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ABSTRACT: Hereditary demyelinating neuropathies linked
to peripheral myelin protein 22 (PMP22) involve the
disruption of normal protein trafficking and are therefore
relevant targets for chaperone therapy. Using a small molecule
HSP90 inhibitor, EC137, in cell culture models, we previously
validated the chaperone pathway as a viable target for therapy
development. Here, we tested five commercially available
inhibitors of HSP90 and identified BIIB021 and AUY922 to
support Schwann cell viability and enhance chaperone
expression. AUY922 showed higher efficacy, compared to
BIIB021, in enhancing myelin synthesis in dorsal root
ganglion explant cultures from neuropathic mice. For in
vivo testing, we randomly assigned 2−3 month old C22 and 6
week old Trembler J (TrJ) mice to receive two weekly injections of either vehicle or AUY922 (2 mg/kg). By the intraperitoneal
(i.p.) route, the drug was well-tolerated by all mice over the 5 month long study, without influence on body weight or general
grooming behavior. AUY922 improved the maintenance of myelinated nerves of both neuropathic models and attenuated the
decline in rotarod performance and peak muscle force production in C22 mice. These studies highlight the significance of
proteostasis in neuromuscular function and further validate the HSP90 pathway as a therapeutic target for hereditary
neuropathies.
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■ INTRODUCTION

The heat shock (HS) pathway represents a cellular stress
response, which results in elevated expression of cytoprotective
chaperones or heat shock proteins (HSPs). Activation of
chaperones has been shown to reduce the aggregation of
misfolded proteins and alleviate disease phenotypes in various
neurodegenerative disease models.1−3 It has been proposed
that an increase in the availability of functional HSPs aids in
the folding and the disaggregation or enhanced degradation of
misfolded proteins.4−6 The activation of the HS pathway can
be achieved through inhibition of HSP90, which disrupts its
interaction with Heat Shock Factor-1 (HSF-1) leading to
transcriptional activation of the HS response.7 Although
HSP90 inhibitors have been investigated primarily for their
anticancer properties, when used within a defined concen-
tration range, they can be beneficial in the treatment of protein
misfolding disorders.8

Charcot-Marie-Tooth (CMT) diseases comprise a hetero-
geneous group of progressive hereditary peripheral neuro-
pathies, most often associated with overproduction of

peripheral myelin protein 22 (PMP22), an aggregation-prone
Schwann cell protein.9,10 Transgenic C22 mice express
additional copies of the wild type (Wt) human PMP22 and
reproduce the phenotypic traits of the neuropathies, including
demyelination of peripheral nerves, impaired locomotor
performance, and age-associated disease progression.11−13

Mislocalization and aggregation of mutant PMP22 is a culprit
in early onset, severe neuropathies, modeled by the Trembler J
(TrJ) mouse carrying a spontaneous mutation in the Pmp22
gene.14 In a previous study, we showed that activation of the
HS pathway using EC137, a synthetic HSP90 inhibitor,
reduced the aggregation of PMP22 and improved myelination
in neuron-glia explant cultures from C22 mice.15 In an in vivo
study of neuropathic TrJ mice, an increase in chaperone
expression through intermittent fasting supported maintenance
of nerve myelin and locomotor performance.16 In accordance,
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enhancement of the stress response by life-long calorie
restriction was beneficial for peripheral nerve integrity in
aged rats.15,17 Recent in vitro work further supports the
importance of heat shock protein 70 (HSP70) in preventing
the aggregation of misfolded PMP22 and aiding in its
degradation.18 In related studies, pharmacological activation
of HSP70 was shown to reverse sensory deficits in diabetic
mice19 and ameliorate nerve demyelination and motor deficits
in an inducible neuropathic mouse model.20 Thus, a number of
experimental scenarios indicate that chaperones are critical for
myelin maintenance and peripheral nerve function.
In this study, we screened five commercially available HSP90

inhibitors and identified NVP-AUY922 (referred to as
AUY922 or AUY from here on) as the most effective
compound in improving myelination in explant cultures from
neuropathic C22 mice. This positive response correlated with
the robust induction of chaperones in Schwann cells, in a dose-
and time-dependent manner. In vivo administration of
AUY922 preserved myelinated peripheral nerves in both C22
and TrJ models and attenuated the decline in neuromuscular
performance in neuropathic C22 mice.

