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ABSTRACT

Aims. We investigate the structure and stellar population of two large stellar condensations (knots A & B) along one of the faint
optical “jet-like” tidal streams associated with the spiral NGC 1097, with the goal of establishing their physical association with the
galaxy and their origin.
Methods. We use the VLT/FORS2 to get deep V-band imaging and low-resolution optical spectra of two knots along NGC 1097’s
northeast “dog-leg” tidal stream. With this data, we explore their morphology and stellar populations.
Results. Spectra were obtained for eleven sources in the field surrounding the tidal stream. The great majority of them turned out to
be background or foreground sources, but the redshift of knot A (and perhaps of knot B) is consistent with that of NGC 1097. Using
the V-band image of the “dog-leg” tidal feature we find that the two knots match the photometric scaling relations of canonical dwarf
spheroidal galaxies (dSph) very well. Spectral analysis shows that knot A is mainly composed of stars near G-type, with no signs of
ongoing star formation. Comparing its spectrum with a library of high resolution spectra of galactic globular clusters (GCs), we find
that the stellar population of this dSph-like object is most similar to intermediate to metal rich galactic GCs. We find moreover, that
the tidal stream shows an “S” shaped inflection as well as a pronounced stellar overdensity at knot A’s position. This suggests that
knot A is being tidally stripped, and populating the stellar stream with its stars.
Conclusions. We have discovered that two knots along NGC 1097’s northeast tidal stream share most of their spectral and photometric
properties with ordinary dwarf spheroidal galaxies (dSph). Moreover, we find strong indications that the “dog-leg” tidal stream arises
from the tidal disruption of knot A. Since it has been demonstrated that tidally stripping dSph galaxies need to loose most of their
dark matter before starting to loose stars, we suggest that knot A is at present a CDM-poor object.

Key words. galaxies: dwarf – galaxies: interactions – galaxies: individual: NGC 1097 – galaxies : jets –
globular clusters: individual: 47 Tucanae

1. Introduction

1.1. The nature of NGC 1097’s optical “jet-like” tidal streams

NGC 1097’s network of faint optical “jets” have puzzled as-
tronomers since their discovery in the mid-1970s (Wolstencroft
& Zealey 1975; Arp 1976; Lorre 1978). These early observations
established their blue optical colors and lack of optical emission
lines. The fact that all four appear to radiate from NGC 1097’s
Seyfert 1 nucleus (see Fig. 1 in Lorre 1978 and Fig. 1) led quite
naturally to explanations involving AGN phenomena. However,
the sensitive upper flux limits at 1.4 GHz set by Wolstencroft
et al. (1984) with the Very Large Array (VLA) showed that the
“jets” optical emission did not arise through the synchrotron
process. Their observations could not exclude the possibility
that the “jets” were dominated by thermal Bremsstrahlung emis-
sion from a ≈106 K plasma (the high temperature is required

� Based on observations made with ESO telescopes at Paranal
Observatory in the observing program 66.B-0481 (G. Rupprecht/
H. Arp).

to explain the absence of Hα emission set by Arp 1976). The
same year, Carter et al. (1984, hereafter CAM) proposed a very
different interpretation based on optical and near-infrared sur-
face photometry of the two northern jets and the most prominent
of several optical knots in the northeast jet first noted by Arp
(1976) and Lorre (1978). The colors of the diffuse light in the
northern jets (e.g., B − R = 0.6 ± 0.3 and B − H = 2.6 ± 0.4) are
inconsistent with both thermal Bremsstrahlung and synchrotron
emission. Instead, CAM proposed that the “jet-like” features are
in fact composed of stars, similar to ordinary disk populations
(≈G-type). These stars either: formed in situ from the cooling
plasma of an ancient radio jet, were drawn out of NGC 1097’s
disk through a tidal interaction with its companion NGC 1097A,
or represented the remains of a dwarf irregular or small spiral
galaxy cannibalized by the much larger NGC 1097 (i.e., a mi-
nor merger). CAM went so far as to propose that the promi-
nent optical knot near the northeast jet’s abrupt right-angle bend
(called the “dog-leg”) might be what is left of the dwarf’s tidally-
stripped nucleus, given that its color (B − R = 0.9 ± 0.2) is sim-
ilar to that of late-type spiral nuclei. Wehrle et al. (1997) used
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Fig. 1. FORS2/UT2 400 s Bessel V-band image of NGC 1097’s northeast optical jet and “dog-leg”. The targets observed spectoscopically with
FORS2 are labeled as in Table 1. The figure covers 6.8′ × 6.8′ with North at top and East to the left. NGC 1097 lies in direction of the bottom right
corner of the picture.

