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RESEARCH Open Access

Transcriptome profiling of brain myeloid
cells revealed activation of Itgal, Trem1, and
Spp1 in western diet-induced obesity
Hongtian Yang1*† , Leah C. Graham1,2†, Alaina M. Reagan1, Weronika A. Grabowska1, William H. Schott1 and
Gareth R. Howell1,2,3

Abstract

Background: Environmental factors are critical in the development of age-related cognitive decline and dementia.
A western diet (WD) can cause nutrient deficiency and inflammation that could impact cognition directly. It is
increasingly recognized that innate immune responses by brain myeloid cells, such as resident microglia, and
infiltrating peripheral monocytes/macrophages may represent an essential link between a WD, cognitive decline,
and dementia. Our previous data demonstrated that chronic consumption of a WD induced inflammation through
brain myeloid cells in aging mice and a mouse model of Alzheimer’s disease (AD). However, the subtypes of
myeloid cells that contribute to the WD-induced inflammation remain unclear.

Methods: C57BL/6J (B6), myeloid cell reporter mice (B6.Ccr2RFP/+Cx3cr1GFP/+), and Ccr2-deficient mice (B6.Ccr2RFP/RFP)
were fed a WD or a control chow diet (CD) from 2 to 6 or 12 months of age. CD11b+CD45lo and CD11b+CD45hi

cells from WD- and CD-fed B6 or Ccr2-deficient mice were characterized using flow cytometry, RNA-sequencing,
and immunofluorescence.

Results: Ccr2::RFP expressing myeloid cells were significantly increased in brains of WD- compared to CD-fed mice,
but were not elevated in Ccr2-deficient WD-fed mice. The percent of CD11b+CD45hi cells was significantly
increased in WD- compared to CD-fed mice. Comparison of RNA-sequencing data with immune cell data in
ImmGen supports that CD11b+CD45hi cells from WD-fed mice are enriched for peripheral monocytes and
neutrophils. Ingenuity pathway analysis predicted these cells elicit proinflammatory responses that may be
damaging to the brain. Using stringent criteria for gene expression levels between CD11b+CD45hi and
CD11b+CD45lo cells, we identified approximately 70 genes that we predict are uniquely expressed in infiltrating
cells, including Itgal, Trem1, and Spp1 (osteopontin, OPN). Finally, we show a significantly greater number of
OPN+IBA1– cells in WD- compared to CD-fed mice that we propose are activated neutrophils based on ImmGen
data. OPN+IBA1– cells are not significantly increased in Ccr2-deficient WD-fed mice.

Conclusions: These data further support the model that peripheral myeloid cells enter the brain in response to
diet-induced obesity. Elucidating their contribution to age-related cognitive decline and age-related neurodegenerative
diseases should offer new avenues for therapeutic intervention in Alzheimer’s disease and related dementias, where
diet/obesity are major risk factors.
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Introduction
Obesity continues to be a major health issue in the USA,
with the past decade demonstrating a significantly increas-
ing trend nationwide. From 2015 to 2016, the prevalence
of obesity was 39.8% in adults and 18.5% in youths [1].
Estimates for obesity-related healthcare costs range from
$147 billion to nearly $210 billion per year [2, 3]. Genetic
predisposition as well as lifestyle choices such as chronic
consumption of a western diet and lack of exercise can
lead to the development of obesity. A cellular hallmark of
obesity is inflammatory circulating macrophages and
other immune cells infiltrating into adipose tissue, indu-
cing low-grade inflammation that affects peripheral tissues
[4]. Obesity associated-inflammation results in a high inci-
dence of comorbidities, including type 2 diabetes and car-
diovascular disease [4].
Obesity is also associated with an increased incidence of

cognitive decline and dementia. Studies suggest obesity,
particularly mid-life obesity, increases the chances of cogni-
tive decline and Alzheimer’s disease by six-fold [5, 6]. Like
inflammation in peripheral tissue, obesity promotes inflam-
matory responses in the brain, which can then result in
progressive cognitive decline [7, 8]. Recent data suggest that
innate immune responses mediated by myeloid cells
(including brain-resident microglia and infiltrating macro-
phages from the periphery) likely represent an important
link between obesity, cognitive decline, and AD [9–13].
Our previous study showed robust glial responses following
chronic consumption of a western diet, including an in-
crease in IBA1+TREM2+ myeloid cells in the brains of
aging C57BL/6J (B6) and B6.APP/PS1 mice [10]. Additional
studies in mouse models have shown that a high-fat diet is
associated with neuroinflammation by both microglia [9,
14–16] and infiltrating myeloid cells in the brain [17]. How-
ever, it is not clear whether the activity of microglia or infil-
trating myeloid cells is beneficial or detrimental during
obesity, in part because specifically distinguishing and tar-
geting these myeloid cell subtypes are challenging [18].
Deep characterization of myeloid cell subpopulations (e.g.,
microglia versus peripheral monocytes) in the context of
obesity would help define the different cell types to test
their beneficial or damaging functions. Understanding spe-
cific cell parameters under different conditions will allow
targeted therapeutic interventions for obesity and related
neurological diseases that share similar neuroinflammatory
components.
In this study, we provide data to support peripheral

myeloid cell infiltration into the brain during chronic
western diet consumption in a CCR2-dependent man-
ner. Traditionally, myeloid cells in the brain have been
characterized by the presence of CD11b and differential
levels of CD45—with CD45hi cells representing periph-
eral myeloid cells and CD45lo cells representing micro-
glia. Therefore, we characterized the transcriptomes of

CD11b+CD45lo and CD11b+CD45hi cells using flow cy-
tometry and RNA sequencing. Analyses of flow cytome-
try and transcriptomic data support our model that
CD11b+CD45hi cells from WD-fed mice are enriched
for multiple subtypes of responding microglia and
infiltrating immune cells including monocytes/macro-
phages and neutrophils. We identified a set of 73 genes
that are highly enriched in CD11b+CD45hi compared to
CD11b+CD45lo cells that provide a new resource for
more precisely defining the roles of infiltrating myeloid
cells in brain health and disease.

Methods
Animals
All methods are in accordance with The Jackson Labora-
tory Institutional Animal Care and Use Committee
(IACUC) approved protocols. All the mice used in this
study including C57BL/6J (B6, stock no. 000664),
Ccr2RFP/RFPCx3cr1GFP/GFP (stock no. 032127), Ccr2RFP/RFP

(stock no. 017586), and B6.APP/PS1 (stock no. 034832)
were obtained from The Jackson Laboratory. All mouse
strains were maintained on a B6 genetic background.
Homozygous Ccr2RFP/RFPCx3cr1GFP/GFP mice were crossed
to B6 to make heterozygous Ccr2RFP/+Cx3cr1GFP/+ mice for
visualization of RFP+ and GFP+ cells. Homozygous
Ccr2RFP/RFP mice were crossed to B6 to generate heterozy-
gous Ccr2RFP/+ mice, which were then intercrossed to gen-
erate Ccr2RFP/RFP referred to as (Ccr2-KO) mice and
Ccr2+/+ referred to as wild type (WT) littermate controls.
Both males and females were used in all histological exper-
iments, but only males were used for flow cytometry and
fluorescent activated cell sorting (FACS). All mice were
maintained on a 12/12 h light/dark cycle. All aged (20
months), young (3 months), and middle-aged (12 months)
chow diet (CD) cohorts were maintained from wean on
standard LabDiet® 5 K52 (control chow diet, CD) [10]. The
12-month western diet (WD) cohort was switched to Test-
Diet® 5W80 diet adapted from TestDiet® 5TLN with added
high fructose corn syrup, lower fiber, and increased milk
protein and fat at 2 months [10]. Daily monitoring of mice
via routine welfare check was carried out to determine
their general well-being. Approximately 10% of WD-fed
mice developed dermatitis and were eliminated from this
study using an IACUC-approved CO2 euthanasia protocol.

