the crowding of the Spitzer focal plane the individual IRS apertures are not

aligned, e.g., SH is orientated ∼ 85◦ with respect to LH. Depending on the orientation on

the sky the slit may contain emission from more than one ISFO and/or the parent galaxy.

The spectra were extracted and sky subtracted manually using the Spectroscopy Modeling

Analysis and Reduction Tool (SMART, Higdon et al. 2004) software to ensure that the

extracted spectra were dominated by light from a single ISFO and that the sky spectrum

was representative of the background emission.

The IRS-LORES sky data is acquired serendipitously during the standard observation.

For example, SL1 and SL2 are one long slit, so when the source position is nodded between

two positions in SL1, data is also acquired simultaneously in SL2 which is pointing off source.

Combining the SL1 and SL2 observations offers the potential for a SL1-sky spectrum selected

in either the region of the slit adjacent to the source during the SL1 observation (nod-data)

or from a region in one of the two off-source SL1 spectra acquired during the SL2 on-

source nod-observation. To maximize the signal-to-noise all data was inspected manually

using SMART. The data from each nod for each slit were collapsed in the cross-dispersion

direction to determine manually which data should be co-added to define the sky. The

sky data so defined are then coadded and subtracted from the two dimensional coadded

source data. The sky-subbed IRS-LORES two-dimensional data was then collapsed in the

cross-dispersion direction to determine the position of the ISFO in the slit and to check for

blending with other objects. A column was extracted, whose width in the cross-dispersion

direction scales with the instrument point spread function (see the SOM, Higdon et al. 2004,

and HHM06 for further details). A full aperture extraction was applied to the HIRES data

which included dedicated off-source sky observations.
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The extracted ISFO spectra were flat-fielded and flux-calibrated by extracting and sky

subtracting un-flat-fielded observations of the calibration stars HR 7341 (IRS-SL/LL) and ξ

Dra (IRS-SH/LH), which are subsequently divided by the corresponding template (Decin et

al. 2004, Cohen et al. 2003) to generate a one-dimensional relative spectral response function

(RSRF). The RSRF was then applied to the ISFO spectra to produce flux-calibrated spectra.

The final step of stitching spectral orders together was accomplished in the following manner:

the data from each IRS module is sky subtracted. Using the photometry routines in SMART

the SL spectra are scaled to match the IRAC 8 µm photometry. If MIPS 24 µm photometry

is available the LL and LH spectra are scaled to match the value reported in Table 2. If

there is no 24 µm photometry the spectra are stitched to the 8 µm-scaled SL spectra using

the overlapping continuum regions. For example, for the observation of the ISFO in Arp 72

the LL slit was orientated along the tidal tail, the SL data was scaled by 1.69, LL by 0.76,

SH by 4.0 and LH by 0.63. As a check on this calibration method we looked at the flux

ratio of the brightest lines observed in Arp 72-S1. The ratio of the high resolution line fluxes

to low resolution, was R([Ne iii] 15.56 µm) = 0.89, R([S iii] 18.71 µm ) = 1.03 and R([S iv]

10.51 µm = 1.00). The aperture scale factors are listed in Table 3.

Figure 2 shows the IRS low resolution spectra. The data are plotted in each object’s

rest-frame. The broad emission features from PAHs at 6.2, 7.7, 8.6, 11.3, and 12.6 µm are

clearly present. Some of the spectra show emission from [S iv] 10.51 µm as well as 0-0 S(3)

9.67 µm and 0-0 S(1) 17.04 µm lines from molecular hydrogen. Emission from [Ne ii] 12.81

µm is blended with the PAH feature, but the line is distinct in the IRS-HIRES observations.

Figure 3 shows the line profiles from the IRS-HIRES observations. The line strengths are

measured using SMART and are listed in Table 4. The strengths of the PAH features are

measured using PAHFIT (Smith et al. 2007b) and are listed in Table 5. For Arp 72-S1 and

Arp 82-N1 we have scaled LL spectra, which are included in the PAHFIT. The results do not

change when only the SL data is fitted. For consistency between the data sets for the ISFOs

reported here we scale the NGC 5291-S spectrum to match the IRAC 8 µm photometry (the

NGC 5291 N spectrum matches the photometry), and fit the PAHs in both NGC 5291 N

and NGC 5291 S spectra using PAHFIT. Apart from the 11.3 µm to 7.7 µm PAH ratio for

NGC 5291-S, the PAH ratios are within 20% of those reported in HHM06.

Extinction due to silicate absorption is best constrained for Arp 72-S1 and Arp 82-

N1 where the low resolution spectral coverage includes the two silicate features, the Si-O

stretching mode at 9.7 µm and O-Si-O bending mode at 18 µm. The fits show no evidence

for absorption. The majority of our sample are limited to the scaled SL observations where

it is difficult to discriminate between silicate absorption at 9.7 µm and PAH emission on

either side of the silicate feature. For the analysis in this paper we assume all targets have

minimal line-of-sight silicate extinction (Av ≤ 3 mag). This is also consistent with the results
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for the Spitzer Infrared Nearby Galaxies Survey (SINGS, Kennicutt et al. 2003) where 5

- 38 µm spectra were available. In that sample only 8 of the 59 galaxies had measureable

extinction at 9.7 µm (Smith et al. 2007b).

4. RESULTS AND DISCUSSION

4.1. Characterizing The PAHs

The 5-38 µm SL spectra are dominated by broad emission features. These features are

generally attributed to the spontaneous emission of an infrared photon from PAHs that have

been vibrationally excited following a single optical/UV photon absorption. The resulting

emission spectrum depends on the heat capacity (size) of the PAH, and is largely independent

of the starlight intensity. For example, the models by Li & Draine (2001) assume the

carbonaceous grains have PAH-like properties when the grains have ≤103 carbon atoms,

corresponding to a size of ∼ 10Å, and graphitic properties when much larger (≥ 100 Å).

Emission from the larger grains will peak at much longer wavelengths than observed with

the IRS. The PAH spectrum may also depend on the overall structure of the PAH, i.e., linear

vs. concentrated (Bakes et al. 2001).

PAHs have a low ionization potential (6-7 eV) and can be easily ionized through pho-

toelectric emission (PAH+) and electron capture (PAH−) (Allamandola et al. 1985). The

grain charging is dependent on the gas temperature, electron density, the ultraviolet radia-

tion field, and the cross-sections for PAH electron capture and photoelectric emission (Draine

& Li 2007, Weingartner & Draine 2001).

The 11.3 µm feature is a vibrational C-H out of plane bending mode from “solo” CH

groups implying large PAHs. The 6.2 and 7.7 µm features are from a C-C stretching mode.