VLA observations at 327 MHz to conclusively rule out the “jet-
like” features being a network of ancient radio jets, and they
concluded that NGC 1097’s jets are nothing more than a set of
unusual tidal streams created through multiple encounters with
the small elliptical companion NGC 1097A. Since tidal streams,
and especially blue tidal streams, are typically rich in neutral
atomic hydrogen gas (HI), this opened the interesting possibility
of using HI kinematics to explore their origin and evolution.

Higdon & Wallin (2003, hereafter HW) revived the “minor
merger” interpretation for the tidal streams. Using the VLA in

its most compact configuration, they found that all four tidal
streams are extremely gas poor (ΣHI < 0.06 M� pc−2, 3σ). Given
their blue color, they are unlike any tidal stream in the literature
(cf. Hibbard et al. 2000; Higdon et al. 2006). The total lack of
HI had additional implications: the stars could not have origi-
nated from the HI rich disk of NGC 1097, nor could they have
been formed in situ from a cooling radio jet without unrealistic
star formation efficiencies. HW proposed a scenario in which the
tidal streams were formed by multiple passes of a gas rich dwarf
galaxy through the center of the much more massive NGC 1097.
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Their n-body simulations of such a capture produced features
that strikingly resembled the four optical tidal streams, including
the abrupt 90◦ bend of the dog-leg region (see their Figs. 12–14).
The dwarf galaxy’s ISM is swept out by ram pressure stripping
during its initial pass through NGC 1097’s disk, resulting in the
creation of essentially gas free “jet-like” stellar streams. Within
the HW picture, NGC 1097’s optical tidal streams represents the
late stages in the cannibalization of a small disk galaxy by a
much larger spiral.

1.2. Structures in NGC 1097’s northeast tidal stream

Arp (1976) and Lorre (1978) noted the presence of several opti-
cal knots near the northeast tidal feature’s dog-leg region (see
Figs. 1 and 3) that appeared too blue for background ellip-
ticals, though with no redshifts available the possibility that
they were background objects could not be ruled out. Wehrle
et al. (1997) obtained 4000–7000 Å spectra of the two brightest
knots using 1–2 h exposures with the CTIO 4 m Blanco tele-
scope, and detected only weak continuum (after averaging over
large wavelength bins) and no measurable line emission (e.g.,
EWHα < 15 Å and EW [O III], EWHβ < 30 Å). Because of de-
tector instabilities, the quality of their spectra was not sufficient
to determine the nature of knots A & B. While it had yet to be
established that the knots were in fact part of the northeast tidal
stream, it was clear from their apparent lack of strong emission
lines that neither were star forming dwarf galaxies or distant
AGN. The existence of multiple knots are of particular interest,
as they might represent ongoing structure formation in the tidal
streams.

In this paper we analyze VLT/FORS2 spectra of five of the
brightest optical knots in the northeast tidal stream. We show that
the most prominent condensation, knot A, has the same redshift
as the spiral NGC 1097, and argue that it is physically associated
with the tidal stream. A second condensation, knot B, is also
plausibly associated with the tidal feature1.

The VLT observations are described in Sect. 2. In Sect. 3
we present the photometric and spectroscopic measurements of
knots A & B, and discuss these findings and their implications in
Sect. 4. Finally, we summarize our results in Sect. 5. Throughout
this paper we have adopted the standard WMAP cosmology
(H0 = 72 ± 5 km s−1 Mpc−1; Spergel et al. 2003), which for
NGC 1097’s redshift (z = 0.0042±0.0001, e.g., Koribalski et al.
2004; Mathewson & Ford 1996) results in a luminosity distance
DL of 17 ± 2 Mpc and a linear scale of 84 pc/′′.