Mouse perfusion and tissue preparation
Tissues from all WD studies were collected at 3 months
and 12 months of age. Tissue from B6.APP/PS1 and
aged B6 mice were collected at 6 months and 20 months,
respectively. Mice were anesthetized with a lethal dose
of ketamine/xylazine, transcardially perfused with 1X
phosphate-buffered saline (PBS), and brains carefully
dissected and hemisected at the midsagittal plane. One
hemisphere was snap-frozen, and the other half
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immersion fixed in 4% paraformaldehyde (PFA) for two
nights at 4 °C. After fixation, the brains were rinsed in
1X PBS, immersed in 30% sucrose/PBS overnight at
4 °C, frozen in OCT, and cryosectioned coronally at a
thickness of 20 μm.

Immunofluorescence
Sections were dried for 15min (minutes) at 37 °C followed
by one 10-min wash in 1X PBT (1% PBS + 1% Triton
100X) at room temperature and incubated in primary anti-
bodies: goat polyclonal anti-Osteopontin (1:100, Thermo-
fisher Scientific, #PA1-25152), rabbit polyclonal anti-IBA1
(1:250, Wako #019-19741), diluted in 1X PBT+ 10% nor-
mal goat, or normal donkey serum overnight at 4 °C. After
incubation with primary antibodies, all sections were
rinsed three times with 1X PBT for 10 min and incubated
for 2 h (hours) in the appropriate secondary antibodies
(donkey anti-goat Alexa Fluor 568/647, donkey/goat anti-
rabbit Alexa Fluor 488, all 1:1000 from Thermo Fisher
Scientific). Tissue was then washed three times with 1X
PBT for 10–15 min, incubated with DAPI for 5 min and
mounted in Poly aquamount (Polysciences). Sections col-
lected from Ccr2RFP/+Cx3cr1GFP/+ brains were simply
stained with DAPI, rinsed, and mounted.

Imaging, image quantification, and statistical analysis
All images were taken using either the Leica SP8 confocal
microscope or the Zeiss Axio Imager Z2. All imaging was
set up using sections from CD-fed mice as standard. For
each labeled protein, all images were captured using identi-
cal parameters. Only cells with DAPI staining were in-
cluded for cell counts. For cell counts in
Cx3cr1GFP/+Ccr2RFP/+ mice and quantification of IBA1+
cells in Ccr2-KO mice, three to four images within the pre-
frontal and motor cortex regions were assessed for each
mouse (three to four images/mouse), and an average of cell
counts per image was determined. Four to six mice were in-
cluded for each group (n = 4–6/group). Increased back-
ground was observed in the RFP channel in
Cx3cr1GFP/+Ccr2RFP/+ mice, preventing accurate quantifica-
tion of GFP–RFP+ cells. High background may result from
increased autofluorescence in aging mice or mice under
chronic consumption of WD. GFP+RFP+ cells were quanti-
fied as a measurement of the extent to which peripheral
myeloid cells infiltrate into the brain. The GFP+RFP− cell
counts were calculated by subtracting the number of
GFP+RFP+ cells from that of the total GFP+ cells. Cell
counting was performed manually in FIJI by two blinded
investigators.
For OPN cell counts, given the reduced number of

OPN+ cells compared to GFP+ and RFP+ cells, seven
images from the cortical region from the retrosplenial
area (ventral part) to temporal associated areas were
assessed for each mouse (seven images/mouse), and a

sum of cell counts from these images was determined.
Three to four mice were included for each group
(n = 3–4/group). In WT mice fed the WD or CD,
OPN signal was visualized by Alexa Fluor 568 and
IBA1 Alexa Fluor 488, imaged and presented in the
red and green channel, respectively. Although Ccr2-
KO mice show little to minimal RFP signal in the
brain due to impaired CCR2-dependent peripheral
myeloid cell infiltration, to avoid possible background
RFP signal, we avoided using the red channel to col-
lect images from these brains. Therefore, in Ccr2-KO
mice, OPN signal was visualized by Alexa Fluor 488
and IBA1 by Alexa Fluor 647, imaged in the green
and far-red channel but presented in the red and
green channel, respectively. Cell counting was per-
formed manually in FIJI by a single investigator.
Student T test was conducted for the cell counts in

Cx3cr1GFP/+Ccr2RFP/+ mice. Two-way ANOVA followed
by Tukey’s HSD post hoc test was performed in counts
of IBA1+ and OPN+IBA1+ cells in Ccr2-KO and WT
mice. One-way ANOVA followed by Tukey’s HSD post
hoc test was performed in OPN+IBA1– counts in 3- or
12-month WT mice. T test was performed for
OPN+IBA1− counts in 12-month Ccr2-KO mice. The
significance level was defined as p value less than 0.05.
All statistical analyses were conducted in R (version
3.5.1).

Brain myeloid cell isolation, fluorescent activated cell
sorting (FACS) and flow cytometry
Mice were anesthetized with a lethal dose of keta-
mine/xylazine, transcardially perfused with Hanks’
Balanced Salt Solution (HBSS) without Ca2+ and Mg2+

(Gibco, cat#14175-095), and the brains were carefully
dissected and hemisected in the midsagittal plane
while also removing the olfactory bulb and cerebellum.
Brains were kept in HBSS on ice until further process-
ing. Using the Neural Tissue Dissociation Kit (Miltenyi
Biotec cat#130-092-628), brains were homogenized
into solution in a 60 mm dish on ice before being
incubated at 37 °C with on and off pipetting for further
homogenization. Samples were washed using RPMI+
HEPES (Gibco, cat#61870-036, cat#15630080) before
being centrifuged (4 °C) at 450 g for 5 min. Cells were
suspended in a percoll solution (Sigma Aldrich,
cat#P4937) with 10xHBSS and RPMI + HEPES. 1 mL
10% FBS in RPMI was overlayed onto the percoll cell
suspension. Samples were spun at 4 °C at 800 g for 15
min and the centrifuge set to the lowest possible
acceleration and deceleration. Supernatant was re-
moved and cells were washed with FACS buffer (PBS
with 0.5% BSA) twice. Cells were transferred into
FACS tubes and resuspended in 100uL FACS buffer.
Cells were then blocked with purified rat anti-mouse
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CD16/CD32 (BD Biosciences, cat#553142) for 10 min
on ice to reduce non-specific antibody binding. Fol-
lowing the block, small amounts of cell suspension
were set aside for unstained and single stained con-
trols. Samples were then stained with CD45.2 (used 1:
100, BioLegend BV421, #109832), CD11b (used 1:200,
BD Pharm BV605, BioLegend #101257), CD3e (used 1:
100, APC, BDPharm #553066), CD11c (used 1:100,
PE,, BioLegend #117308), Ly6c (used 1:200, FITC, BD
Biosciences #553104), and Ly6g (used 1:100, PerCP-
cy5.5, BD Biosciences #560602) for 1 h. Cells were
washed and resuspended with FACS buffer and placed on
ice until cell sorting. FACS and flow cytometry was con-
ducted on a FACSAria II fluorescent cell sorter (BD
Biosciences). CD11b+CD45+ cells were sorted into
CD11b+CD45lo and CD11b+CD45hi cell subsets based on
CD45 levels and were directly collected in RLT Lysis Buf-
fer (Qiagen, cat#79216), snap-frozen, and stored at −
80 °C. Two-way ANOVA followed by Tukey's HSD post
hoc test was performed for comparisons between groups.

RNA extraction, library construction, and sequencing
RNA extraction of CD11b+CD45lo and CD11b+CD45hi cells
was performed using TRIzol (Invitrogen, cat#15596026) de-
scribed in previous publications from our lab [19]. Total
RNA was purified from the aqueous layer using the
QIAGEN miRNeasy mini extraction kit (QIAGEN) ac-
cording to the manufacturer’s instructions. RNA quality
was assessed with the Bioanalyzer 2100 (Agilent Tech-
nologies). Poly(A) selected RNA-seq libraries were gen-
erated using the TruSeq RNA Sample preparation kit
v2 (Illumina) and quantified using qPCR (Kapa Biosys-
tems). Using Truseq V4 SBS chemistry, all libraries
were processed for 75 bp paired-end sequencing on the
Illumina NextSeq 500 or HiSeq 4000 platform. Each
sample was subjected to a quality control step using
NGS QC Toolkit v2.3 for the removal of adapters and
trimming low-quality bases (Phred < 30) [20]. Next, we
used RSEM v1.2.12 to quantify gene expression using
the trimmed reads as input [21]. RSEM internally
utilizes Bowtie2 v2.2.0 as its aligner [22] with supplied
annotations at default parameters against the C57BL/6J
mouse genome (mm10).