Unlike the 11.3 µm PAH, the 7.7 µm feature has a much larger absorption cross-section in

PAH+ ions than neutral PAHs (see Figure 3 in Draine & Li 2007) i.e., the relative band

strength of the PAH11.3µm/PAH7.7µm ratio (hereafter, R11/7) is large for neutral PAHs and

decreases by an order of magnitude for ionized PAHs (Draine & Li 2001, see Figure 16

and references therein). In an empirical study of Galactic star forming regions Galliano et

al. (2008) concluded that the main driver of R11/7 is the PAH ionization fraction. These

differences in the relative PAH band strengths are driven by the relative ionization to re-

combination rates, which is a function of the ratio of intensity of the stellar radiation field to

the electron density. Other factors that affect the R11/7 ratio to a lesser extent are the PAH

size, the extinction, and the hardness of the ISRF (Draine & Li 2001, Galliano et al. 2008).

Figure 4 displays the PAH6.2µm/PAH7.7µm ratio (R6/7) versus R11/7 for 9 ISFOs. For
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comparison we selected sources in the literature which have a signal-to-noise ratio ≥3 for

each PAH band. The PAH flux was measured using PAHFIT (Smith et al. 2007b). We

include results from SINGS, which is a comprehensive set of observations of the inner 1-10

kpc2 of 75 nearby normal galaxies (Kennicutt et al. 2003). Each galaxy is identified as

having either a HII-like or weak AGN-like nucleus. Figure 4 also shows 24 HII-like and 24

AGN-like SINGS galaxies (Smith et al. 2007b), 6 BCDs (Hunt et al. 2010), an additional

6 BCDs, 16 starburst galaxies, 27 sources within three local giant HII regions: NGC 3603

in the Milky Way, 30 Dor. in the LMC, and N 66 in the SMC (Lebouteiller et al. 2011 and

references therein).

Two thirds of the ISFO sample have an R6/7 similar to the SINGS and starburst galaxies.

The SINGS-AGN sources tend to have a smaller ratio. Theoretical models show that R6/7

increases as the PAHs get smaller (Draine & Li 2001). In general terms the PAH size

distribution is weighted toward a population with large PAHs in sources with a weak AGN,

medium sized in the SINGS-HII and starburst galaxies, and smallest in the BCDs and in

the three local giant HII regions (NGC 3603, 30 Dor. and N 66). In Arp 105-S2, Arp 82-N1

and Arp 284-SW1 the relative strengths of the PAH 6.2 and 7.7 µm emission are similar

to what is observed in BCDs and local giant HII regions corresponding to the models with

bright emission from small PAHs, with the number of carbon atoms, NC ≤ 50, as opposed

to a model with bright emission from larger PAHs with NC∼ 100, which is appropriate for

the other ISFOs and the SINGS-HII and starburst galaxies (see Figure 16 in Draine & Li

2001).

The ISFO R11/7 ratios are consistent with the range seen in the SINGS AGN and HII

sources and starburst galaxies, and some of the NGC 3603 regions in the Milky Way. The

ISFO R11/7 is lower than what is observed in the regions in 30 Dor. and N 66 and many

of the BCDs. Again comparing the data to the Draine & Li (2001) models the ISFOs are

consistent with a mixed charge distribution with a large fraction of the PAHs being neutral

(≥ 50%) in order to produce the observed bright 11.3 µm PAH emission. R11/7 for the local

giant HII regions is consistent with a mostly neutral PAH population. The ISFO R11/7 and

R6/7 (except R6/7 for three ISFOs) values are comparable to the global properties of spirals

and starburst galaxies rather than BCDs and sources in three local giant HII regions.

4.2. ISRF Hardness and Young Stellar Population

Both the neon and the sulfur line flux ratios can be used to constrain the properties of

the underlying starburst. The [S iv]/[S iii] and [Ne iii]/[Ne ii] line flux ratios give a measure

of the hardness of the ISRF, which depends on the effective temperature of the ionizing stars
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and the ionization parameter. Lowering the metallicity produces hotter main sequence stars

for a given mass, and the radiation is harder due to reduced line blanketing and blocking.

Verma et al. (2003) used the [S iv]/[S iii] and [Ne iii]/[Ne ii] line flux ratios as an excitation

diagnostic for a sample of starburst and BCD galaxies. Their data is reproduced in Figure 5

along with our results for the ISFOs, a sample of BCDs from Hunt et al. (2010), clumps in

the ring galaxy Arp 143 (Beiraro et al. 2009) and a sample of 27 sources in three local giant

HII regions in NGC 3603, 30 Dor., and N 66 (Lebouteiller et al. 2011). The ISFOs form a

group between the starburst galaxies in the bottom left quadrant of the plot, and the BCDs

in the upper right quadrant. The line flux ratios indicate moderate excitation consistent with

our results for NGC 5291 N and NGC 5291 S (HHM06), and with the interacting galaxy

pairs NGC 4038/NGC 4039 and NGC 3690B/C (Verma et al. 2003), the BCDs Haro 3 and

Mrk 996 (Hunt et al. 2010) and regions in NGC 3603 and 30 Dor. Arp 84-N1 has a lower

neon ratio consistent with the starburst galaxies.

Hunt et al. (2010) observed an increase in the [Ne iii]/[Ne ii] flux ratio with decreasing

oxygen abundance. The BCDs tend to have larger neon ratios and the starburst sample tend

to have lower values. The sources in the giant HII regions mostly have neon line flux ratios

greater than one. Both Madden et al. (2006) and Lebouteillier et al (2011) argue that PAHs

are destroyed in harsh radiation fields with [Ne iii]/[Ne ii]& 2−3. The ISFOs have neon line

flux ratios similar to those observed in the regions in NGC 3603 (solar metallicity). The

ISFO neon and sulfur line flux ratios are lower than the observed ratios in the sources in N

66 (0.2 Z�) and the majority of sources in 30 Dor. (0.6 Z�). The individual sources in NGC

3603, 30 Dor. and N 66 exhibit a spread in the line flux ratios for a given abundance as they

sample different parts of the giant HII regions. Only three ISFOs from our sample of nine

with neon line flux data have abundance estimates (see Section 2) and the average neon line

flux ratio is 1.3. If one-third to solar metallicity or higher is typical for the ISFOs, then the

ISFOs fill the gap in the distribution of the global neon line flux as a function of metallicity,

forming a group between the starburst and BCD galaxies.

An upper limit to the age of the most recent episode of star formation can be estimated

by comparing the observed [Ne iii]/[Ne ii] line flux ratio to values generated for a range of

population synthesis models (e.g., Thornley et al. 2000, Madden et al. 2006). Assuming

the metallicity is ∼ 0.2-1 Z� and that the star formation occurred in a single burst gives an

upper limit of 6 Myr, i.e., recent star formation in the ISFOs.

In Figure 6 we plot R11/7 as a function of the [Ne iii]/[Ne ii] line flux ratio. Hunt et al.