2. VLT observations and data reduction

The observations were made at ESO-Paranal by G. Rupprecht
and H. Arp (observing program 66.B-0481) on several runs:
7 October 2000 (ID 101443), 17 November 2000 (ID 103791),
and 4 December 2000 (ID 103790). The data were kindly pro-
vided by Arp and Rupprecht. Optical spectra were obtained
with the FORS2 imaging-spectrograph (1998), situated at the
Cassegrain focus of the 8.2 m VLT Kueyen (UT2). The detector
was a 2048× 2048 TK2048EB4-1 thinned, backside illuminated
CCD. The standard resolution collimator was used, providing
an angular scale of 0.2′′/pix and a field of view of 6.′8× 6.′8.

1 knots A & B referred to in this paper correspond to the two opti-
cal knots discussed in Wehrle et al. (1997). Our knot A is also the
“bright condensation” in jet R1 discussed by CAM (see their Sect. 3
and Table 2).

Grism GRIS_150I+27 was used, which provides a linear disper-
sion of 230 Å/mm and λ/Δλ = 260 ± 1.5 (if coupled with a 1′′
slit). Spectra covering the full 3300–1000 Å wavelength range
were obtained in two stages: red spectra (6000–10 000 Å) us-
ing the OG590+32 filter as an order blocker, and blue spectra
(3300–6600 Å) with no filter.

The observations were carried out in multi-object (MXU)
mode, with twelve slits of varying widths (1′′ to 2.5′′) placed
on the sky. One large slit was situated across the northeast tidal
stream, one slit each was placed on knots A & B, six on field
objects, and three on empty fields to measure sky emission. The
integration time for the spectra was 30 min. Data reduction was
routine, and standard procedures in IRAF were used to extract
(apall), calibrate (identify, calibrate), and join (scombine) the
red and blue spectrum for each slit. See Table 1 for the co-
ordinates, photometry and a short description of the observed
objects.

The spectrum of the northeast tidal stream was too faint to
be successfully extracted with apall. Despite using the largest
available slit and the lowest dispersion grism available, the tidal
stream proved too faint for useful spectroscopy in 30 min of in-
tegration. We obtained, however, well exposed spectra for nine
other objects, including knot A, and a less exposed but still use-
ful spectrum of knot B (see Fig. 2). FORS2 was also used to
obtain a 400 s Bessel V-band exposure centered on the northeast
dog-leg tidal stream (see Fig. 1). The night’s seeing (FWHM of
unsaturated stars measured on the image) was ≈1′′.

3. Results

3.1. Spectroscopy of the condensations in the “dog-leg” tidal
stream

The five optical condensations in the northeast tidal stream that
were observed spectroscopically with FORS2 are indicated in
Fig. 1 and listed in Table 1. Of these, one is a foreground star
(Object 9) and two are background galaxies (Objects 6 and 7),
with z ≈ 0.1−0.3. We will not discuss these sources further.

A high quality spectrum was extracted for knot A, and is
shown in Fig. 2. The spectrum is notable for a total lack of
emission lines ordinarily found in star forming systems like
[O III] λλ 4959, 5007 Å, Hβ or Hα, in agreement with Arp
(1976) and Wehrle et al. (1997). However, these new observa-
tions set more stringent limits on Hα emission, with EWHα <
5 Å . Several narrow hydrogen Balmer absorption lines (Hγ, Hβ,
and Hα) are clearly detected, with equivalent widths (measured
with IRAF’s splot tool) of 2.9, 3.8 and 2.3 Å respectively (see
Table 2). There is also evidence for a weak G-band (λ 4303 Å)
absorption. The most prominent feature in Fig. 2 is a strong
break in the continuum level at ≈4400 Å.

We derive synthetic optical colors for knot A using the spec-
trum in Fig. 2 by numerically integrating over the Johnson-
Cousins UBVRI passbands, and find B− V = 0.8± 0.1, B−R =
1.3 ± 0.1, V − R = 0.5 ± 0.1 and V − I = 0.9 ± 0.1. Note that
these colors are somewhat redder than the colors of the local dif-
fuse jet emission as measured by CAM (B− R = 0.9± 0.2). The
1.8σ deviation between our and CAM’s measures is not surpris-
ing considering the inherent difficulty in measuring the colors of
such a low brightness feature, and the fact that CAM performed

2 IRAF is distributed by the National Optical Astronomy
Observatories, which are operated by the Association of Universities
for Research in Astronomy, under contract with the National Science
Foundation.
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Fig. 2. Up left: FORS2 spectrum of knot A. Up right: FORS2 spectrum of knot B. Bottom: comparison of knot A’s spectrum (blue line) vs. knot
B’s (red line).

those measures more than 20 yr ago, using normal photographic
plates.