Differential gene expression and pathway analyses
Following alignment and expression quantification,
differential gene expression analyses were performed
using edgeR 3.20.9 [23]. We applied a filtering step to
remove genes with low expression by removing any gene
that did not have at least one count per million (cpm)
for at least two samples. After filtering, trimmed mean
of M values (TMM) normalization was applied to re-
move any potential library size biases. Principle compo-
nent analysis (PCA) was used to determine the major

variables in the datasets. Quasi-likelihood F test was ap-
plied to determine the differential gene expression across
the groups. Significantly differentially expressed (DE)
genes were defined with a false discovery rate (FDR) less
than 0.05 [i.e., -log10(FDR) > 1.3], with an absolute fold
change (FC) larger than 1.5 for comparisons between
CD11b+CD45lo and CD11b+CD45hi cells or with an ab-
solute FC larger than 1.0 for comparisons between WD
and CD in either CD11b+CD45lo and CD11b+CD45hi

cells. The lower stringency allows for the detection of
any subtle effects of diet on both cell populations. All
DE gene analyses and quality control were conducted in
R (version 3.5.1). All DE genes were uploaded into In-
genuity Pathway Analysis (IPA) software for canonical
pathway analysis. The resulting canonical pathways were
ranked by Fisher’s exact test p value, and the top 15
revealed all had Fisher’s exact test p value less than 1 ×
10−4. The top DE genes enriched in CD11b+CD45lo cells
were defined as those with expression levels above 100
cpm and at least two-fold higher compared to
CD11b+CD45hi cells. The top DE genes in
CD11b+CD45hi cells were defined as those with expres-
sion levels above 100 cpm and at least 10-fold higher com-
pared to CD11b+CD45lo cells. The top CD11b+CD45lo

and CD11b+CD45hi cell-related genes were compared
against mouse immune cell RNA-seq datasets at Immuno-
logical Genome Project (ImmGen) [24], My Geneset por-
tal [25]. For plotting individual gene expression from
ImmGen datasets, gene expression values were down-
loaded individually from ImmGen RNA-seq Skyline [26]
and were replotted using ggplot2 package in R. The top
CD11b+CD45hi cell-related genes were also uploaded to
David: Functional Annotation tool [27], for gene ontology
(GO) term analysis with the background genes set as all
detectable genes in RNA-seq dataset. Significant GO term
was defined using stringent Benjamini p value (BJ) less
than 0.05 [i.e., -log10(BJ) > 1.3]. The top CD11b+CD45hi

cell-related genes were also imported into IPA for gener-
ation of gene interaction network.

Results
Chronic western diet consumption increased the number
of Ccr2::RFP+ cells in the brain
To begin characterizing the myeloid cell populations in
obese mice, we employed the Ccr2RFP/+Cx3cr1GFP/+

mouse strain [28]. In this strain, RFP is driven under the
Ccr2 promoter (RFP+) while GFP is driven under the
Cx3cr1 promoter (GFP+). Studies show that GFP+ cells
represent the majority of brain myeloid cells particularly
resident microglia and some peripheral myeloid cells
while RFP+ cells are generally considered peripherally
derived [29]. To test the hypothesis that peripheral
myeloid cells infiltrate into the brain due to chronic WD
consumption, Ccr2RFP/+Cx3cr1GFP/+ mice were fed a
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western diet (WD) or control chow diet (CD) from 2 to
12 months. Brains from WD- and CD-fed mice were
harvested, fixed, sectioned, and GFP+ and RFP+ cells
counted. The number of GFP+ cells was significantly
greater in WD- compared to CD-fed mice (Fig. 1), sug-
gesting the overall myeloid cell population in the brain
increased under WD consumption. Interestingly, the
number of GFP+RFP+ cells was also significantly greater
in WD- compared to CD-fed mice, suggesting increased
infiltration of peripheral myeloid cells into the brain in
WD. However, the number of GFP+RFP− cells, likely
resident microglia, was not significantly different be-
tween WD- and CD-fed mice. These data suggest that a
significant increase in brain myeloid cells in response to
WD-induced obesity is primarily due to an increase in
infiltrating myeloid cells from the periphery.
To further assess the contribution of CCR2 to myeloid

cell numbers in WD-fed mice, Ccr2-KO and WT controls
were fed either a WD or CD from 2 to 12 months. Brains
were harvested, fixed, sectioned, and labeled with IBA1

(a commonly used marker of microglia, monocytes, and
macrophages) and DAPI (a nuclear marker). IBA1+DAPI+
cell number was determined in WD- and CD-fed mice of
both genotypes (Fig. 2). As expected, the number of
IBA1+DAPI+ cells was significantly greater in WD-fed
WT mice compared to CD-fed WT mice. However, CCR2
deficiency blunted the effect of a WD-induced increase in
IBA1+DAPI+ cells. This further supports the hypothesis
that an increase in the total number of brain myeloid cells
correlates to an increased number of infiltrating peripheral
myeloid cells in response to a WD.

The percent of CD11b+CD45hi myeloid cells increased in
the brains of WD-fed mice in a CCR2-dependent manner
Myeloid cells in the brain have been characterized
previously by the presence of CD11b and differential
levels of CD45. CD11b+CD45hi cells are considered to
be enriched for infiltrating cells, while CD11b+CD45lo

cells represent resident microglia [18]. Therefore, to
characterize brain myeloid cells after WD consumption,

CD

WD

Cx3cr1 : : GFP Ccr2 : : RFP GFP/RFP/DAPI

A B C

D E F

IH

**

*G

Fig. 1 Chronic WD consumption increased Ccr2::RFP expressing cells in the brain. a–f Representative cortical sections from 12-month-old
Cx3cr1GFP/+Ccr2RFP/+ mice fed a CD (a–c) or WD (d–f). g, h Magnified images from boxed region shown on c and f, respectively. i The average
number of GFP+, GFP+RFP+ (arrows), and GFP+RFP− cells per image (averaged across at least three images, see the “Methods” section) from
mice fed a CD or WD (T test was performed in cell counts of each category, *p < 0.05, **p < 0.01). Scale bars, 40 μm
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these two subpopulations of myeloid cells were assessed
by flow cytometry, FACS, and RNA-sequencing. Brains
from WT or Ccr2-KO mice fed either a WD or CD from
2 to 12 months, or CD from 2 to 6 months, were collected
and dissociated into a single-cell suspension. Cells were
stained with various immune cell markers including
CD45, CD11b, CD11c, CD3e, Ly6c, and Ly6g for flow
cytometry and FACS. After selecting live single cells
(Fig. 3a–d), both CD11b-positive and CD45-positive cells
(Fig. 3e, f) were subdivided into CD11b+CD45lo and
CD11b+CD45hi cells (Fig. 3g). Importantly, the percent of
CD11b+CD45hi cells was significantly increased (p =

0.0013) with a corresponding percent decrease of
CD11b+CD45lo cells (p = 0.041) in 12-month WD-fed
mice compared to 12-month CD-fed WT mice (Fig. 3h, i).
No significant increase was observed in Ccr2-KO mice fed
a WD (Fig. 3i).
As CD11c (encoded by Itgax) can be a marker for

dendritic cells (reviewed in [30]) and/or potential
disease-associated microglia (DAM) [31], we also char-
acterized CD45+CD11c+ cells (Additional file 1: Figure
S1A). The percent of CD45+CD11c+ cells was also in-
creased in 12-month mice fed a WD compared to its
CD-fed counterparts, and this effect is blunted by