(2010) observed an increase in R11/7 in BCDs with neon ratios greater than one. The 7.7

µm PAH emission arises from a fairly broad range of grain size (Schutte et al. 1993). Hunt

et al (2010) propose that a hard intense ISRF may destroy the small grains which contribute
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to the 7.7 µm PAH emission whilst not impacting on the intensity of the 11.3 µm emission.

If the neon line flux ratio is a good proxy for the hardness of the ISRF in the ultraviolet,

the observed scatter in R11/7 for objects with [Ne iii]/[Ne ii]> 1 suggest that the hardness of

the ISRF, as measured by the infrared line flux ratios, is not the main driver of R11/7. For

example, there is no significant increase in R11/7 in the six ISFOs with [Ne iii]/[Ne ii] > 1

and in one case for a BCD when [Ne iii]/[Ne ii] > 10. Similarly, moderately high R11/7 values

are observed in two SINGS-AGN galaxies and three sources in the local Giant HII regions

which have [Ne iii]/[Ne ii] < 1. Small PAHs need not be destroyed. The 7.7 µm emission is

stronger in ionized PAHs as compared to neutral PAHs, if the PAHs tend to be neutral in

the three local giant HII regions and in BCDs, then the difference in the PAH ion fraction

in these sources, as compared to ISFOs and SINGs galaxies, could be driving the R11/7.

Figure 7 shows the PAH 8.6 µm/7.7 µm ratio (hereafter R8/7) as a function of the

[Ne iii]/[Ne ii] line flux ratio. The PAH 8.6 µm emission is from large PAHs with a minimum

of 100 carbon atoms (Bauschlicher 2008) whereas the 7.7 µm PAH emission is from a mixture

of small and large PAHs. Both features have larger capture cross-sections for PAH+ ions

than for neutral PAHs. There is a large scatter in R8/7 for each source type, and especially

when [Ne iii]/[Ne ii] & 1. <R8/7> = 0.20 +
− 0.05 for 8 ISFOs which is consistent with the

ratio of <R8/7> = 0.17 +
− 0.03 for 45 SINGS galaxies. <R8/7> = 0.45 +

− 0.33 for 19 sources

in the three local giant HII regions (<R8/7> = 0.36 +
− 0.12 for 13 sources in 30 Dor.), and

<R8/7> = 0.31 +
− 0.13 for 8 BCDs (this does not include Mrk 1315 with R8/7= 1.8).

The ionization balance depends on the gas temperature, electron density and ultraviolet

radiation field (Weingartner & Draine 2001). The PAH ion fraction can drive the relative

strengths of the PAH bands. As the PAH ion fraction increase and/or the fraction of large

PAHs increases the PAHs can absorb longer wavelength photons and the observed emission

is less dependent on the hardness of the radiation field. The relative PAH band strengths in

the ISFOs are consistent with a mixed population of grain sizes that contain a much larger

fraction of PAH ions compared to PAHs in BCDs and sources in local giant HII regions.

4.3. Warm Molecular Gas

Warm molecular gas is detected in 7 of 8 (88%) of the ISFOs observed with IRS-HIRES

(see Table 4). To derive the mass of warm molecular hydrogen we assume that the emission

is optically thin. The critical densities of the low J levels are relatively low (ncr < 103

cm−3) and we assume that the populations are in LTE. Adopting an ortho to para ratio

of 3 we construct excitation diagrams (see HHM06 for further details). The excitation

temperature is the reciprocal of the slope of the linear fit to the natural logarithm of the
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number of molecules divided by the statistical weight in the upper level of each transition

versus the upper level of each transition. The mass is derived using the calculated excitation

temperature and the highest signal-to-noise line, the IRS-HIRES 0-0 S(1) 17.03 µm line.

Both the stitching together of the individual spectra (Section 3.2) and the use of a single

temperature component model add uncertainty to the derived molecular mass.

For Arp 72-S1 we constructed an excitation diagram using the IRS-HIRES S1 line along

with the IRS-LORES 0-0 S(0) and 0-0 S(2) lines. For a single component model the excitation

temperature is Tex = 210 +
− 9 K with ∼ 106 M� of warm H2. For Arp 82-N1 we combined the

IRS-HIRES detections of the 0-0 S(0) and 0-0 S(1) lines with the IRS-LORES measurements

of the 0-0 S(2) and 0-0 S(3) lines. The excitation temperature is Tex = 214 +
− 6 K with ∼ 106

M� of H2.

In Arp87-N1, Arp284-SW and SQ-A we only detect the 0-0 S(1) line. Adopting a value

of Tex = 200 K we estimate that there is ∼ 106 M� of warm H2 in Arp 87-N1 and Arp

284-SW1 and ∼ 107 M� of H2 in SQ-A. These results are similar to those derived for NGC

5291 N and NGC 5291 S (HHM06, note a higher excitation temperature of ∼400 K was

estimated with a fit limited to the 0-0 S(1) and 0-0 S(2) lines. Lowering the excitation

temperature gives a higher gas mass).

ALMA and CARMA observations are needed to constrain the cold molecular gas mass

and derive the warm gas fraction. Based on the limited observations of ISFOs (HHM06

reported that the warm gas mass in NGC 5291-N and NGC 5291-S is less than 1% of the

cold gas mass inferred from 12CO (1-0) observations of Braine et al. 2001) we expect it to

be < 1%, which is similar to the warm gas fraction in a sample of 59 ULIRGs (Higdon et al

2006a). These two very different classes of objects have warm H2 excitation temperatures

and masses consistent with emission from gas in PDRs.

4.4. Characterizing the Mid-infrared Spectral Energy Distribution

4.4.1. Spitzer Broadband Colors

In Figure 8 we show four Spitzer two-color diagrams for our sample of 67 ISFOs. For

comparison the SINGS sample (Dale et al 2005), a sample of star forming dwarf galaxies

collated from the literature (Smith & Hancock 2009 and references therein), a sample of

clumps identified in the disks of interacting galaxies collated from the literature (Arp 24,

Arp 82, Arp 244, Arp 284 and Arp 285; Lapham et al. 2013 and references therein) and some

template colors of HII regions, planetary nebulae (PNe), and supernovae remnants (SNRs)

in M 33 (Verley et al. 2007) are included. It should be noted that the individual sources



– 15 –

used to form each of the M 33 templates exhibit a wide range of Spitzer colors (for example,

see the middle panel of Figure 12 in Verley et al. 2007).

In general, the ISFOs have Spitzer colors similar to star forming clumps in the disks of

interacting galaxies. However, the ISFOs are redder on average in [4.5] - [8.0] colors than the

integrated colors of the SINGS galaxies or star forming dwarfs. This is likely a consequence

of bright PAH emission in the 8 µm band, as observed in the ISFO spectra displayed in

Figure 2.

This difference is apparent in panel (A) of Figure 8, where the ISFOs lie in two zones.