From the measured wavelengths of absorption lines in knot
A’s spectrum (see Table 2) we derive a redshift of z = 0.0043 ±
0.0001. This is within Δz = 0.0001 of NGC 1097’s redshift de-
rived using HI and optical emission lines, and shows that knot A
is indeed physically associated with the barred spiral galaxy.

As shown in Fig. 2 (upper-right panel) the two features in the
spectrum of knot B, being possibly significant above the noise
are the break in the continuum level at 4400 Å and the Hβ line
at 4882 Å. As is shown in Fig. 2 (bottom panel) the overall con-
tinuum shape and the position of these two features match fairly
well those of knot A, indicating that their redshifts could be sim-
ilar. Under the assumption that knot B is at the same redshift
distance of knot A, we find moreover that knot B agree very

well with the same photometric scaling relations of knot A. This
makes it unlikely that knot B is a galaxy with a different abso-
lute magnitude than knot A, placed at a different distance from
NGC 1097. We will therefore assume throughout the rest of the
article that knot B is physically associated with NGC 1097.

3.2. Surface photometry and morphology of knots A & B

Both knots A & B in the NE tidal stream are easily seen in the
FORS2 V-band image shown in Fig. 1. We are able to extract
new details concerning their morphologies: Knot A shows con-
siderable spherical symmetry, with a bright and compact core
and a halo that extends for the full width of the stream (≈15′′),
while knot B is more diffuse and lacks a central core (see Fig. 3).
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Fig. 3. Closeups (13′′ × 13′′) from the Bessel V-band image of NGC 1097’s dog-leg region (Fig. 1) showing (left) knot A and (right) knot B.
Identical linear stretches are used.

Table 1. Magnitudes of the observed objects: The labels fs, bg, c indi-
cate respectively: “foreground star”, “backgroung galaxy”, “condensa-
tion”. The typical rms errors for the magnitudes are 0.1 mag.

Obj. ID RA Dec (J2000) mv (mag) Type
1 02:47:00 –30:13:04 21.3 fs
2 02:47:01 –30:12:59 19.9 bg
3 02:46:59 –30:11:55 21.4 fs
4 02:47:01 –30:11:48 21.2 bg

5(knot A) 02:47:00 –30:10:08 19.9 c
6 02:47:04 –30:09:30 20.0 bg
7 02:47:04 –30:09:22 21.5 bg

8(knot. B) 02:47:05 –30:09:07 20.4 c
9 02:47:07 –30:08:38 22.1 fs

10 02:47:12 –30:06:58 23.4 bg
11 02:47:11 –30:06:57 23.6 bg

Table 2. Absorption redshift of knot A: λmeas is the measured wave-
length, λ0 is the rest-frame wavelength, z is the measured redshift and
Δz is the redshift difference with NGC 1097 (z = 0.0042 NED).

Line λmeas λ0 z Δz EW (Å)
Hα 6592.0 6562.8 0.0044 0.0002 2.9
Hβ 4882.1 4861.3 0.0043 0.0001 3.8
Hγ 4359.1 4340.5 0.0043 0.0001 2.3

Averaged V-band surface brightness profiles (SBPs) for
knots A & B were extracted using the IRAF/STSDAS task el-
lipse and are shown in Fig. 4. A small number of faint and unre-
solved objects surrounding the nuclei of both knots are apparent
in Fig. 3. These were excluded from the SBP extraction using a
pixel mask. We fit the SBPs of both knots using the R1/n param-
eterization of Sérsic (1968), which can be written:

μ(R) = μe exp

⎧⎪⎪⎨⎪⎪⎩−bn

⎡⎢⎢⎢⎢⎢⎣
(

R
Re

)1/n

− 1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (1)

where R is the projected radial distance from the center of
the galaxy. This representation is widely used and has the ad-
vantage of precisely describing a variety of SBPs, including
pure exponential and de Vaucouleurs R1/4 laws, i.e., those of
both dwarf and luminous elliptical galaxies (Faber & Lin 1983;
de Vaucouleurs 1948, 1959). The free parameters of this model
are Re, μe and n, where n describes the shape of the distribution.
The coefficient bn depends on n and can be chosen in such a way
that Re and μe coincides respectively with the half light radius
of the object (i.e. the radius enclosing half of the total flux) and
the surface brightness at that radius. As shown by Capaccioli
(1987) for 1 < n < 10 we have bn ≈ 1.9992n−0.3271. Since
n < 1 for our objects, one can question whether this approxima-
tion is appropriate. As shown by Graham (2001) the difference
between the exact value of bn(n) and Capaccioli’s approxima-
tion is about bn(exact) − bn(approx) = 0.03 for n = 0.4 (knot B).
Considering the uncertanities of our fits (RMSE≈ 0.1) we have
neglected such small differences.

The SBPs for knots A & B are shown in Fig. 4, along with
the fitted Sérsic model and residuals. The latter are small with
no systematics and indicate good fits for both objects. Derived
values of n, Re, and μe and their uncertainties are included in
Table 3. Knot A possesses a bright and marginally resolved core
that cannot be represented by a Sérsic profile. For this reason we
restricted the fitting region to exclude the inner 1.6′′, which in
Fig. 4 can be seen to correspond to the radius at which the fitted
Sérsic profile begins to depart from the data points, and agrees
very well with the optical size of the bright core (Fig. 3). Knots A
& B have fitted Sérsic exponents nA = 0.6 ± 0.1 and nB = 0.4 ±
0.1, and central V-band surface brightnesses (i.e., extrapolating
the fitted Sérsic profile to R = 0 for knot A) of μA,0 = 24.6 ±
0.2 mag arcsec−2 and μB,0 = 25.1 ± 0.2 mag arcsec−2.

Accurate half-light radii have been computed for both ob-
jects. For knot B, we estimate the half-light radius from the
Sérsic model fit to be (see above) Re = 428 ± 84 pc, where we
have included contributions from the pixel scale and saturation
effects in the uncertainty. Since knot A’s core cannot be fit by a
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Fig. 4. Left: Knot A’s surface brightness profile obtained with IRAF’s ellipse task. The continuos line represent the Sérsic n = 0.6 model fit. The
dotted line delimits the seeing affected zone, while the dash-dotted line is placed at Rcore = 1.6′′. Since the nucleus is only partially resolved, data
points below Rcore have been excluded from the fit. Right: same as previous, but for knot B. In this case the Sérsic index is n = 0.4 and data points
below 1′′ have been excluded from the fit.

Sérsic profile, we estimate an empirical half-light radius using
the ellipse output to calculate the radius at which the total flux
drops by half. In this way we obtain Re = 336 ± 84 pc.

Integrated apparent V-band magnitudes were determined to
be mV = 19.9 ± 0.1 mag and mV = 20.4 ± 0.1 mag for knots A
& B respectively, which correspond to absolute magnitudes of
MV = −11.2± 0.1 and MV = −10.8± 0.1 at the adopted distance
of NGC 1097. Assuming M�,V = 4.82 (Bell & de Jong 2001),
these translate into V-band luminosities of LV = 2.6 × 106 L�,V
for knot A and LV = 1.6× 106 L�,V for knot B. We also estimate
mV , MV , and LV for knot A’s core using a circular aperture of
radius 3×Rcore, and find mV = 21.4± 0.1 mag, MV = −9.8± 0.1
and LV = 6.9 × 105 L�,V .

Dwarf galaxies subject to ongoing tidal perturbations may
show surface brightness “breaks” or other irregularities in their
outer isophotes (Peñarrubia et al. 2009). We are however unable
to detect such irregularities in our surface brightness profiles (see
Fig. 4).

This however does not necessarly imply that the knots are not
being tidally stripped, since as shown by Peñarrubia et al. (2009)
such “bumps” in the isophotes are essentially transient features
that quickly drift in the outer region of the SBPs, where the
S/N may be too low to give any useful information. Their even-
tual detection is therefore related to the time of the observation,
and strongly depends on the orbital parameters of the tidally-
disrupting object. Moreover, it is likely that the spatial resolution
of our SBPs is simply insufficient to reveal these “bumps”: our
objects have in fact a very small angular extension if compared
to Local Group (LG) dwarfs. It is however difficult to estimate
the expected amplitude of these irregularities without knowing
the orbit of the objects and their internal kinematics.