A B

D E

G

W
T

C
cr

2-
K

O

CD

WD

CD

WD

IBA1/DAPIIBA1

H

J K

M

* **

C

F

I

L

Fig. 2 CCR2 deficiency inhibited the WD-induced increase in IBA1+ cells. a–l Representative cortical sections of IBA1 staining from 12-month-old
WT (a–f) and Ccr2-KO mice (g–l) under CD or WD. c, f, i, and l are magnified images from boxed region shown on a, d, g, and j, respectively. m
The average number of IBA1+ cells per image (averaged across at least three images) increased in WT mice but not in Ccr2-KO mice (two-way
ANOVA followed by Tukey HSD post hoc test, *p < 0.05, **p < 0.01). Scale bars: a, b, d, e, g, h, j, and k, 100 μm; c, f, i, and l, 40 μm
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CCR2 deficiency (Additional file 1: Figure S1D). CD11c
was also predominately expressed in a subset of
CD11b+CD45hi cells (Additional file 1: Figure S1B-C);
the percent of CD45hiCD11c+ cells was significantly
higher than that of CD45loCD11c+ cells (Add-
itional file 1: Figure S1E). Furthermore, we used a com-
bination of Ly6c and Ly6g markers to mark monocyte-like
cells (CD11b+CD45+Ly6c+Ly6g–) and granulocyte-like
cells (CD11b+CD45+Ly6c+Ly6g+) (Additional file 1:
Figure S2A). The percent of total Ly6c+Ly6g− cells was
significantly lower in Ccr2-KO mice than in WT mice
(Additional file 1: Figure S2D). However, the percent of
total Ly6c+Ly6g+ cells was not significantly different be-
tween WT and Ccr2-KO mice (Additional file 1: Figure
S2F). Moreover, both Ly6c+Ly6g− cells (p = 1.99e−9) and

Ly6c+Ly6g+ cells (p = 2.58e−6) are significantly enriched
in CD11b+CD45hi cells compared to CD11b+CD45lo cells
(Additional file 1: Figure S2B, C, E, G). Interestingly, the
percent of T cells, the CD45+CD11b-CD3e+ population
(Fig. 3f), was also significantly increased in 12-month
CD-fed WT mice compared to 6-month counterparts
(p = 0.00088), but not in Ccr2-KO mice (Additional file 1:
Figure S3).
Together, our data show that CD11b+CD45hi myeloid

cells were increased in the brains of WD-fed mice in a
CCR2-dependent manner. CD11b+CD45hi cells are
composed of CD11c+, Ly6c+Ly6g−, and Ly6c+Ly6g+
cells that may represent a variety of myeloid cell sub-
types including activated microglia and infiltrating in-
flammatory monocyte- or granulocyte-like cells.
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Fig. 3 CCR2 deficiency inhibited the WD-induced increase in CD11b+CD45hi cells. a–g Gating strategy to isolate CD11b+CD45lo and
CD11b+CD45hi cells by FACS. Forward scatter (FSC) and side scatter (SSC) were used to remove the cell debris and select single cells (a–c). All
live cells, the propidium iodide (PI) negative population, were then selected for immune cell marker profiling (d). CD45+ cells were selected (e)
and were subdivided into CD11b–CDe3+ cells and CD11b+CD3e− cells (f). CD11b+CD3e− cells were further subdivided into CD11b+CD45lo and
CD11b+CD45hi cells (g). Representative gating images were from a 12-month B6 mouse fed a CD. h The percent of CD11b+CD45lo (g) from total
CD11b+CD45+ cells (f). i The percent of CD11b+CD45hi cells (g) from total CD11b+CD45+ cells (f). Brain samples were from WT or Ccr2-KO mice
of 6-month fed a CD, or 12-month fed a CD or WD (two-way ANOVA followed by Tukey HSD post hoc test, *p < 0.05, **p < 0.01)
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Characterizing the transcriptomics of CD11b+CD45lo and
CD11b+CD45hi myeloid cells in the brains of WD-fed mice
Given their similarities, it is currently challenging to
isolate, characterize, and functionally test subpopulations
of myeloid cells in obese brains. Therefore, to identify
genes and pathways relevant to myeloid cell responses,
CD11b+CD45lo and CD11b+CD45hi cells from 12-
month B6 mice fed either a WD or CD were collected
by FACS and profiled by RNA-seq (Fig. 3g). The purity
of myeloid cell populations was validated by previously
described cell type-specific markers in the brain
(Additional file 1: Figure S4). Both Itgam (that encodes
CD11b) and Ptprc (that encodes CD45) are highly
enriched in CD11b+CD45lo and CD11b+CD45hi cells.
As expected, the level of Ptprc in CD11b+CD45hi cells
was 2.23 (FDR = 1.80e−3) and 2.93 (FDR = 1.76e−5) fold
higher than CD11b+CD45lo cells in CD or WD-fed mice,
respectively (Additional file 1: Figure S4). There was no
detectable level of Rbfox3 (NeuN, neuronal marker) and
negligible levels (average cpm < 10) of Aldh1l1 (astrocyte

marker), Pdgfrb (pericyte marker), Mcam (endothelial cell
marker), and Mog (oligodendrocyte marker) in both
CD11b+CD45lo and CD11b+CD45hi cell populations from
either CD- or WD-fed mice (Additional file 1: Figure S4).
Together, these data validated the high purity of FACS-
enriched myeloid cell populations.
Principal component analysis (PCA) showed striking

differences in the transcriptomes between CD11b+CD45lo

and CD11b+CD45hi cells isolated from mice fed either a
WD or CD. These cell populations were separated by the
first and second principal components (PC1 and PC2)
which explained 20.5% and 13.8% variance in their tran-
scriptome profiles, respectively (Fig. 4a). Consistent with
the PCA, 740 DE genes (FDR < 0.05 and absolute FC >
1.5) resulted from pairwise comparison of CD11b+CD45lo

and CD11b+CD45hi cells from WD-fed mice (Add-
itional file 2) and 554 DE genes (FDR < 0.05 and absolute
FC > 1.5) from pairwise comparison of CD11b+CD45lo

and CD11b+CD45hi cells from CD-fed mice (Add-
itional file 3). However, there were no DE genes

A B

C

Microglia

Disease-associated microglia genes D Complement cascade genes 

Monocytes/Macrophage Neutrophils

Fig. 4 Characterization of DE genes in CD11b+CD45lo and CD11b+CD45hi cells of CD and WD-fed mice. a Principal component analysis (PCA)
plot showing the first and second component of transcriptional expression profiles between CD11b+CD45lo and CD11b+CD45hi cells. b–d Box
plots showing the gene expression in log2-transformed cpm in CD11b+CD45lo and CD11b+CD45hi cells from both CD and WD-fed mice. b
Expression of marker genes of microglia, monocytes/macrophage, and granulocytes. c Expression of disease-associated microglia (DAM) genes. d
Expression of complement cascade genes
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comparing transcriptomes of the same cell type
(CD11b+CD45lo or CD11b+CD45hi cells) between WD
and CD (FDR < 0.05 and absolute FC > 1.5). This agreed
with the PCA which showed no clear separation between
samples from mice fed different diets. This is likely be-
cause, despite significant differences in the percent of ei-
ther CD11b+CD45lo or CD11b+CD45hi cells between
WD- and CD-fed mice as measured by flow cytometry
(Fig. 3h, i), the numbers of cells collected for transcrip-
tional profiling were normalized across samples. PC2 did
suggest subtle variation in CD11b+CD45hi cells between
WD and CD samples (Fig. 4a). To determine the genes
driving this potential subtle difference, a reduced strin-
gency (absolute FC > 1.0) was employed and 87 DE genes
were identified comparing CD11b+CD45hi samples be-
tween mice fed a CD and WD (Additional file 4). No DE
genes were detected using this lower stringency for
CD11b+CD45lo cells. The 87 DE genes were subjected to
the canonical pathway function in Ingenuity Pathway Ana-
lysis (IPA) software to identify pathways enriched in these
genes. The top canonical pathway identified is protein ubi-
quitination pathway (Additional file 1: Figure S5A) that in-
cludes DE genes Psmb9, Usp10, Dnajc1, Sugt1, and Ube2w
(Additional file 1: Figure S5B, C). Interestingly, Ctsd, the
gene encoding cathepsin D which is a critical lysosomal en-
zyme associated with lipid metabolism and obesity [32, 33],
was significantly increased in CD11b+CD45hi cells of WD-
fed mice comparing that of CD-fed mice (FC = 1.38) (Add-
itional file 1: Figure S5B, C). This suggests that compared
to CD, WD may have a subtle effect on the metabolic func-
tion of CD11b+CD45hi cells.
To further characterize genes and pathways that define