■ RESULTS
AUY922 and BIIB021 Are Nontoxic Inducers of the

Chaperone Pathway in Schwann Cells. We tested five
commercially available HSP90 inhibitors, including AT13387,
AUY922, BIIB021, SNX5422, and STA9090, on the viability of
rat Schwann cells using the MTS assay. After 24 h of exposure,
geldanamycin (GA, 50 nM), a well-known inhibitor of HSP90,
significantly decreased cellular viability compared to DMSO
(Figure 1A), which is in agreement with previous studies.21

Among these five tested compounds, lower dosages (50 nM)
of AT13387, BIIB021, and STA9090 were well-tolerated by
Schwann cells, while the higher dosages (500 nM) significantly
decreased cellular viability, compared to DMSO. Surprisingly,
neither concentration of AUY922 affected cell viability, while
SNX5422 was toxic at both concentrations and therefore was
excluded from subsequent studies.
Next, we determined the efficiency of these compounds in

inducing the chaperone pathway, by measuring HSP70
expression in nonmyelinating Schwann cells (Figure 1B).22

After 24 h of incubation, AUY922 and BIIB021, each at 100
nM, elicited similar HSP70 transcript levels as GA (50 nM),
the positive control. In comparison, incubation of the cells with
AT13387 and STA9090 lacked positive effects (Figure 1B).
Because AUY922 and BIIB021 elicited minimal Schwann cell
toxicity and effectively induced the HS response, we chose
these two compounds for further testing.
To characterize the influence of the two selected compounds

on chaperone levels, we performed dosage and time course
studies (Figure 2). First, nonmyelinating Schwann cells were
treated with 25, 50, or 100 nM of either BIIB021 or AUY922
for 24 h and then analyzed for levels of HSP70 and HSP27
(Figure 2A). Both compounds increased HSP70 levels in a
dose-dependent fashion, showing peak expression at 100 nM.
Although the levels of HSP27 did not change prominently with
different doses of the test compounds, cells treated with even
the lowest dose showed higher HSP27 expression, as compared
to the DMSO controls. However, AUY922 was more effective
in increasing the levels of HSP70 and HSP27, even at lower
doses, as compared to BIIB021. This finding corresponds with
the higher levels of HSP70 mRNA observed upon AUY922
treatment, as compared to BIIB021 (Figure 1B). Next, time

course experiments were performed over 4−48 h incubation
periods (Figure 2B). As shown, 100 nM BIIB021 or AUY922
increased HSP70 levels as early as 4 h, with the expression
peaking between 16 and 24 h. To study the sustainability of the
induction, Schwann cells were treated with either 100 nM
AUY922 or BIIB021 for 4 h (treat), followed by wash out and
media replacement without drugs (chase) (Figure 2C). Cells
exposed to BIIB021 or AUY922 for 4 h maintained elevated
chaperone expression for at least 48 h, compared to the
DMSO-treated controls. These results indicate that the
exposure of Schwann cells to low concentrations of AUY922
or BIIB021 elicits robust and sustained chaperone induction,
without significant cellular toxicity.

Improved Myelin Production upon Chaperone In-
duction in Explant Cultures from Neuropathic Mice.
The effects of AUY922 and BIIB021 on the myelination
capacity of peripheral glia were assessed in dorsal root ganglion
(DRG) explant cultures from wild type (Wt) and neuropathic
C22 mice.15 DRG explant cultures were treated with either
vehicle (Veh, DMSO), AUY922 (A, 100 nM), or BIIB021 (B,
100 nM) for 2 weeks, followed by analyses for chaperone
expression and myelin formation (Figure 3). As shown (Figure
3A), the levels of HSP70 are elevated in HSP90 inhibitor-
treated (A and B) Wt and C22 cultures, as compared to vehicle
(Veh) controls. Within the same protein lysates, myelin
production was evaluated through the expression levels of
myelin protein zero (P0), which constitutes the majority of
peripheral myelin proteins (Figure 3A). Both AUY922- and
BIIB021-treated cultures from neuropathic mice show elevated
levels of P0 compared to the vehicle control, and this effect was
consistent across independent culture preparations. To assess