A red population with [4.5] - [8.0] > 3 encompasses 70% of the ISFOs (47/67). Half of these

(one third of the whole sample) have [4.5] -[8.0] > 3.7. These are redder than the global

colors of the majority of the comparison galaxies, most likely due to enhanced non-stellar

emission, particularly PAHs in the 8 µm band. The remaining third, which include the

ISFOs in Arp 242, are blue in this color, similar to the median value of the SINGS galaxies.

These may be more quiescent star forming regions, as they tend to be bluer in the other

Spitzer colors as well.

ISFOs have a [3.6] - [4.5] color similar to that of star forming clumps in the disks of

interacting galaxies, as well as the global colors of spirals and dwarfs (panels A and B of

Figure 8). A [3.6] - [4.5] color close to zero is expected if the emission in both bands is

predominantly starlight.

As shown in panels (B)-(D) in Figure 8, the ISFOs have [3.6] - [24.0] colors similar to

those of the interacting disk star forming knots, SINGS-HII, dwarf galaxies and half of the

SINGS-AGN galaxies. Some of the dwarfs, star forming clumps in interacting galaxies, and

one ISFO (Arp 82-N1) are redder in this color than the SINGS galaxies, which could be

caused by intense star formation boosting the 24 µm dust emission relative to the starlight.

The colors of ISFOs and the star forming clumps in interacting galaxy disks are clearly

separated from dwarfs when the [3.6] - [24.0] color is plotted as a function of either the [3.6] -

[8.0] (panel (D) in Figure 8) or [8.0] - [24.0] colors (panel (C) in Figure 8), but not the [3.6] -

[4.5] color (panel (B) in Figure 8). For a given [3.6] - [24.0] color the ISFOs tend to be redder

in [3.6] - [8.0] than the dwarfs. Likewise for a given [3.6] - [24.0] color the ISFOs are bluer in

[8.0] - [24.0] than the dwarfs. These color offsets are consistent with our spectroscopic results

that show the ISFOs to have bright PAH emission. In contrast, results in the literature show

that low metallicity dwarfs have intense UV fields and weak PAH features in the 8 µm band,

while the 24 µm emission arises primarily from larger dust grains. A search for the reddest

ISFOs and star forming clumps in the disks of interacting galaxies can be made using the

criteria [4.5] - [8.0] > 3.7.
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4.4.2. Fraction of Dust Luminosity From PDRs

The ISFOs were selected based on their bright 8 µm emission. Some example 3.6 - 24

µm SEDs are shown in Figure 9. The majority of the ISFOs have a distinctive ‘notched-

shaped’ SED, i.e., the flux falls from 3.6 to 4.5 µm, and then steeply rises from 4.5 to 8.0

µm. This spectral shape is characteristic of star forming regions illuminated by an intense

stellar field, and was observed in the ISFOs in NGC 5291 (HHM06). Some of the SEDs have

a flux that decreases from 3.6 µm through 5.8 µm before rising. In one case, Arp 102-N2,

the SED slopes downward from 3.6 µm through 24 µm, which is characteristic of evolved

stellar populations, i.e., an elliptical galaxy. This may be a ISFO devoid of gas and dust or

more likely, an object not associated with Arp 102.

Draine et al. (2007) fit physical dust models (see Draine & Li 2007) to 65 SINGS galaxies

using IRAC, MIPS and in some cases sub-mm photometry. The IR/sub-mm emission from

the dust depends not only on the amount of dust, but also on the location. Draine et al.

(2007) conclude that a large fraction of the dust mass in the SINGS galaxies is in the diffuse

ISM. This diffuse ISM can be characterized with an ISRF with an approximately constant

intensity, Umin = αU, where α is a scale factor ≤ 10, U= 0.88 Go,dens, where Go,dens is the

ratio of the 6-13.6 eV energy density relative to the value of 5.29 ×10−14 erg cm−3 measured

by Habing (1968) for the local ISRF.

Most of the dust mass in galaxies is relatively cool and radiates longward of 60 µm.

A small fraction of the total dust mass resides in regions illuminated by a more intense

radiation field (U > Umin), for example PAHs in PDRs. In one in seven SINGS galaxies

the emission from these intensely illuminated regions (likely PDRs) contribute a significant

fraction (& 30%) of the total power emitted by the dust grains (Draine et al. 2007).

Our dataset is limited to photometry at wavelengths < 30 µm and is insufficient to be

used to fit models, and to derive the dust mass and properties in detail. However we can use

the Draine & Li (2007) models, and the Draine et al. (2007) results for the SINGS galaxies,

to estimate what fraction of the dust luminosity is likely to come from intensely illuminated

(U > 102) regions (e.g., PDRs fIntense), and where the bulk of the IR emission originates in

the ISFOs.

Emission from dust (including PAHs) in the ISM heated by a diffuse ISRF, has λFλ(8µm)

> λFλ(24µm) (Draine & Li 2007). In regions illuminated by intense starlight the emission

at 24 µm is from both single-photon heating of PAHs and multi-photon heating of larger

grains. Emission from these more intensely illuminated regions, i.e., PDRs, has λFλ(8µm)

≤ λFλ(24µm).

Following the recipe in Draine & Li (2007) we will assume that the flux measured in the
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IRAC 3.6 µm band apertures is stellar in origin, and can be approximated by emission from

a 5000 K blackbody. We extrapolate this stellar contribution to 8 µm and 24 µm in order to

calculate the non-stellar flux in these bands using Fν(NS)(8 µm) = Fν(8 µm) - 0.260 Fν(3.6

µm) and Fν(NS)(24 µm) = Fν(24 µm) - 0.0326 Fν(3.6 µm). In the absence of extinction and

the presence of red giants and AGB stars this simple blackbody subtraction will overestimate

the non-stellar (dust) emission. In the presence of bright 3.3 µm PAH emission the stellar

emission will be over-estimated. The 3.3 µm PAH emission in the 3.6 µm band is sensitive

to the abundance of the smallest PAHs and the PAH charge state (Draine & Li 2007).

The non-stellar emission in the 8 µm band is dominated by single photon heating of

PAHs, and it is proportional to total starlight power absorbed by the dust (i.e., νFν(71µm)+

νFν(160µm) flux; Draine & Li 2007). Using the photometry for 23 SINGS-HII spiral galaxies

(Dale et al. 2007) we find < νFν(71µm) + νFν(160µm) >= (5.00+
−1.5)× < νFνNS(8µm) >.

Draine & Li (2007) show that the fraction of the total emission supplied from high

intensity (likely PDR) regions with U > 102 is related to the observed non-stellar power at

24 µm and 8 µm.