3.3. Stellar population

The resolution of knot A’s spectrum (δλ = 19 Å at 5000 Å) is
too low to accurately estimate metal abundances from spectral
line indices. An estimate of its metallicity would be nonetheless
useful to help constrain its nature.

In order to extract more information regarding knot A’s stel-
lar population, we cross-correlated its spectrum with that of
40 galactic GCs from the library in Schiavon et al. (2005), which
covers a wide range of metallicities from –2 dex to solar abun-
dance. We degraded the spectral resolution of the 40 galactic
GCs to match that of knot A’s spectrum, and used the IRAF task
fxcor for cross-correlation.

With this method we find a linear relation between the cross
correlation amplitudes of knot A (plus two test GCs) and the
[Fe/H] ratios of the library’s GCs (see Fig. 5). This is reason-
able considering that for evolved stellar populations, the [Fe/H]
ratio should play an important role in determining spectral dif-
ferences. This implies that the [Fe/H] ratio of knot A can be
estimated – at least qualitatively – using this cross correlation
technique.

The results of the left panel of Fig. 5 imply an [Fe/H] ratio
>–1.0 dex for knot A. The analogous plots in the middle and
right panel for a metal-poor and a metal-rich GC confirm the
validity of this approach, since the slope of the cross-correlation
amplitude vs. [Fe/H] is, as expected, negative for the metal-poor
and positive for the metal-rich GCs.

Figure 6 confirms the results of Fig. 5 by comparing
knot A’s spectrum with the two GCs with highest and low-
est cross-correlation amplitudes. The match is very good
for the GC NGC 6388, which is of intermediate metallic-
ity ([Fe/H]= –0.7 dex), and shows a clear discrepancy for
NGC 1904, which has a lower metallicity ([Fe/H]= –1.5 dex).
Since NGC 6388 has an integrated spectral type of G2, while
NGC 1904 has type F4/5 (Harris et al. 1996), we can state that
the light emitted by knot A’s is most likely dominated by G-type
stars, in agreement with CAM.

While it is true that this method does not precisely deter-
mine the [Fe/H] ratio, the results shown in Figs. 5 and 6 indi-
cate (at least qualitatively) that knot A’s metal abundances are
higher than LG dwarf spheroidals of similar luminosity (e.g.,
[Fe/H]= –1.5 dex; Mateo 1998). It has been shown however,
that dSph galaxies belonging to different clusters of galaxies
may show sensible differences in their metallicity-luminosity re-
lation, if compared with LG dwarves (Lianou et al. 2010).
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Fig. 5. Left: Knot A’s cross correlation amplitude as a function of metallicity for galactic GCs from Schiavon (2005). The rough linear relation of
positive slope, indicates that our spectrum is better fit by metal-rich than metal-poor GCs (see the text and next figure for details). Center, right:
the same as left for two Galactic GCs from the same library, whose metallicity has been estimated with HR spectroscopy. As expected, the metal
poor GC NGC 2298 correlates better with metal poor GCs while the metal rich GC NGC 6528 correlates best with metal rich GCs.

Fig. 6. Left: Comparison between knot A’s spectrum (continuous line) and the best correlating GC from Schiavon (2005) (dashed line, cross
correlation amplitude 9), which is the intermediate metallicity GC NGC 6388. Right: the same as left with the worst correlating GC from Schiavon
et al. (2005) (cross correlation amplitude 4.5), which is NGC 1904. The two plots show that knot A’s spectrum correlates best with intermediate to
high metallicity GCs like NGC 6388 ([Fe/H] = −0.7), rather than with metal poor ones like NGC 1904 ([Fe/H] = −1.5).

Table 3. Summary of measured and estimated (E) parameters for knots A & B.