Figure 1. Effects of HSP90 inhibitors on Schwann cells. (A) Cell
viability after treatment (24 h) with DMSO, GA (50 nM), or the
indicated five HSP90 inhibitors (50 and 500 nM) was calculated and
graphed, as a percentage of DMSO (vehicle). (B) HSP70 mRNA
levels were quantified after 24 h of treatment with the indicated
compounds (100 nM). GAPDH (glyceraldehyde-3-phosphate de-
hydrogenase) was used as an internal control. (A, B) GA (50 nM)
served as a positive control. A.U.: arbitrary units. Graphs are plotted
as means ± SEM; ***P < 0.001; **P < 0.01; *P < 0.05; n.s.,
nonsignificant; two-tailed unpaired Student’s t-test.
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the potential contribution of DRG neurons to the increase in
chaperones, we depleted Wt explants of Schwann cells by
antimitotic FUdR treatment15 (SC-depleted, Figure 3B). The
chaperone response of explant cultures to AUY922 (the more
potent HSP90 inhibitor) without Schwann cells is muted,
indicating that the increase in HSP70 expression is
predominantly from the glial cells.
We complemented the biochemical studies on myelin

production with the direct evaluation of myelin basic protein
(MBP)-positive internode segments.15 Measurement and
quantification of MBP-positive myelin segments in the explant
cultures revealed significant increases in internode lengths in
AUY922-treated Wt and C22 cultures, while the influence of
BIIB021 did not reach significance in cultures from neuro-
pathic mice (Figure 3C,D). Representative micrographs from
each treatment paradigm are shown and support the positive
impact of the two tested compounds on myelin formation
(Figure 3E), with AUY922 being more efficacious.
AUY922 Supports Neuromuscular Performance in

C22 Mice. To test the effects of AUY922 on peripheral myelin
and the motor performance of neuropathic mice, Wt and C22
littermates were randomly segregated at 7 weeks of age into
vehicle and AUY922 treatment cohorts. Animals were injected
via the peritoneum with 2 mg/kg AUY922 twice a week, for 20
weeks. Note that this chosen dosing regimen is significantly
distinct from the short-term, daily, 50 mg/kg treatment
paradigm used for tumor reduction in athymic mice.23 As
shown (Figure 4A), the body weight gain of the animals
treated with the drug is similar to that of those injected with

vehicle over the period of the study, implying no adverse
effects of the drug on the overall health of the mice. Effects of
AUY922 treatment on the motor performance of Wt and C22
mice were assessed on the accelerating rotarod at the
beginning of the study and monthly thereafter. Since biological
sex does not affect rotarod performance,24,25 values for male
and female mice were combined. At baseline (7 weeks of age),
there is a significant difference in the ability of Wt and C22
mice to stay on the rotating rod, and this difference becomes
more pronounced at the end of the study, when the vehicle-
treated groups are compared (Figure 4B,C). This is in
agreement with the progressive nature of this disease in the
C22 model.13,26 At baseline, the vehicle and AUY922
treatment groups of C22 mice do not differ in their latencies
to fall (Figure 4B); however, at the end of the study the
AUY922-treated C22 mice perform significantly better than
the vehicle-treated group (Figure 4C). An ANOVA test on
latency for the rotating rod was conducted for baseline and for
2, 6, 10, 14, and 20 weeks of treatment (Figure 4D). Genotype
differences were observed for 2, 6, and 10 weeks of treatment.
There was a tendency (P = 0.072) for a genotype difference at
week 14, and the main effects of genotype [F(1, 21) = 9.74, P,
0.01] and treatment [F(1, 21) = 8.49, P, 0.01] were observed
for week 20 (Figure 4D). Post hoc tests indicate that the
performance of C22 AUY922 mice was not different from that
of Wt vehicle-treated mice for weeks 14 and 20 (Figure 4C,D).
Furthermore, post hoc tests examining treatment effects in
each genotype indicated that the effect was restricted to C22
mice. Finally, a repeated measures ANOVA test between
baseline and week 20 within each genotype and treatment
group indicated that the C22 vehicle-treated mice showed a
decreased performance [F(1, 5) = 7.39, P, 0.05] (Figure 4D).
Next, to examine the effects of AUY922 on skeletal muscle