P24 − 0.14P8 =
< νFνNS(24µm) > −0.14 < νFνNS(8µm) >

< νFν(71µm) > + < νFν(160µm) >
(1)

The numerator in Equation (1) is a measure of the emission from large grains that

will only radiate at 24 µm when exposed to intense starlight. The 24 µm emission from

single-photon heating is subtracted using the weighted 8 µm flux, as the 8 µm emission is

dominated by single-photon heating of PAHs. fIntense for the SINGS galaxies is given by the

following relation (see Figure 24, Draine et al. 2007):

f(Intense;Ld;U > 102) ∼ 1.05(P24 − 0.14P8 − 0.035)0.75 (2)

The ISFOs and SINGS-HII galaxies have similar [8.0] - [24.0] colors, and we assume

the ISFOs follow this relation. The ISFOs were not observed with MIPS in the 71 µm and

160 µm bands. However by substituting (5.00+
−1.5)× < νFνNS(8µm) > for the denominator

in Equation (1) we can estimate fIntense using Equation (2). The largest uncertainty is

the assumption that the PAH abundance in the ISFOs is similar to that observed in the

SINGS sample. We do not know of any objects with an enhanced PAH abundance relative

to SINGS-HII, but a PAH deficit is observed in AGN environments and low metallicity

systems. The ISFOs in our spectral sample with published metallicities have values of one

third solar or higher, this is above the regime where dwarfs are observed with a PAH deficit

(e.g., Madden et al. 2006), and the ISFOs have bright PAH emission. If the other ISFOs
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in the photometric sample have a lower abundance and a corresponding PAH deficit, we

will underestimate the total starlight power absorbed by the dust using this method, and

overestimate fIntense. However, we do not expect there to be a PAH deficit, the ISFO spectra

have bright 8µm features, and the larger photometric sample have a ‘notched-shaped’ SED

characteristic of star forming regions with bright PAH emission.

Some example ISFO SEDs are given in Figure 9. We have overlaid the SED for NGC

3190, which is characteristic of a region dominated by emission from grains in the diffuse

ISM, and Mrk 33 which is characteristic of emission from grains in PDRs. We have 24

µm data for 57 sources. The emission between 8 µm and 24 µm in the ISFOs is a mix of

these two templates.

For the 41 ISFOs with 24 µm detections we can estimate fIntense directly, and for an

additional 16 ISFOs the 24 µm limit is consistent with a ≤ 10% fIntense. Two thirds (37/57)

of the ISFOs are dominated by emission from the diffuse ISM with a .10% contribution

from PDRs based on their 8 - 24 µm emission. One in six ISFOs have a significant PDR

component, with fIntense ∼ 30% in Arp 72-S2 through Arp 72-S5, Arp82-S2, Arp 82-S4, NGC

5291-13, NGC 5291-26 (TDG-N), NGC5291-28, and fIntense ∼ 60% in Arp 82-N1. This is

comparable to SINGS, where one in seven galaxies have fIntense & 30% (Draine et al. 2007).

ISFOs with fIntense ≥ 30% tend to have a red [4.5] - [8.0] color. However the reddest

ISFOs ([4.5] - [8.0] > 3.7) are not correlated with fIntense. The PAH emission in ISFOs is

predominantly from a diffuse ISM.

5. Summary

We have investigated a sample of 67 ISFOs from 14 systems, consisting of 13 interacting

galaxy pairs and Stephan’s Quintet. The ISFOs range from classical TDGs at the tips of

tidal tails, groups of sources that together define “beads-on-a-string”, plus a luminous “hinge

clump” at the base of a tidal feature. In the introduction we posed a number of questions

concerning the mid-infrared properties of ISFOs. Here we summarize our response to those

questions.

Spitzer IRS observations of 10 ISFOs in Arp 72, Arp 82, Arp 84, Arp 87, Arp 105, Arp

242, Arp 284, NGC 5291 and Stephan’s Quintet indicate that:

1) Two thirds of the ISFO sample have an R6/7 similar to the SINGS and starburst

galaxies, which corresponds to the models with bright emission from large PAHs (NC ∼
100). In Arp 105-S2, Arp 82-N1 and Arp 284-SW1 R6/7 is similar to what is observed in
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BCDs and local giant HII regions, corresponding to the models with bright emission from

small PAHs (NC ≤ 50).

2) PAH models with the observed ISFO R11/7 indicate a mix of neutral and charged

PAHs with ≥50% of the PAHs being neutral. The <R11/7 > for the ISFOs is consistent with

SINGS AGN and HII sources and starburst galaxies. Sources in the three local giant HII

regions (NGC 3603, 30 Dor. and N 66) and BCDs tend to have a much larger fraction of

neutral PAHs.

3) The [Ne iii]/[Ne ii] and [S iv]/[S iii] line flux ratios are used as an excitation diagnostic

and as a proxy for the slope of the ISRF in the UV. The ionized gas in the ISFOs indicates

moderate levels of excitation with an ISRF that is harder than the majority of the SINGS

and starburst galaxies but softer than BCDs and local giant HII regions. The neon line flux

ratios are consistent with population synthesis models for recent star formation, i.e., a burst

of star formation . 6 million years ago. The wide range in the observed R11/7 for different

galaxies for a given value of neon line flux ratio implies that R11/7 is driven by a change in

the PAH ion fraction. <R8/7> = 0.20 +
− 0.05 for 8 ISFOs, and is consistent with the <R8/7>

observed in SINGS galaxies. The ionization fraction can drive the relative strengths of the

PAH bands. As the PAH ion fraction increases and/or the PAH grain size increases the

PAHs can absorb longer wavelength photons and the observed emission is less dependent on

the hardness of the radiation field.

4) Emission from the low-J rotational lines from warm molecular hydrogen is detected

in 88% (7/8) of the ISFOs corresponding to ∼ 106 M� of warm H2.

Analysis of the IRAC and MIPS photometry for 67 ISFOs confirms that the ISFOs have

a ‘notched-shaped’ SED, which is characteristic of star forming regions.

5) The ISFOs separate into two groups in [4.5] - [8.0] color. The blue group ([4.5] -

[8.0] < 3) has colors similar to SINGS galaxies. The red group is redder on average than

normal spirals, dwarf irregulars and BCD galaxies. This is caused by bright emission at 8

µm, most likely from PAHs. The observed color offsets between dwarfs and ISFOs when the

[3.6] - [24.0] color is plotted as a function of either the [3.6] - [8.0] , or [8.0] - [24.0] color, are

consistent with our spectroscopic results that show the majority of the ISFOs have a ISM

with bright PAHs, illuminated by diffuse stellar light, in contrast to low metallicity dwarfs.

ISFOs have colors similar to either star forming knots in the disks of interacting galaxies

(red [4.5] - [8.0] color) or global properties of SINGS-HII galaxies (blue [3.6] - [8.0] color),

but not the global properties of dwarf galaxies.

6) In two thirds (37/57) of the ISFOs the infrared power is dominated by emission from

grains in the diffuse ISM illuminated by a ISRF with Go ≤ 10. One in six ISFOs have a
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significant PDR component, with fIntense ∼ 30% in Arp 72-S2 through Arp 72-S5, Arp82-S2,

Arp 82-S4, NGC 5291-13, NGC 5291-26 (TDG-N), NGC5291-28, and fIntense ∼ 60% in Arp

82-N1.