Parameter name knot A knot B
Redshift z = 0.0042 ± 0.0001 =

Heliocentric distance D = 17 ± 2 Mpc =
Integrated V magnitude mv = 19.9 ± 0.1 mag mv = 20.4 ± 0.1 mag
Nucleus V magnitude mvnuc = 21.4 ± 0.1 mag –
Absolute magnitude MV = −11.2 ± 0.1 mag MV = −10.8 ± 0.1 mag

Half light radius Re = 336 ± 84 pc Re = 482 ± 84 pc
Central surface brightness μA,0 = 24.6 ± 0.2 mag arcsec−2 μB,0 = 25.1 ± 0.2 mag arcsec−2

Sérsic index n = 0.6 ± 0.1 n = 0.4 ± 0.1
Predominant stellar type G =

Stellar mass M∗ ≈ 6 × 106 M� M∗ ≈ 4 × 106 M�

4. Discussion

4.1. Are the knots dwarf spheroidal galaxies?

We have shown that knot A’s optical spectrum and total luminos-
ity matches well that of intermediate to metal rich and massive
GCs like 47 Tucanae and Mayall I. However, the size of knot A
(Re = 337± 84 pc) is abundantly beyond those of ordinary GCs,

the vast majority of which possess Re < 10 pc (cf. Mackey & van
den Bergh 2005). In terms of size both knots A & B are similar
to LG dSph satellite galaxies of comparable luminosity (Mateo
1998). It has been established that dSph galaxies and GCs oc-
cupy different positions in a plot of half-light radius versus MV.
Large GCs in fact obey a well defined relation, in the sense that
larger GCs are also fainter (log[R50] = 0.25 MV + 2.5; Mackey
& van den Bergh 2005; though Van den Bergh 2008 discusses
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Fig. 7. Absolute magnitudes vs half light radii for local group dwarfs from (Mateo 1998), Galactic globular clusters (Webbink 1985) and the two
knots.

shortcomings of this diagnostic). Knots A & B are well above
this line trend (they are much larger for their optical luminosity
than GCs) (see Fig. 7). Instead, the knots agree very well with the
Mv−μ0,V relation for LG and Hydra/Centaurus dwarves (Misgeld
et al. 2008, 2009). They found that typical dSph galaxies follow
the relation (cf. Misgeld et al. 2009):

μ0,V∗ = 0.57[±0.07] ∗ MV + 30.90[±0.87]. (2)

Substituting MV = −11.2±0.1 for knot A and MV = −10.8±0.1
for knot B, we obtain μ0,A∗ = 24.6 ± 0.085 mag arcsec−2 and
μ0,B∗ = 24.74±0.085 mag arcsec−2, which matches very well our
measured central surface brightnesses (see Table 3). Our Sérsic
indexes of nA = 0.6 ± 0.1 and nB = 0.4 ± 0.1 also agree very
well with the typical values for Hydra/Centaurus dwarfs with a
Mv ≈ −11 that is (cf. Misgeld et al. 2009) n = 0.5 ± 0.1.

In terms of stellar population (old GC-like stellar population
with no signs of ongoing SF and a peculiar lack of HI), stellar
mass (M∗ ≈ 6 × 106 M� for knot A and M∗ ≈ 4 × 106 M� for
knot B), central surface brightness and Sérsic index (see above),
Mv vs R50 (see Fig. 7) our knots closely resemble ordinary dSph
galaxies, as defined in Grebel et al. (2003) and Mateo (1998).

4.2. Structure and composition of the stellar stream

The stellar stream itself was too faint for quantitative spec-
troscopy. From our sky-substracted V-band exposure however
(see Fig. 1), we could measure the mean surface brightness of the
stream (measured over ten different apertures a long the “dog-
leg”). The value that we obtained is μV = 26.5±0.2 mag/arcsec2.
After measuring the mean SB of the stream using the standard
IRAF tools, authors PG and SM independently measured the size
of the stream, by subdividing it in small rectangular apertures.
The value found is 8400 ± 100 arcsec2. From the measurement
of the stream’s mean surface brightness and its area, we have cal-
culated its integrated V magnitude to be mV = 16.6 ± 0.2 mag.
At the distance of NGC 1097 this corresponds to an absolute
magnitude of MV = −14.5 ± 0.35 mag.