strength, we performed in situ force-frequency contractile
analysis on the tibialis anterior (TA) muscle.27−29 The
absolute maximal tetanic force generated by the TA after
sequential single stimulations of the common peroneal nerve
was measured and normalized to the body weight of the animal
(Figure 4E). We found a significant (∼28%) increase in force
generation in C22 animals treated with AUY922, as compared
to the vehicle group. In addition, an assessment of myofiber
cross-sectional area within the same set of TA muscles revealed
a significant improvement, or maintenance, of tissue integrity
when compared to the vehicle group (Figure 4F).
For the analysis of the bioavailability of AUY922, blood and

liver tissues were collected at the end of the study. While all
samples were acquired within a 4 h time window of the final
injection, AUY922 concentration varied in sera and liver: from
2.78 to 226 ng/mL in the sera and 101 to 304 ng/g in the liver.
Overall, these results indicate that the AUY922 treatment
paradigm is well-tolerated by neuropathic C22 mice and results
in the attenuation of declining neuromuscular performance and
myofiber atrophy.

AUY922 Treatment Maintains Myelinated Axons in
C22 Neuropathic Mice. Histopathological defects in
peripheral nerves of C22 mice include repeated demyelination
and remyelination of medium to large axons with onion bulbs
and signs of acute myelin breakdown, with macrophage
infiltration11.30 Cross-sectional analyses of sciatic nerves from
the C22 vehicle group revealed these characteristics, when
compared to the Wt vehicle group (Figure 5A). However, in
our cohort of mice, the occurrences of these disease-associated
pathological features are notably reduced compared with the

Figure 2. Treatment with BIIB021 and AUY922 increases chaperone
expression in a dose- and time-dependent manner. (A) Steady-state
levels of HSP70 and HSP27 in whole Schwann cell lysates (15 μg/
lane) were analyzed after 24 h of treatment with DMSO, BIIB021, or
AUY922, at the specified doses. GA (50 nM) served as a positive
control. (B) HSP70 and HSP27 levels were observed after treatment
with 100 nM BIIB021 or AUY922 for the indicated times. (C)
Chaperone pathway activation by BIIB021 or AUY922 (100 nM) was
studied after 2 or 4 h (treatment), followed by 4, 24, 32, and 48 h
chase time points. (A, B) GAPDH and (C) tubulin served as protein
loading controls. Molecular mass on left, in kDa. Data shown are
representative of n = 3 independent experiments.
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original publication by the Huxley lab.11 Since the severity of
the C22 phenotype depends on the copy number of the
transgene,26 we compared archived tissue from ∼2007 to tissue
from mice used in this study. We found no change in transgene
copy number by qPCR. We further analyzed the genetic
background and determined that historically the mice were on
a mixed C57BL/6J and C57BL/6N background, but because
of our maintenance breeding scheme, they are now on a
predominantly CBA background. This shift in genetic
background likely accounts for changes in severity from
previous reports. Since all the studies described here use
contemporary littermate controls, this should not affect the
interpretation of the results. Indeed, we found that the nerves
from AUY922-treated C22 mice contained distinct, well-
myelinated axonal profiles, with a rare occurrence of
degenerating fibers and onion bulbs, compared with the
vehicle group (Figure 5A). We found no apparent differences
in the histology of nerves from Wt mice treated with either
vehicle or AUY922.
We corroborated the microscopic observations with

morphometric analyses of randomly selected cross-sectional
nerve areas from independent mice (Figure 5B−H). The total
area occupied by nerve fibers within a fixed size square is
significantly increased in AUY922-treated C22 animals as

compared to the vehicle group (Figure 5B). Upon comparison
of axon and fiber diameters in Wt groups (Figure 5C−E), we
found no deviation in the overall values (coefficient of
correlation, r2 = 0.96, in both vehicle and AUY922 groups).
However, in nerves from the C22 neuropathic animals, we
found a delineation between the vehicle (r2 = 0.94) and
AUY922 (r2 = 0.96) groups. A similar pattern is obtained when
the g-ratios (axon/fiber diameter) were analyzed as a function
of axon diameter (Figure 6F−H) in nerves of C22 animals (r2