the differences between CD11b+CD45lo and CD11b+CD45hi

cells, the expression levels of several classical myeloid cell
markers were assessed. CD11b+CD45lo cells expressed sig-
nificantly higher levels of microglia signature genes including
P2ry12, P2ry13, and Tmem119 compared to CD11b+CD45hi

cells (Fig. 4b). However, CD11b+CD45hi cells also
expressed these signature genes (albeit at lower levels
to CD11b+CD45lo cells) suggesting that the
CD11b+CD45hi population also includes microglia.
Other studies have suggested that using differential
levels of CD45 is not a definitive method to define and
then isolate resident microglia and peripheral myeloid
cells [18], and our data support this. Interestingly, DAM
genes (including Itgax) that were defined in a recent single-
cell sequencing study [31] were more highly expressed in
CD11b+CD45hi cells compared to CD11b+CD45lo cells sug-
gesting CD11b+CD45hi cells may be enriched for activated
or “responding” microglia while CD11b+CD45lo cells are
primarily resting or “sensing” microglia (Fig. 4c). This result
is also supported by our flow cytometry data that showed
the majority of CD11c+ cells were present in
CD11b+CD45hi cells (Additional file 1: Figure S1E).

To determine whether CD11b+CD45lo or CD11b+CD45hi

cells are enriched for peripheral myeloid cells, classical
markers of monocytes/macrophages and granulocytes were
assessed. The monocyte/macrophage genes Ccr2, Cd74, and
S100a4 were more highly expressed in CD11b+CD45hi

compared with CD11b+CD45lo cells (Fig. 4b). Similarly, the
granulocyte genes S100a8, S100a9, and Stfa2l1 were highly
expressed in CD11b+CD45hi cells, with Stfa2l1 as the newly
identified neutrophil marker [34]. This result was also
supported by our flow cytometry data that showed more
Ly6c+Ly6g− and Ly6c+Ly6g+ cells were present in
CD11b+CD45hi cells (Additional file 1: Figure S2E, G). To-
gether, our data support our model that CD11b+CD45hi

cells are enriched for infiltrating peripheral myeloid cells.
Interestingly, both CD11b+CD45lo and CD11b+CD45hi cells
expressed high levels of C1q complex-coding genes (C1qa,
C1qb, and C1qc) (Fig. 4d), while CD11b+CD45hi cells
expressed significantly higher levels of downstream comple-
ment components (C2, C3, and C4b) than CD11b+CD45lo

cells (Fig. 4d), suggesting the complement cascade, a com-
ponent of the innate immune response, is more active in
CD11b+CD45hi cells compared to CD11b+CD45lo cells.

Pathway analyses identified enrichment of genes
involved in diapedesis in CD11b+CD45hi cells in obesity,
aging, and AD
A major goal of this study was to determine genes/
pathways to help define the function of cells in the
CD11b+CD45hi population. Therefore, we employed the
canonical pathway function in IPA software to identify
pathways enriched in the 740 and 554 DE genes from WD
and CD, respectively, comparing the CD11b+CD45hi sam-
ples to the CD11b+CD45lo samples (Additional files 2 and
3). As expected, most of the top 15 canonical pathways
were involved in immune-related functions (Fig. 5a). Im-
portantly, the top two pathways are granulocyte or agran-
ulocyte adhesion and diapedesis (Fig. 5a, b), suggesting
CD11b+CD45hi cells include peripheral myeloid cells as a
result of their extravasation into the brain. Atherosclerosis
signaling was the third significant pathway (Fig. 5a, c, and
e) suggesting CD11b+CD45hi cells contribute to chronic
cerebrovascular inflammation that may result from the
build-up of fatty material under chronic WD consump-
tion. Another significant pathway was TREM1 signaling
(Fig. 5a, d, and f) suggesting that CD11b+CD45hi cells me-
diate proinflammatory responses in the brain. Together,
our pathway analyses further support our model that
CD11b+CD45hi cells are composed of peripheral mono-
cytes and granulocytes that infiltrate into the brain and
contribute to WD-related neuroinflammation.
While aging is the greatest risk factor for AD, obesity

also significantly increases risk. Further, multiple lines of
evidence show that myeloid cells may be central to brain
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changes observed in obesity, aging, and AD [9–13].
Therefore, to determine the similarities and differences
between myeloid cell populations in WD-fed mice, AD
mice, and aging mice, transcriptional profiles were gen-
erated from CD11b+CD45lo and CD11b+CD45hi cells
isolated from B6 mice fed the CD from 2 to 20 months,
and B6.APP/PS1 mice fed the CD from 2 to 6 months
(early plaque deposition in this strain). Interestingly, the
DE genes comparing transcriptional profiles between

CD11b+CD45lo and CD11b+CD45hi cells in aging and AD
showed similar enriched pathways to those identified in
WD-fed mice (Additional file 1: Figure S6).

Top genes enriched in CD11b+CD45hi cells reflected
peripheral myeloid cell profiles
Data presented here and previous data suggest that
CD11b+CD45hi cells are a mixed population that in-
cludes potentially responding (activated) brain-resident

CD 1
2M

W
D 1

2M

Granulocyte/Agranulocyte Adhesion and Diapedisis 

Atherosclerosis Signaling 

TREM1 Signaling 

A

B
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D

E

F

Atherosclerosis Signaling 

TREM1 Signaling 

Fig. 5 Ingenuity Pathway Analysis (IPA) of DE genes between CD11b+CD45lo and CD11b+CD45hi cells. a IPA reveals the top 15 canonical pathways based on
the DE genes comparing CD11b+CD45lo and CD11b+CD45hi cells in CD or WD diet-fed mice [−log10(p value) > 1.3]. b–d Box plots showing the expression
levels of the representative genes in CD11b+CD45lo and CD11b+CD45hi cells in granulocyte or agranulocyte adhesion and diapedesis (b), atherosclerosis
signaling (c), and TREM1 signaling pathways (d). e–f Pathway network illustration of atherosclerosis signaling (e) and TREM1 signaling (f) pathways in WD-fed
mice. The molecules in red indicate their significantly increased expression in CD11b+CD45hi cells compared to CD11b+CD45lo cells
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microglia and peripheral myeloid cells that infiltrated
into the brain after WD consumption. To determine
their respective contributions to brain health, it is essen-
tial to determine genes that define these different mye-
loid subpopulations to enable functional testing. To
identify gene sets that better define these subpopula-
tions, we set stringent criteria to determine the top DE
genes enriched in CD11b+CD45hi and CD11b+CD45lo

cells (detailed in the “Methods” section). This strategy
allowed us to identify genes that showed high levels of
expression in one cell population and negligible expres-
sion in the other cell population. Using this approach,
we identified a set of 34 genes that are enriched in
CD11b+CD45lo cells (Additional file 5) and a set of 73
genes highly enriched in CD11b+CD45hi cells in the
brains of WD-fed mice (Additional file 6). To classify
the myeloid cell subtypes present in the CD11b+CD45lo

and CD11b+CD45hi populations, both gene sets were
compared against the RNA-sequencing database of all
immune cell types deposited at ImmGen [25]. The 34
CD11b+CD45lo cell-related genes specifically matched
the microglia profile, but not any other tissue macro-
phages, monocytes, or neutrophils (Fig. 6a). In contrast,
the 73 CD11b+CD45hi cell-related genes more accur-
ately matched to monocytes and neutrophils with the
least alignment against the microglia profile (Fig. 6b).
The five most highly enriched genes based on fold
change (CD11b+CD45hi compared to CD11b+CD45lo)
were Cxcl2 (137.63-fold), Ear2 (97.96-fold), Spp1 (91.95-
fold), Spn (70.74-fold), and Cd300ld (65.97-fold) (Fig. 6c)
. The seventh most enriched gene was Il1b (60.14-fold),
a proinflammatory marker. The tenth most enriched
gene was Itgal that codes for CD11a, a protein widely
used as a marker of peripheral immune cells [35]
(Fig. 6f). As expected given the sorting strategy (Fig. 3),
neither gene set matched well with other immune cell
types including B cells, T cells, dendritic cells, NK cells,
mast cells, basophils, or stromal cells (Additional file 1:
Figure S7).
To predict the functions of the CD11b+CD45hi cell-