This paper compared the mid-infrared properties of ISFOs to other galaxy types and

sources in local giant HII regions. The ISFOs are observed to have bright PAH emission with

a significant fraction of PAH ions, that is located in a diffuse ISM. This is similar to what

is observed in SINGS-HII galaxies. In contrast the relative PAH band strength in BCDs

indicates a population of mainly neutral PAHs, consistent with the emission from sources in

local giant HII regions, which are exposed to more intense stellar radiation fields.
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which is operated by the Jet Propulsion Laboratory, California Institute of Technology un-

der NASA contract 1407. Support for this work was provided by NASA through Con-
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NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Labo-

ratory, California Institute of Technology, under contract with the National Aeronautics and

Space Administration; Partial funding for this work was provided by Spitzer/NASA grants

RSA No.s 1346930 (Higdon & Higdon), 1353814 (Smith & Hancock). We thank Bruce Draine

and the referee for constructive comments, which have improved this paper.
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Table 1. Spitzer 8 µm ISFOs

Object RA (J2000) Dec (J2000) D

h:m:s ◦:’:” Mpc

Arp 65-N1 00:21:47.74 +22:24:55.9 75.4

Arp 65-N2 00:21:49.43 +22:24:41.2 75.4

Arp 65-N3 00:21:50.18 +22:24:34.5 75.4

Arp 65-N4 00:21:50.74 +22:24:26.3 75.4

Arp 65-S1 00:21:51.53 +22:23:38.4 75.4

Arp 65-S2 00:21:53.48 +22:23:27.9 75.4

Arp 65-S3 00:21:53.14 +22:23:27.9 75.4

Arp 72-S1 15:46:58.24 +17:52:32.7 46.5

Arp 72-S2 15:46:57.02 +17:52:22.1 46.5

Arp 72-S3 15:46:57.47 +17:52:27.2 46.5

Arp 72-S4 15:46:57.02 +17:52:22.9 46.5

Arp 72-S5 15:46:56.77 +17:52:19.4 46.5

Arp 82-N1 08:11:13.93 +25:13:09.6 57.7

Arp 82-S1 08:11:12.56 +25:11:40.9 57.7

Arp 82-S2 08:11:12.97 +25:11:25.7 57.7

Arp 82-S3 08:11:13.06 +25:11:21.2 57.7

Arp 82-S4 08:11:14.02 +25:11:13.8 57.7

Arp 84-N1 13:58:33.52 +37:27:42.3 48.9

Arp 87-N1 11:40:45.11 +22:25:58.8 100.2

Arp 102-N1 17:19:17.20 +49:04:45.2 101.8

Arp 102-N2 17:19:17.14 +49:04:38.7 101.8

Arp 104-S1 13:32:01.69 +62:41:32.9 45.7

Arp 105-N1 11:11:12.68 +28:45:55.0 123.6

Arp 105-N2 11:11:12.59 +28:45:37.6 123.6

Arp 105-S1 11:11:13.37 +28:41:24.6 123.6

Arp 105-S2 11:11:13.46 +28:41:16.3 123.6

Arp 107-E1 10:52:14.78 +30:04:06.5 140.1

Arp 107-SW1 10:52:12.82 +30:03:49.6 140.1

Arp 107-N1 10:52:12.63 +30:04:21.5 140.1

Arp 242-N1 12:46:10.45 +30:45:31.0 93.1

Arp 242-N2 12:46:10.45 +30:45:22.6 93.1

Arp 242-N3 12:46:10.46 +30:45:12.1 93.1

Arp 242-N4 12:46:10.55 +30:45:04.0 93.1

Arp 242-N5 12:46:10.46 +30:44:53.2 93.1

Arp 242-N6 12:46:10.42 +30:44:34.0 93.1

Arp 242-N7 12:46:10.37 +40:44:26.2 93.1



– 25 –

Table 1—Continued

Object RA (J2000) Dec (J2000) D

h:m:s ◦:’:” Mpc

Arp 242-N8 12:46:10.33 +30:44:20.8 93.1

Arp 284-E1 23:36:18.53 +02:09:26.5 39.5

Arp 284-SW1 23:36:13.37 +02:09:03.7 39.5

Arp 284-SW2 23:36:12.96 +02:09:01.7 39.5

Arp 285-N1 09:24:18.49 +49:15:18.6 27.9

SQ-A 22:35:58.91 +33:58:49.5 90.8

SQ-B 22:36:10.38 +33:57:20.0 90.8

NGC 5291-13 12:46:10.45 -30:45:31.0 62.0

NGC 5291-15 12:46:10.45 -30:45:31.0 62.0

NGC 5291-16 12:46:10.45 -30:45:31.0 62.0

NGC 5291-17 12:46:10.45 -30:45:31.0 62.0

NGC 5291-18 12:46:10.45 -30:45:31.0 62.0

NGC 5291-19 12:46:10.45 -30:45:31.0 62.0

NGC 5291-22 12:46:10.45 -30:45:31.0 62.0

NGC 5291-25 12:46:10.45 -30:45:31.0 62.0

NGC 5291-26 12:46:10.45 -30:45:31.0 62.0

NGC 5291-28 12:46:10.45 -30:45:31.0 62.0

NGC 5291-30 12:46:10.45 -30:45:31.0 62.0

NGC 5291-31 12:46:10.45 -30:45:31.0 62.0

NGC 5291-32 12:46:10.45 -30:45:31.0 62.0

NGC 5291-33 12:46:10.45 -30:45:31.0 62.0

NGC 5291-36 12:46:10.45 -30:45:31.0 62.0

NGC 5291-39 12:46:10.45 -30:45:31.0 62.0

NGC 5291-41 12:46:10.45 -30:45:31.0 62.0

NGC 5291-42 12:46:10.45 -30:45:31.0 62.0

NGC 5291-43 12:46:10.45 -30:45:31.0 62.0

NGC 5291-45 12:46:10.45 -30:45:31.0 62.0

NGC 5291-47 12:46:10.45 -30:45:31.0 62.0

NGC 5291-49 12:46:10.45 -30:45:31.0 62.0

NGC 5291-50 12:46:10.45 -30:45:31.0 62.0

NGC 5291-51 12:46:10.45 -30:45:31.0 62.0
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Table 3. Aperture Scale Factorsa