= 0.03 in vehicle versus r2 = 0.23 in AUY922). This is in
contrast to the trend observed in vehicle- (r2 = 0.29) and
AUY922-treated (r2 = 0.28) Wt samples. A correlative analysis
suggests that an increase in fiber diameter in vehicle-injected
C22 animals is not accompanied by a proportional increase in
axon diameter, and this is reflected in the altered g-ratio values.
However, this signature is rectified with AUY922 treatment
where the patterns are comparable to the Wt cohorts.
Together, these results indicate that biweekly injection of
AUY922 supports the maintenance of myelinated axons in C22
neuropathic mice.

Subcellular Processing of PMP22 Is Improved in
AUY922-Treated Neuropathic Mice. Previously, we
showed impaired trafficking of the ectopic human PMP22, as
indicated by a reduction in the endoglycosidase H (EndoH)-

Figure 3. Improved myelin production in DRG explant cultures from C22 mice after treatment with AUY922. (A) Steady-state levels of HSP70
and P0 were analyzed in vehicle (Veh)-, AUY922-(A), or BIIB021 (B)-treated explant lysates (35 μg/lane). (B) Wt DRG cultures, with (Neuron +
Schwann cell) and without (depleted) Schwann cells, were treated with 100 nM AUY922 and analyzed for the indicated chaperones. (A, B)
Tubulin served as a protein loading control. Molecular mass on left, in kDa. MBP-positive myelin internode lengths in explant cultures from (C)
Wt and (D) C22 mice treated with vehicle, AUY922, or BIIB021 were measured (n = 100−120 segments per group) and graphed as whisker plots
with median (center line), quartiles (box), and extremes (whiskers); ***P < 0.001; *P < 0.05; n.s., nonsignificant; two-tailed unpaired Student’s t-
test. (E) Cultures from Wt (top panel) and C22 (lower panel) mice, treated with the indicated compounds were stained for MBP (green). Nuclei
were visualized with Hoechst dye (blue). The scale bar is as shown. Data shown are representative of n = 3−4 independent experiments.
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resistant protein fraction, in sciatic nerves of C22 mice.13 To
investigate whether the AUY922-associated improvements in
nerve morphology and neuromuscular performance are linked
with improved trafficking of PMP22, we subjected sciatic
nerves to biochemical analyses (Figure 6A,B). In nerves from
Wt mice, the EndoH-resistant fraction of PMP22 does not
change upon AUY922 treatment (83.7 ± 5.7 vs 80.0 ± 7.3).
On the other hand, in samples from neuropathic mice, we
observed a significant AUY922-dependent increase (∼11%) in
the EndoH-resistant, membrane-associated PMP22 (54.3 ±
1.5 vs 60.2 ± 1.9), indicating improved subcellular processing.
Mistrafficking of PMP22 within Schwann cells leads to

cytosolic protein aggregation, a cellular phenotype previously
observed in nerves from C22 animals.13,31 To assess the effects
of AUY922 administration on intracellular PMP22 aggregation,
we stained longitudinal nerve sections with anti-PMP22

antibodies.13 Quantification of PMP22-positive protein
aggregates within a fixed field (0.1 mm2) identified an
approximately 5-fold increase in samples from C22 vehicle-
treated mice, as compared to the Wt group (Figure 6C). The
frequency of protein aggregates is reduced by ∼1.7-fold (5.0 ±
0.7 vs 2.9 ± 0.9) upon AUY922 treatment and is associated
with improved myelin-like localization of PMP22 (Figure
6C,D). Note that, with AUY922 administration, the PMP22-
like immunostaining appears uniform and is similar to nerves
from Wt animals (insets in upper right corners). These results
suggest that the improvements in nerve morphology are linked,
in part, with enhanced processing of the overproduced PMP22.
Next, we confirmed the bioactivity of AUY922 by evaluating