related genes, Gene Ontology (GO) enrichment analysis
was performed on the 73 genes. Enriched biological
process (BP) GO terms related to immune-related pro-
cesses (Fig. 6d). The second enriched BP GO term was cell
adhesion, further supporting that CD11b+CD45hi cell is
involved in diapedesis, as cell adhesion occurs before
diapedesis (Fig. 6d). Interestingly, enriched BP GO
terms also included neutrophil chemotaxis and positive
regulation of neutrophil chemotaxis, suggesting that the
CD11b+CD45hi cells could include neutrophils, the
major cell subtype of granulocytes. GO term analysis
was also consistent with pathway analysis in IPA that
revealed granulocyte adhesion and diapedesis as the top
canonical pathway (Fig. 5a). Furthermore, the cellular

component (CC) GO term enrichment analysis suggested
CD11b+CD45hi cell-related genes include genes encoding
membrane-bound or extracellular proteins (Fig. 6d).
Using the gene interaction network function of IPA,
37 of the 73 genes appeared in a single gene network
(Fig. 6e), including Cxcl2, Spp1, Spn, Ptgs2, Il1b, and
Itgal, that were among the top 10 CD11b+CD45hi

cell-related genes (Fig. 6c). Consistent with CC GO
term enrichment, proteins encoded by the
CD11b+CD45hi cell-related genes in this network are
highly enriched in plasma membrane component,
serving as immune cell surface receptors.
To further refine which cell type the GO terms and

gene network may be functioning in, key genes in the
network were compared to the ImmGen datasets [26].
Two of the most highly enriched genes in this
network, Cxcl2 and Spp1, were predominantly
expressed in thioglycolate broth (TG) stimulated neu-
trophils, showing a strikingly similar expression pat-
tern to the recently identified neutrophil marker,
Stfa2l1 [34] (Fig. 6f). Together, these data suggest that
the CD11b+CD45hi cell population included a signifi-
cant number of neutrophils.

Chronic western diet consumption induced OPN-
expressing cells in the brain
GO term and gene network analyses predicted that the
gene network containing Cxcl2 and Spp1 is functioning
in activated neutrophils. Spp1 encodes for osteopontin
(OPN), a proinflammatory cytokine that has been shown
to be secreted from numerous cells including activated
leukocytes [36]. However, ImmGen data suggests that
stimulated neutrophils are the greatest producer of OPN
(Fig. 6f). Interestingly, in the ImmGen datasets, Spp1
was not expressed in microglia that did express high
levels of Aif1 (that encodes IBA1, a commonly used
marker for microglia and monocytes/macrophages)
(Fig. 6f). Aif1 was not expressed by stimulated neutro-
phils that highly express Spp1 (Fig. 6f).
To further characterize Spp1, OPN and IBA1 immu-

noreactivity was examined in young (3 months) and aged
(12 months) WT mice fed a CD or WD and 12-month
Ccr2-KO mice fed a CD or WD. There was a significant
increase in OPN+IBA1− cells in aged WT WD-fed mice
compared to their aged CD-fed counterparts (Fig. 7e–l,
u). However, this effect was not observed in Ccr2-defi-
cient mice (Fig. 7m–t, v). Additionally, there was no sig-
nificant difference in OPN+IBA1− cell number
comparing young and aged mice under CD (Fig. 7a–h,
u). There was a significant decrease in OPN+IBA1+ cells
in 12-month WT WD-fed mice compared to WT CD-fed
mice (Additional file 1: Figure S8A). However, there was
no significant difference between the number of
OPN+IBA1+ cells in aged Ccr2-KO mice under CD vs.
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WD (Additional file 1: Figure S8B). Together, our data
suggest that a population of OPN+IBA1− cells enter the
brain in response to a WD via a CCR2-dependent mech-
anism. We speculate this OPN+IBA1− population likely
represents activated neutrophils.

Discussion
Brain myeloid cells are well recognized in WD- and obes-
ity-induced neuroinflammation. However, to our know-
ledge, this study is the first to perform transcriptomic
characterization of brain myeloid cell subpopulations in
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Fig. 6 Top genes enriched in CD11b+CD45hi cells reflected peripheral myeloid cell profiles in WD-fed mice. a, b Normalized gene expression plot
(reproduced from ImmGen datasets, see the “Methods” section) showing relative gene expression values for 34 CD11b+CD45lo cell-enriched DE genes
(a) or 73 CD11b+CD45hi cell-enriched DE genes (b) within macrophage (green), monocytes (pink), and neutrophils (red). Normalized expression means
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CD11b+CD45hi cell-related genes in WD-fed mice, colored by significance level using -log10(BJ). e Gene interaction network generated in IPA
containing 37 of the 73 CD11b+CD45hi cell-enriched genes in WD-fed mice. f Normalized expression levels of Itgal (blood-derived immune cell
marker), Cxcl2, Spp1, Stfa2l1 (specific neutrophil marker), and Aif1 (brain myeloid cell marker) across macrophage, monocytes, and granulocytes
reproduced from ImmGen datasets (same datasets as a and b)
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obese mice. We characterized two distinct subsets of brain
myeloid cells, CD11b+CD45lo and CD11b+CD45hi cells in
mice fed a WD from 2 to 12 months. Our flow cytometry,
FACS, and transcriptomic analyses showed that
CD11b+CD45lo cells are most likely the steady-state
brain-resident microglia while CD11b+CD45hi cells are
likely composed of responding (or activated) microglia,

dendritic cells and peripherally derived cells (monocytes/
macrophages and neutrophils). The heterogeneity of
CD11b+CD45hi cells in our study is likely due to the fact
that CD45 is not categorical to separate different subpop-
ulations of myeloid cells—particularly brain-resident vs.
peripherally derived—at least in the context of neuroin-
flammation induced by chronic conditions like obesity, as

Fig. 7 WD increased OPN+IBA1− cells in the brain. a–l Representative cortical sections on OPN (red) and IBA1 (green) staining from 3-month WT
mice fed a CD (a–d), 12-month-old WT mice fed a CD (e–h) or WD (i–l). m–t Representative cortical sections on OPN (red) and IBA1 (green)
staining from 12-month Ccr2-KO mice fed a CD (m–p), or WD (q–t). d, h, l, p, and t are magnified images cropped from c, g, k, o, and s,
respectively. Arrows indicate examples of OPN+IBA1− cell in each group. u Box plots showing the number of OPN+IBA1− cells (sum of cell
numbers from seven images per animal) in 3-month WT CD-fed mice, and 12-month CD or WD-fed WT (one-way ANOVA followed by Tukey HSD
post hoc test, *p = 0.016). v Box plots showing the number of OPN+IBA1− cells (sum of cell numbers from seven images per animal) in 3-month
Ccr2-KO and 12-month CD or WD-fed WT (T test; not significant, NS). Scale bars: a–c, e–g, i–k, m–o, and q–s, 100 μm
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our flow cytometry data showed continuous levels of
CD45 expression across CD11b+CD45+ populations. In
support of this, we detected common microglia markers
such as Tmem119, P2ry12, and P2ry13 in transcriptomes
from CD11b+CD45hi cells. Therefore, improved markers
for distinguishing peripheral myeloid cell subpopulations
from resident microglia are needed to determine the func-
tion of these different cell populations in health and
disease.
Our flow cytometry and FACS data showed that