Module Arp 72 Arp 82 Arp 84 Arp 87 Arp 105 Arp 242 Arp 284 NGC 5291 NGC 5291 SQA

S1 N1 N1b N1b S2 N3 SW1b Nc Sc

SL 1.69 0.87 1.41 1.0 1.19 1.43 0.90 1.04 1.72 4.25

LL 0.76 0.95 0.64 0.24 · · · · · · · · · · · · · · · · · ·
SH 4.0 0.94 2.81 0.34 · · · · · · 0.76 · · · · · · 7.41

LH 0.63 0.78 0.49 0.23 · · · · · · 0.40 · · · · · · · · ·

aApertures listed in Table 2

bNo MIPS 24µm photometry

cNo sky data available for HIRES see HHM06

Table 4. Line Flux

Linea Arp 72 S1b Arp 82 N1c Arp 84 N1 Arp 87 N1 Arp 284 SW1 NGC 5291Nd NGC 5291Sd SQA

[SIV] 11.61+− 0.94 8.80+− 0.46 ≤4.50 · · · 5.51+− 0.49 7.40+− 0.15 1.05+− 0.22 7.66+− 2.16

10.51 µm -0.16 -0.15 · · · · · · -0.05 -0.02 -0.00 -0.05

[NeII] 13.34+− 5.71 15.35+− 0.73 5.29+− 0.34 0.99+− 0.05 15.97+− 0.54 10.65+− 0.06 4.05+− 0.31 26.24+− 2.20

12.81 µm -0.09 -0.17 -0.13 -0.02 -0.02 -0.02 -0.01 -0.22

[NeIII] 21.74+− 4.99 30.30+− 0.49 1.34+− 0.25 0.51+− 0.17 31.14+− 0.44 25.31+− 1.03 5.47+− 0.11 35.37+− 2.60

15.55 µm -0.31 -0.46 -0.07 -0.10 -0.56 -0.06 -0.02 -0.60

[SIII] 15.45+− 1.66 17.90+− 0.52 2.20+− 0.44 0.71+− 0.18 19.44+− 0.76 15.45+− 0.58 4.66+− 0.17 23.26+− 3.18

18.71 µm -0.21 -0.23 -0.20 -0.54 -0.25 -0.04 -0.01 -0.35

[SIII] 1.55+−0.17 3.64+−0.32 · · · · · · 4.78+−0.08 · · · · · · · · ·
33.48 µm -0.21 -0.23 · · · · · · -0.24 · · · · · · · · ·
[SiII] 1.66+−0.40 1.96+−0.61 · · · · · · · · · · · · · · · · · ·
34.81 µm -0.13 · · · · · · · · · · · · · · · · · · · · ·
H2 S2 ≤8.4 ≤1.95 ≤1.29 0.40+− 0.13 ≤1.35 1.90+− 0.80 0.90+− 0.40 ≤3.09

12.28 µm · · · · · · -0.04 · · · -0.00 -0.00 -0.04

H2 S1 3.1+−0.9 2.57+− 0.84 ≤2.04 0.80+− 0.21 3.01+− 0.37 1.10+− 0.40 1.30+− 0.30 14.07+− 3.47

17.03 µm · · · -0.02 · · · -0.14 -0.04 -0.00 -0.00 -0.22

H2 S0 ≤0.31 7.48+− 1.50 · · · · · · · · · · · · · · · · · ·
28.22 µm · · · -0.05 · · · · · · · · · · · · · · · · · ·

a[ W cm−2] scaled by 1022. Negative equivalent widths [µm] denote line emission.

bThe molecular mass is calculated using the line fluxes measured in the IRS-LORES spectrum: H2 S0 = (4.01+−0.4) 1022W cm−2,

H2 S1 = (3.1+−0.9) 1022W cm−2, H2 S2= (8.0+−1.7) 1022W cm−2.

cThe lines are blueshifted wrt to the rest wavelength for Arp 82 by ∼ 200 km s−1. The molecular mass is calculated using the

HIRES fluxes for the H2 S0 and S1 lines and the IRS-LORES fluxes for the H2 S2 = (2.6+−0.3) 1022W cm−2, H2 S3 = (4.1+−1.0)1022W

cm−2.

ddata from HHM06
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Arp 65
N1

N2
N3

N4

S1

S2S3

Fig. 1.— Images for the 14 interacting systems, except for NGC 5291 (see HHM06) are

displayed in three panels: left-right 3.6, 8.0 & 24 µm. North is at the top and west is to

the right. ISFOs are indicated with arrows. A linear transfer function is used in all images,

which are displayed on the same scale. A 30′′ scalebar is shown in each middle panel. Arp

65 is a widely separated equal mass pair of galaxies. The western galaxy has two tails. The

northern tail has beads of star formation terminated with a hinge clump at the base of the

tail. The southern tail has an offset between old and young stars (Smith et al. 2007).

Arp 72

S1

S2

S3
S4

S5

Fig. 1.— Arp 72 consists of the peculiar starburst (NGC 5996) with a strong interaction

with its smaller companion NGC 5994. The eastern arm of NGC 5996 is prominent in the

UV/visible while the western arm is prominent at both UV/visible wavelengths and at 8

µm. The western arm forms a bridge with the companion. The brightest 8 µm ISFO is in

the bridge and is at the base of the bifurcation of the bridge/arm material.
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Arp 82

N1

S1

S2
S3

S4

Fig. 1.— cont. Arp 82 is an M51-like system. NGC 2335 is a knotty spiral with a

small companion NGC 2536 on the extended southern arm. The southern arm is visible at

UV/optical and infrared wavelengths whereas the northern arm is prominent in UV/optical

images and absent at 8 µm. We identify a bright hinge-clump Arp82-N1 at the base of the

northern tail. The brightest ISFO in the southern tail is labeled Arp 82-S1.

N1

Arp 84

Fig. 1.— cont. Arp 84. NGC 5395 is the large companion and is an asymmetric spiral.

NGC 5394 has two open arms. The southern arm connects to NGC 5395. We observed

the brightest 8 µm bead/ISFO in the northern tail. Emission from the ISFO at 24 µm is

confused by diffraction from NGC 3808A. Smith et al. (2007a) note that there may be some

accretion material associated with the northern tidal tail.
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N1

Arp 87

Fig. 1.— cont. Arp 87 is a more equal-mass interacting pair, NGC 3808 and NGC 3808A.

NGC 3808 has a polar ring-like structure. We have observed the brightest 8 µm knot in the

bridge star forming region, Arp 87-N1. Emission from the ISFO at 24 µm is confused by

diffraction from the main galaxy.

Arp 102
N1

N2

Fig. 1.— cont. Arp 102 is an interaction between a spiral and elliptical galaxy. We imaged

the tidal tail to the north of the northern spiral galaxy. Schombert et al. (1990) note that

the tail is divided into two by an absorption band and looks like a spiral arm that has been

straightened by the interaction between the galaxy pair.
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S1

Arp 104
          (South)

Fig. 1.— cont. Arp 104. NGC 5216 is a peculiar Elliptical connected by an HI bridge to its

northern companion (NGC 5218). Arp 104-S1 is at the tip of the tail extending away from

NGC 5216.