chaperone expression in the sciatic nerve (target tissue) and
liver, where AUY922 is metabolized.23 We measured the levels
of HSP70 and HSP27, as they are both regulated by HSF-1
(Figure 6E−J). In the sciatic nerves from drug-treated mice,
the expressions of HSP70 and HSP27 are increased,
confirming the induction of the chaperone pathway in the
target tissue (Figure 6E−G). Note that the baseline levels of
HSP70 are higher in neuropathic samples as compared to the
Wt group, a finding that is consistent with previous
publications.13,32 Similar to the nerve, quantification from
independent Western blots identifies significant increases in
HSP70 and HSP27 in the liver of drug-injected mice,
compared to the vehicle groups (Figure 6H−J). Therefore,
as suggested by our previous studies with EC137, and in cells
from HSP70-deficient mice,15,18 HSP70 likely has a critical role
in improving the processing of PMP22 and nerve morphology
in samples from C22 mice (Figures 5 and 6). Together, these
results confirm the bioavailability and bioactivity of AUY922 in
the sciatic nerve.

Improved Nerve Morphology in AUY922-Treated TrJ
Neuropathic Mice. Enhancements of chaperones by
intermittent fasting or curcumin administration have shown
benefits in TrJ neuropathic mice.16,33 Further, functional
HSP70 is critical in the delivery of TrJ-PMP22 (L16P
mutation) to the lysosomes for degradation.18 Therefore, we
evaluated AUY922 in cohorts of male and female TrJ mice,
starting the drug administration at 6 weeks of age. Nerves from
vehicle-treated neuropathic mice show severe demyelination
and axonal atrophy (Figure 7A, left), as described previously.34

In comparison, samples from the AUY922-treated group
contain discernible myelinated axonal profiles and an improved
overall nerve structure with larger caliber axons (Figure 7A,
right).
We quantified these morphological measurements from

vehicle- and drug-treated TrJ mice and found statistically
significant improvements in the nerve tissue area occupied by
fibers, which correlates with an increase in nerve fiber diameter
(Figure 7B,C). The thickness of myelin around individual
axons is also improved, leading to an overall improvement in
nerve myelination as reflected by a reduction in g-ratio (Figure
7D,E). However, we did not observe any obvious improve-
ments in the motor behavior or locomotion of AUY922-treated
TrJ mice. The rotarod data shown in Figure 7F are
representative of several independent cohorts of mice and
indicate no treatment effect. In agreement, we failed to identify
changes in TA myofiber cross-sectional area upon drug
treatment (Figure 7G).
For each mouse, we tested the bioactivity of the drug in

target tissues by analyzing the levels of HSP70 in the nerve and
liver, as above (Figure 6E−J). The levels of HSP70, which are

Figure 4. Treatment with AUY922 improves neuromuscular perform-
ance of C22 mice. (A) Mean ± SEM of the body weight of Wt and
C22 mice (n = 6−8 mice per group) was plotted over the treatment
period. Performances of individual animals on the accelerating rotarod
(B) at baseline (7 weeks age) and (C) at the end of the treatment (25
weeks age) are shown. The bars represent the mean for each group.
(D) Mean ± SEM of the rotarod performance of all groups, plotted
over the treatment period. (E) Muscle force, analyzed using an in situ
technique, was recorded and normalized to the animal’s body weight
(mN/g = millinewtons/grams). Each point represents the mean ±
SEM force. (F) Distribution of individual measures of the cross-
sectional area of TA muscle from C22 mice treated with vehicle or
AUY (n = 3−5 mice per group). The bars represent the mean for each
group. For all graphs, # indicates a significant (#P < 0.05, ##P < 0.01,
###P < 0.001) genotype difference. *P < 0.05, **P < 0.01, and ***P
< 0.001 indicate a significant treatment effect for C22 mice.
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significantly elevated in TrJ neuropathic nerves as compared
with Wt,16 did not increase further upon treatment with
AUY922 (Figure 7H,I). In comparison, the liver of injected
mice showed a statistically significant increase in HSP70 upon
AUY922 treatment (Figure 7H,J). Note that all tissues were
collected within 4−6 h of the last drug injection to facilitate the
detection of bioactivity. Overall, the results from TrJ
neuropathic mice indicate significant improvements in nerve