chronic WD consumption increased the percent of
CD11b+CD45hi cells, likely through a CCR2-dependent
mechanism. This suggests that certain subpopulations of
CD11b+CD45hi cells such as monocytes and neutrophils
may be increased in the brain during WD. This is also
supported by our observation of the increase in IBA1+
cells and OPN+ cells in WD-fed mice compared to
CD-fed mice. However, no significant differences in
Ly6c+Ly6g+ or Ly6c+Ly6g– cells were detected, and this
may be due to the reported down-regulation of these
markers upon entry into tissue (reviewed in [30]). Our
data showed that some CD11b+CD45hi cells are present
in young and aging brains. This suggests immune sur-
veillance, whereby peripheral cells enter the brain, is oc-
curring at low levels in young and healthy aging brains
[37, 38], and this process increases in response to a WD.
Interestingly, we found that the percent of T cells in-
creased in an age- and CCR2-dependent manner. It is
possible that peripheral T cells infiltrate into the brain
during aging [39] and potentiate or contribute to neuro-
inflammation through interaction with myeloid cells
during neuropathological conditions [40]. The increased
WD-associated neuroinflammation may mostly be ex-
plained by the increased number of peripheral myeloid
cells and activated microglia presented in CD11b+CD45hi

cells, rather than altered gene expression in either
CD11b+CD45lo cells or CD11b+CD45hi cells by WD. We
detected no effect of WD on transcriptomes of
CD11b+CD45lo cells and possible subtle effects on tran-
scriptomes of CD11b+CD45hi cells. However, this obser-
vation could also be limited by our current technology.
The gene expression of microglia or infiltrating myeloid
cells during aging and/or WD consumption may show
some brain region-specific responses [8, 39, 41]. There-
fore, such potential region-specific gene expression
pattern of CD11b+CD45lo or CD11b+CD45hi cells may
be undetectable when myeloid cells from whole cere-
bral tissue were sequenced. Further studies incorporat-
ing spatial single-cell transcriptomic technologies are
necessary [42–44].
By comparing transcriptional profiles from

CD11b+CD45hi cells compared to CD11b+CD45lo cells
in WD-fed mice, we identified 740 DE genes, 73 of which
were almost exclusively expressed in CD11b+CD45hi cells.

The 73 genes included common markers of peripheral
myeloid cells including Itgal (that encodes CD11a). Path-
way analyses of the DE genes comparing CD11b+CD45hi

cells with CD11b+CD45lo cells revealed enrichment of
genes involved in granulocyte and agranulocyte adhesion
and diapedesis, and atherosclerosis signaling (Fig. 5a).
These closely related pathways imply that in WD-fed
mice, peripheral monocytes, and neutrophils may interact
with the cerebrovascular system leading to vascular dys-
function [45, 46]. Similar to an atherogenic condition,
WD consumption can also cause dysregulation of lipid
and cholesterol metabolism and mediate proinflammatory
responses. Together, these lead to disruption of blood-
brain barrier (BBB) homeostasis, causing increased BBB
permeability via activation of endothelial cells and peri-
cytes, key components and regulators of BBB [47]. Upon
activation of WD-induced immune stimuli, endothelial
cells can produce proinflammatory cytokines to attract
peripheral myeloid cells including monocytes and neutro-
phils to the “injury” site [48–51]. Pericytes can also be ac-
tivated to release proinflammatory cytokines or reactive
oxygen species that further exacerbate BBB disruption by
destabilizing tight junction proteins [52]. Together, these
events can facilitate the transmigration of peripheral mye-
loid cells into the brain parenchyma. These peripheral
myeloid cells can then amplify local inflammatory re-
sponses by producing proinflammatory cytokines such as
IL-1, IL-6, and MMPs, which in turn cause additional
cerebrovascular damage. For example, MMP9 has been
shown to degrade basement membrane allowing mono-
cytes and neutrophils to enter perivascular space causing
BBB decomposition [53–55]. In our study, Mmp9 is highly
enriched in CD11b+CD45hi compared to CD11b+CD45lo

cells (Fig. 5b). BBB integrity is crucial for maintaining nor-
mal brain functions; breakdown allows entry of neurotoxic
blood-derived cells, metabolites, and pathogens that initi-
ate neurodegenerative processes [47]. Together, the path-
way analyses support a model whereby WD-induced
obesity leads to BBB leakage through the interaction of
peripheral myeloid cells and vascular cells such as endo-
thelial cells and pericytes.
Gene expression analysis showed CD11b+CD45hi cells

expressed high levels of Trem1 (FC = 60.10 compared to
CD11b+CD45lo cells, Fig. 5d) suggesting they exhibit ro-
bust TREM1 signaling. TREM1 is selectively expressed on
neutrophils and monocytes [56]. As a potent amplifier of
acute and chronic inflammation, TREM1 has been linked
with obesity, atherosclerosis, and AD. TREM1 expression
was significantly increased in monocytes and neutrophils
from blood, adipose, and liver biopsies in obese individuals
[57]. In a second study, the expression of TREM1 was also
significantly increased along with the proinflammatory
M1 markers in liver biopsies of obese patients [58].
Genetic and pharmacological inhibition of TREM1
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ameliorated atherosclerosis in mice [59]. Recent studies
have also implicated TREM1 in AD. Protein quantitative
trait analysis of human monocytes revealed that the
rs6910730G variant in the TREM1 locus was associated
with a decreased TREM1/TREM2 ratio and increased
pathological features of AD and aging-related cognitive de-
cline [60]. Another study suggested TREM1 facilitated
microglial Aβ phagocytosis while the rs6910730G variant
impaired this function and exacerbated AD pathogenesis
[61]. These studies suggest TREM1 may play a beneficial
role in Aβ clearance. However, TREM1 is highly expressed
in neutrophils [56]. A recent study demonstrated that neu-
trophils transmigrated through the BBB into the AD
mouse brain, worsening the AD phenotype [62]. In con-
trast, neutrophil depletion improved memory and reduced
AD-relevant pathology [62]. TREM1 has also been impli-
cated in vascular dysfunction [57–59], so the role of
TREM1 in brain health is likely complex. Much attention
is currently being given to TREM2 in AD and other
neurodegenerative diseases [63, 64]. However, given the
complexity of neuroinflammatory responses in aging
brains, other members of the TREM family (particularly
TREM1) require more consideration.
Our stringent analysis of DE genes identified Spp1

(that encodes OPN) as predominantly enriched in
CD11b+CD45hi cells and OPN+IBA1− cells were in-
creased in WD-fed compared to CD-fed mice. As a pro-
inflammatory cytokine, OPN is well recognized for
controlling immune cell functions such as recruitment
of monocytes/macrophage and facilitating cytokine
secretion in leukocytes [65]. Studies suggest that OPN is
critically involved in inflammation in adipose tissue
during diet-induced obesity. In high-fat diet-fed mice,
OPN was increased dramatically in macrophages that
were recruited to adipose tissue [66], promoting extra-
cellular matrix remodeling as well as proinflammatory
responses [67]. OPN deficiency blocked macrophage in-
filtration into adipose tissue, disrupted extracellular
matrix remodeling and reduced inflammation [66–68].
However, the role of OPN in the brain during diet-
induced obesity is less known. We showed that
OPN+IBA1− cells but not OPN+IBA1+ cells increased
in the brain of WD-fed mice in a CCR2-dependent man-
ner. This is consistent with the observation that
GFP+RFP+ cells (RFP expression driven by the Ccr2
promoter) increase in response to the WD (Fig. 1i).
However, the exact relationship between cells expressing
Cx3cr1::GFP, Ccr2::RFP, OPN, and IBA1 remains to be
elucidated. Our result suggests that the increase in
OPN-expressing cells is likely as a result of infiltration of
peripheral myeloid cells, particularly neutrophils. In sup-
port of this, Spp1 is primarily expressed in activated neu-
trophils based on the ImmGen transcriptional profiling
data (Fig. 6f). Spp1 was expressed at a minimal level in

unstimulated bone marrow and spleen neutrophils sug-
gesting Spp1 is not expressed in steady-state neutrophils
but may be dramatically upregulated upon stimulation,
such as WD-induced inflammation. Although CCR2 is
largely considered a marker for peripheral monocytes,
CCR2 is also expressed in other immune cell types includ-
ing neutrophils, albeit at a lower level [69]. CCR2 defi-
ciency not only blocked monocyte infiltration into the
brain, but also inhibited infiltration of neutrophils [69–
71], as CCR2 deficiency sequesters multiple subsets of leu-
kocytes including neutrophils in the bone marrow [69].
Collectively, these studies support our model that the
OPN levels in brains of WD-fed mice are mediated by
CCR2-dependent infiltration of neutrophils. However, the
specific function of OPN is not well understood. In one
study, OPN colocalized with CD68-positive myeloid cells
in vessels with an impaired BBB in stroke-prone spontan-
eously hypertensive rats, indicating OPN-expressing
microglia or macrophages may be involved in regulating
BBB homeostasis [72]. Other studies suggested OPN may
be protective to BBB after subarachnoid hemorrhage [73,
74]. Whether OPN is beneficial or detrimental to BBB and
overall brain health during WD-induced obesity and other
brain disorders remains to be determined.