Useful hints about the composition of the tidal stream can be
found in earlier studies (CAM, HW, Wehrle et al. 1997). Using
multiband photometry of the tidal stream (obtained in a region
slightly south-western than knot A) CAM suggested that the
SED of the “dog-leg” feature is compatible with G-type stars.
They also found that the colors of the stream and knot A are
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Fig. 8. Left: in this ehnanced version of Fig. 1 (3′′ Gaussian smoothing, logarithmic scaling of intensities) we show how the stream forms an “S”
shaped inflection in correspondence of knot A. Right: at higher contrast the elliptical overdensity within the stream is clearly centered on knot A’s
position. Both features are typical for tidally disrupting systems.

similar within the photometric uncertainties (B − Rstr. = 0.55 ±
0.36, B − RA = 0.9 ± 0.18). This last point agrees with the con-
clusions of Wehrle et al. (1997). In their paper they measured the
B/V count ratio longitudinally and transversally along the tidal
stream (see their Fig. 8), and concluded: “The color (along the
tidal stream) is constant within the errors, including both promi-
nent condensations”. Both studies came to the conclusion that
the stellar stream is composed of stars near G-type, and that the
stream and the knots have the same color. With our FORS2 spec-
tra, we independently showed that also knot A is predominantly
composed of stars near G-type. This suggests that the knots and
the tidal stream are both composed of the same stellar material.

A morphological analysis of the tidal stream indicates that
knot A is currently being tidally stripped, populating the “dog-
leg” tidal stream with stars. As shown in Fig. 8 (left), the tidal
stream shows a slight but significant “S” shaped inflection coin-
cident with the position of knot A. In Fig. 8 (right), we show
moreover the elliptical overdensity of stars at knot A’s posi-
tion. These morphological features are typical for tidally disrupt-
ing systems (Forbes et al. 2003; Martínez-Delgado et al. 2008,
2010).

If knot A is the only progenitor of the stellar stream, before
the encounter with NGC 1097, knot A should have been a dwarf
galaxy of at least MV = −14.5± 0.35 mag. This means that knot
A has lost at least the 95% of its stars during the encounter with
NGC 1097. This is in agreement with the n-body simulations
performed by HW.

4.3. How did the knots form?

The alignment of knots A & B with the “dog-leg” tidal stream
suggests that these two objects are probably correlated in phase-
space. Such a perfect alignment along the same stream would be
in fact very unlikely for independently infalling CDM-Subhalos.

A possible explaination to the phase-space correlation prob-
lem of Milky Way satellites (Kroupa et al. 2005; Metz et al.
2009a), has been proposed in terms of a “group infall” of sub-
halos (Li & Helmi 2008; D’Onghia & Lake 2008; D’Onghia
et al. 2009). Alternately, dwarf galaxies may form along dark
matter filaments (Ricotti et al. 2008). It is, however, still un-
clear if these mechanisms can efficiently explain the observed

distribution of satellite galaxies around the Milky Way and
Andromeda (for recent criticism see: Metz et al. 2009b,a).

The alignment of knots A & B with the stream is instead
reminescent of the situation in the Milky Way, where the disk-of-
satellites is approximately aligned with the Magellanic Stream
(Metz et al. 2009b). This may suggest that the satellite galax-
ies of NGC 1097 may also be interpreted as being old tidal
dwarf galaxies (Zwicky 1956; Lynden-Bell 1983; Okazaki &
Taniguchi 2000).

However, a definitive interpretation awaits further study, in
particular, we need to examine both knots’ internal kinemat-
ics, and whether NGC 1097 has additional dSph satellite galax-
ies. The deep implications for fundamental physics of objects
such as knots A & B being tidal dwarf galaxies are discussed in
Kroupa et al. (2010).

5. Conclusions

We have shown that the two optical “knots” along NGC 1097’s
tidal stream share most of their observable properties with or-
dinary dwarf spheroidal galaxies (dSphs). From the measured
redshifts we show that knot A (and very likely knot B) are as-
sociated with the tidal stream. The spectral light distribution of
these dSphs is most consistent with that of intermediate to metal-
rich Galactic GCs (see Figs. 6, 7).

These new observations set more stringent limits for Hα
emission of the tidal stream, with EWHα < 5 Å.

Our new observations, togheter with the results from former
studies (Carter et al. 1984; Wehrle et al. 1997; Higdon & Wallin
2003), indicate that knot A is composed of the same stellar ma-
terial as the tidal stream. Moreover, a morphological analysis of
the tidal stream reveals clear signs of ongoing tidal stripping (see
Fig. 8). Based on this evidence we conclude that very likely the
stellar stream is populated by stars drawn out from knot A.

The presence of ongoing tidal stripping is incompatible with
knot A being surrounded at present by a massive CDM halo
(Peñarrubia et al. 2008, 2009).
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