morphology, without detectable benefits in neuromuscular
performance or TA myofiber size.

■ DISCUSSION
In this study, we show enhanced neuromuscular function and
improved peripheral nerve morphology in AUY922-treated
C22 neuropathic mice. These benefits are accompanied by
correction in the subcellular processing of the overexpressed,

Figure 5. AUY922 administration supports the maintenance of myelinated axons in sciatic nerves of C22 mice. (A) Cross-sectional views of nerve
sections from Wt (top panels) and C22 (lower panels) male mice. Micron bar, 45 μm. (B) The cross-sectional area occupied by nerve fibers in a 40
μm × 40 μm square (n = 20−25 fibers per animal; n = 6−8 mice per group) was measured and graphed as shown. Graph plotted as means ± SEM;
***P < 0.001, across the treatment groups; #P < 0.05, across the genotypes; two-tailed unpaired Student’s t-test. Correlative analyses between axon
and fiber diameter measurements were obtained from sciatic nerve cross-sectional areas from (C) Wt and (D) C22 groups. (E) Comparison of
trendlines between the cohorts in parts C and D. Scatter plots comparing the g-ratios (axon diameter/fiber diameter) of individual fibers plotted as
a function of axon diameters in nerves of (F) Wt and (G) C22 animals. (C−H) n = 950−1100 fibers per group. (H) Trendline comparisons of
graphs in parts F and G.
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disease-causing PMP22 protein. In comparison, in the more
severe, PMP22 mutant TrJ neuropathic mice, the improve-
ments in nerve myelination failed to affect neuromuscular
performance. Overall, the findings presented here agree with
other reports on the benefits of chaperone-inducing com-
pounds in various neurodegenerative conditions.35,36 Further
optimization of compound delivery, including dosage, timing,
and route of administration, may aid in improving drug efficacy
in hereditary peripheral neuropathies.
The benefits of HS pathway activation have been

documented in various protein misfolding disorders of the
CNS;1−3,37,38 however, there have been fewer studies in the
PNS. Induction of the HS stress pathway, including increased
expression of chaperones by a 5 month long intermittent

fasting regimen in TrJ mice, improved peripheral nerve
morphology and myelination.16 Significantly, the improve-
ments in nerve morphology were paralleled with maintenance
of motor performance, despite disease progression in ad
libitum fed neuropathic mice. A more direct correlation
between the subcellular processing of PMP22 and chaperones
is evident from in vitro studies, where EC137, a synthetic
HSP90 inhibitor, successfully activated the HS pathway and
improved myelination by Schwann cells from neuropathic C22
mice.15 Due to the lack of availability of EC137, here we
screened a set of commercially available compounds, with
similar pharmacological properties. Due to their antiprolifer-
ative properties, the potential effects of HSP90 inhibitors on
cellular toxicity are of major concern,39 particularly when