Conclusion
Our data suggest that diet-induced obesity results in in-
creased infiltration of peripheral myeloid cells into the
brain. Cells with similar gene expression signatures ap-
pear in the brains of aged mice and a mouse model of
AD. These cells are likely composed of monocytes and
neutrophils and may elicit proinflammatory responses
that destabilizes the blood-brain barrier and/or brain
function. Understanding their contribution to diet-
induced obesity will allow us to determine neuroinflam-
matory components that are shared with age-related
cognitive decline and other age-related neurodegenera-
tive diseases such as Alzheimer’s disease, where diet/
obesity are major risk factors.

Additional files

Additional file 1: Figure S1. The percent of CD45+CD11c+ cells was
increased by WD consumption in a CCR2-dependent manner.
(A) Gating strategy showing total CD45+CD11c+ cells from total
CD45+CD11b+ cells (from Fig. 3f). (B-C) Gating strategy showing
CD11c+ cells from CD11b+CD45lo (B) and CD11b+CD45hi cells (C)
from Fig. 3g, respectively. (D) Box plot showing the percent of total
CD45+CD11c+ cells from 6-month CD-fed, 12-month CD- or WD-fed
WT or Ccr2-KO mice. (E) Box plot showing the percent of
CD45loCD11c+ (marked in B) and CD45hiCD11c+ (marked in C) cells
(two-way ANOVA followed by Tukey HSD post hoc test, *p < 0.05,
**p < 0.01, ***p < 0.001). Figure S2. Ly6c+Ly6g− and Ly6c+Ly6g+ cells
are predominantly expressed in CD11b+CD45hi cells. (A) Gating strat-
egy showing total Ly6c+Ly6g− and Ly6c+Ly6g+ cells from total
CD45+CD11b+ cells (from Fig. 3f). (B-C) Gating strategy showing
Ly6c+Ly6g− and Ly6c+Ly6g+ cells were profiled from CD11b+CD45lo
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(B) and CD11b+CD45hi cells (C) from Fig. 3g, respectively.
(D) Box plot showing the percent of total Ly6c+Ly6g− cells from
6-month CD-fed, 12-month CD or WD-fed WT or Ccr2-KO mice.
(E) Box plot showing the percent of CD45loLy6c+Ly6g− (B) and
CD45hiLy6c+Ly6g− (C) cells. (F) Box plot showing the percent of total
Ly6c+Ly6g+ cells in the same groups of mice. (G) Box plot showing
the percent of CD45loLy6c+Ly6g+ (B) and CD45hiLy6c+Ly6g+ (C) cells
(two-way ANOVA followed by Tukey HSD post hoc test, ***p < 0.001).
Figure S3. The percent of T cells was increased during aging in a Ccr2-
dependent manner. Box plots showing the percent of CD45+CD3e+ cells
from 6-month CD-fed, 12-month CD or WD-fed WT or Ccr2-KO mice. The
gating strategy was shown in Fig. 3f (Two-way ANOVA followed by Tukey
HSD post hoc test, ***p < 0.001). Figure S4. Gene expression of major cell
type markers in the brain. Box plots showing expression levels of marker
genes of myeloid cells, astrocytes, pericytes, endothelial cells, and oligoden-
drocytes in CD11b+C45lo and CD11b+CD45hi cells from CD or WD-fed mice.
Figure S5. WD may affect protein ubiquitination pathway and Ctsd expres-
sion in CD11b+CD45hi cells. (A) Canonical pathways by IPA enriched in DE
genes comparing CD11b+CD45hi cells between WD and CD-fed mice,
[−log(p value)] > 1.3 and number of genes in pathways ≥ 3.
(B) Box plots showing the log2-transformed expression of Ctsd and genes
involved in protein ubiquitination pathway in CD11b+C45lo and
CD11b+CD45hi cells from CD or WD-fed mice. (C) Fold change (FC) of Ctsd
and genes involved in protein ubiquitination pathway comparing
CD11b+CD45hi cells from WD and CD-fed mice, colored by significance
level using -log10(FDR). The positive FC value means the gene expression of
CD11b+CD45hi from WD is larger in than that in CD-fed mice and vice versa.
Figure S6. Shared transcriptomic features of brain myeloid cells in diet-fed,
aged B6 and B6.APP/PS1mice. (A) PCA plot showing the first and second com-
ponent of transcriptional expression profiles between CD11b+C45lo and
CD11b+CD45hi cells in aged WT (20 months) mice and APP/PS1 (6 months)
mice. (B) Top 15 shared canonical pathways revealed by IPA based on DE
genes between CD11b+C45lo and CD11b+CD45hi cells in mice fed a CD or
WD (12 months), aged WT mice (20 months) and APP/PS1 (6 months).
Figure S7. Top genes enriched in CD11b+CD45hi cells reflected peripheral
myeloid cell profiles in WD-fed mice. Normalized gene expression plot
(reproduced from ImmGen datasets) showing relative gene expression values
for 34 CD11b+C45lo cell-enriched DE genes (A) or 73 CD11b+CD45hi

cell-enriched DE genes (B) across all immune cell types available on ImmGen
RNA-seq datasets.
Figure S8. The number of OPN+IBA1+ cells per animal in the brain. (A) Box
plot showing the number of OPN+IBA1+ cells per animal (the sum of cell
numbers on seven images) in 12-month CD or WD-fed WT mice. (T test,
**p = 0.0021). (B) Box plot showing the number of OPN+IBA1+ cells per
animal (the sum of cell numbers on seven images) in 12-month CD or
WD-fed Ccr2-KO mice. (T test; not significant, NS). (PDF 7836 kb)

Additional file 2: Gene list comparing the transcriptomes of
CD11b+CD45lo with CD11b+CD45hi cells in WD-fed mice. Pairwise com-
parison of transcriptomes between CD11b+CD45lo and CD11b+CD45hi

cells in WD-fed mice. The positive FC value means the gene expression is
larger in CD11b+CD45hi than in CD11b+CD45lo and vice versa. DE genes
were defined as FDR < 0.05. (XLSX 1720 kb)

Additional file 3: Gene list comparing the transcriptomes of
CD11b+CD45lo with CD11b+CD45hi cells in CD-fed mice. Pairwise compari-
son of transcriptomes between CD11b+CD45lo and CD11b+CD45hi cells in
CD-fed mice. The positive FC value means the gene expression is larger in
CD11b+CD45hi than in CD11b+CD45lo and vice versa. (XLSX 1700 kb)

Additional file 4: Gene list comparing the transcriptomes of
CD11b+CD45hi from CD-fed mice and WD-fed mice. The positive FC
value means the gene expression CD11b+CD45hi is larger in WD-fed
mice than that in CD-fed mice and vice versa. DE genes were defined as
FDR < 0.05. (XLSX 1730 kb)

Additional file 5: The top CD11b+CD45lo cell-related genes in WD-fed
mice. The top DE genes enriched in CD11b+CD45hi cells were defined as
those with expression levels above 100 cpm and at least two-fold higher
compared to CD11b+CD45lo cells. (XLSX 14 kb)

Additional file 6: The top CD11b+CD45hi cell-related genes in WD-fed
mice. The top DE genes enriched in CD11b+CD45hi cells were defined as
those with expression levels above 100 cpm and at least 10-fold higher
compared to CD11b+CD45lo cells. (XLSX 20 kb)
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