N2

N1
Arp 105
        (North)

Fig. 1.— cont. Arp 105 North. Arp 105/The Guitar (Abell 1185) consists of a distorted

spiral (NGC 3561A) and a very close lenticular companion (NGC 3561B). This figure shows

the northern tail. We identify two ISFOs at the tip of this tail. There are no clumps identified

along the rest of the 2 arcminute northern tail
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S1

S2

Arp 105
        (South)

Fig. 1.— cont. Arp 105 South. Smith et al. (2010) considered the southern tail to be an

‘accretion tail’, formed by material from the spiral that fell into the gravitational potential

of the elliptical, overshot that potential, and is now forming stars. Two ISFOs are identified.

An analysis of th IRS spectrum of “Ambartsumian’s knot” (S2) at the tip of the short

southern tail is presented in this paper.

Arp 107

E1
N1

SW1

Fig. 1.— cont. Arp 107 has a prominent ring-like structure connected via a bridge to

an elliptical-like companion. Smith et al. (2005) reproduced the basic morphology as a

collisional ring galaxy with a prograde planar intruder passage. Arp 107-SW1 is at the tip

of the southern tail associated with the elliptical-like galaxy.



– 36 –

N1
Arp 242

N2

N3
N4

N5

N6
N7
N8

Fig. 1.— cont. Arp 242/Mice/NGC 4676 is a classic example of a tidal interaction between

two spirals. Two long tidal tails are visible in the original Arp image (Arp 1966). Only the

northern tail is bright at 8 µm. Arp 242-N3 is the brightest knot in the outer third of the

tail.

Arp 284

E1

SW2

SW1

Fig. 1.— cont. Arp 284 consists of two interacting spirals, NGC 7714/5. NGC 7714 is a

classic starburst galaxy, with a partial ring with three tails and a bridge connecting it to

its edge-on companion NGC 7715. Struck & Smith (2003) reproduced the basic morphology

with a pro-grade, near head-on collision, with the western tail being formed via accretion

from the bridge and the HI loop being a classical tidal feature. Arp 284-SW1 is a knot in

the accretion tail and Arp 284-E1 is a knot in the bridge joining the two galaxies.
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Arp 285

N1

Fig. 1.— cont. Arp 285. The northern tail-like structure is perpendicular to the disk of

NGC 2856. Simulations by Smith et al. (2008) suggest this feature may have been accreted

from material along the bridge joining NGC 2856 to NGC 2854.

SQ-A

SQ-B

Stephan's Quintet

Fig. 1.— cont. Stephan’s Quintet (SQ, Arp 319) is a prototype compact group (Hickson

92). There are five galaxies in SQ: NGC 7317(E), NGC 7318A(E), NGC 7318B (Sbc pec),

NGC 7319 (Sbc pec Sey 2) and NGC 7320 (Sd foreground galaxy). Two 100 kpc parallel

tails stretch from NGC 7319 towards the intruder NGC 7320c. We observed SQ-A with the

IRS. (spectra are not included for SQ-B (Arp 1973) in the tidal tail of NGC7319/HCG 92C,

due to a pointing issue with the data).
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Fig. 2.— IRS LORES Spectra. Note, the spectra of Arp 72-S1 & Arp 82-N1 include IRS-LL

data.
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Fig. 3.— IRS HIRES emission line profiles - Arp 72-S1
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Fig. 4.— Relative strengths of the PAH bands. R11/7 increases with decreasing PAH ion

fraction and R6/7 increases with decreasing PAH size. ISFOs are shown as filled stars. The

SINGS-AGN are shown as (red) open triangles and the SINGS-HII (green) open circles

(Smith et al. 2007b). BCDs are shown as (blue) large open squares (Hunt et al. 2010).

Clumps in Arp 143 are shown as (orange) large X’s (Beiraro et al. 2009). Star forming

regions in NGC 3603 in the Milky Way are shown as (orange) open diamonds, in 30 Dor.

in the LMC as (green) small x’s and in N 66 in the SMC as (pink) large open triangles,

BCDs (blue) small open squares, starburst galaxies (pink) pluses (Lebouteiller et al. 2011).

A color version of this figure is available in the online journal.
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Fig. 5.— Mid-infrared excitation diagram. ISFOs are displayed with a filled star symbol.

Dusty starbursts are shown as (red) open inverted triangles, and extinction corrected data

as (red) filled inverted triangles; BCDs are shown as (blue) small open squares and filled

squares (extinction corrected, Verma et al. 2003. We adopted a 20% uncertainty in the line

fluxes). Additional BCDs are displayed as (blue) large open squares (Hunt et al. 2010). Star

forming regions in 30 Dor, NGC 3603 and N 66 are displayed using the same symbols as in

Figure 4. The ISFOs are assumed to have minimal extinction (AV ≤ 3) and the line ratios

are not corrected. A color version of this figure is available in the online journal.
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Fig. 6.— R11/7 as a function of the hardness of the ISRF as measured by the

[Ne iii]/[Ne ii] line flux ratio. Symbols are the same as for Figure 4. The ISFOs display

no significant increase in R11/7 when the neon line ratio is >1. A color version of this figure

is available in the online journal.
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Fig. 7.— R8/7 as a function of the hardness of the ISRF as measured by the [Ne iii]/[Ne ii] line

flux ratio. Symbols are the same as for Figure 5. A color version of this figure is available

in the online journal.
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A B

C D

Fig. 8.— Spitzer Two-Color Diagrams. The ISFOs are shown as filled stars, while the

SINGS-HII are shown as (green) open circles, SINGS-AGN are shown as (red) open triangles.

A sample of dwarf galaxies (Smith & Hancock 2009) are shown as (blue) open squares

(BCDs), (blue) pluses (starburst/HII), and (blue) Xs (irregular). A selection of clumps from

the inner disks of interacting systems are shown as (orange) open diamonds (Lapham et al.

2013 and references therein). Data is shown for regions in Arp 24, Arp 82, Arp 244, Arp

284 & Arp 285. Data for Arp 143 is shown as large (orange) X’s (Beiraro et al. 2009).

Template colors for discrete sources identified in M 33 (Verley et al. 2007) are numbered

(green solid circles): (1) PNe, (2) HII (infrared sample), (3) HII (radio sample), (4) HII

(optical sample), (5) SNR, (6) Unknown source type. For clarity only the uncertainties for

the ISFOs are shown. The very blue [4.5] - [8.0] ISFO in the far left of Panel (A) is most

likely a background elliptical galaxy. A color version of this figure is available in the online

journal.
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Fig. 9.— A selection of ISFO SEDs shown as diamond symbols. Overlaid are two galaxy

SEDs from Draine et al. (2007), which serve as templates for regions dominated by emission

from dust in the diffuse ISM (NGC 3190) shown with square symbols and from dust in

PDRs (Mrk 33) shown with triangles. Each data set has been normalized to the 8 µm flux

(λFλ(8µm) = 1).
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