Figure 6. Improved processing of PMP22 in AUY922-treated C22 mice. (A) Sciatic nerve lysates (5 μg/lane) were treated with either EndoH
(column H) or PNGaseF (column N) and probed with antihuman PMP22 antibodies. No enzyme samples served as controls (column C). EndoH-
resistant (arrows) and EndoH-sensitive (arrowheads) PMP22 fractions are marked. (B) Quantification of EndoH-resistant PMP22 fractions in
sciatic nerves. (C) PMP22-positive aggregates per microscopic field (0.1 mm2) were counted in longitudinal sections of sciatic nerves. (D)
Representative images of anti-PMP22 antibody stained (red) nerve sections from Wt (insets) and C22 mice are shown. Arrows mark PMP22-
positive aggregates. Hoechst dye (blue) was used to visualize the nuclei. The scale bars are as shown. (E) Steady-state levels of HSP70 and HSP27
in vehicle (Veh)- and AUY922 (AUY)-treated nerve lysates (30 μg/lane) were quantified from (F, G) independent Western blots. (H) Whole liver
lysates (30 μg/lane) were processed for (I, J) HSP70 and HSP27 quantification. (E−J) GAPDH or tubulin served as a loading control. Molecular
mass on left in kDa. (B, C, F, G, I, J) n = 3−8 mice per group and plotted as means ± SEM; ***P < 0.001; ***P < 0.01; *P < 0.05; n.s.,
nonsignificant; two-tailed unpaired Student’s t-test.
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chronic, long-term administration is needed. However, at lower
dosages, these drugs can robustly activate the stress pathways
without cell death, which is beneficial for protein misfolding
diseases.8

Identification of the ideal therapeutic compound for
hereditary peripheral neuropathies poses specific challenges,
as within a neuropathic nerve there is a heterogeneous
population of Schwann cells, with regards to the differentiation
state.40 Initially, we selected low, nanomolar drug concen-
tration ranges in the MTS assay, which did not affect the
viability of nonmyelinating, mitotic Schwann cells. In the

context of myelination, which requires the differentiation of
Schwann cells, we identified AUY922 (100 nM) as the most
effective drug in increasing myelin synthesis, with BIIB021
closely behind (Figure 3). We tested both of these compounds
in cohorts of mice and found that oral administration of
BIIB021 in neuropathic animals proved to be a challenge,
while intraperitoneal (i.p.) injections with this compound gave
an inconsistent read out on bioactivity in target nerve tissue.
The mechanism for AUY922-mediated nerve improvement
likely involved HSP70, as this specific chaperone has been
shown to alleviate protein aggregation in several neuro-

Figure 7. AUY922 promotes the maintenance of myelinated axons in TrJ mice. (A) Cross-sectional views of nerve sections from vehicle- (left) and
AUY-treated (right) TrJ mice. Micron bar, 20 μm. (B−E) Morphometric analysis of nerves from vehicle- and AUY-treated TrJ mice (n = 4 mice,
320 fibers, 30−40 areas per group). (B) Percent area occupied by fibers, (C) fiber diameter, (D) myelin sheath thickness, and (E) g-ratios were
graphed. (F) Rotarod performance at the baseline and at the end of treatment is shown for vehicle- or AUY-treated TrJ mice. (G) Myofiber cross-
sectional area of TA muscle from the indicated groups (n = 5 mice, 695 fibers per group). (H) Sciatic nerve (30 μg/lane) and whole liver lysates
(30 μg/lane), with (I, J) quantification, from vehicle (Veh)- and AUY922 (AUY)-treated TrJ mice, were assessed for HSP70. (H−J) n = 6−14
mice per group, with GAPDH serving as a loading control. Molecular mass on left, in kDa. Graphs plotted as means (C, G) ± SEM (B, F, I, J) or as
whisker plots with median (center line), quartiles (box), and extremes (whiskers) (D, E); ***P < 0.001; **P < 0.01; *P < 0.05; two-tailed unpaired
Student’s t-test.
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degenerative diseases, including PMP22-associated neuro-
pathies.4,18,37,38,41 Indeed, HSP70 was robustly induced in
the liver and nerve of drug-treated C22 mice. A critical role for
HSP70 in our treatment paradigm is further supported by the
study where the crossing of HSP70-knockout with TrJ mice
exacerbated the neuropathic phenotype.42 Nonetheless, while
AUY922 is considered to be a “classical HSP90 inhibitor” that
upregulates HSP70 and HSP27, HSP90α knockdown studies
in cultured cells indicate multiple targets.43 Therefore, in
addition to the inhibition of HSP90 and upregulation of
HSP70 and HSP27, additional mechanisms may have
contributed to the beneficial effects of AUY922 treatment on
neuropathic mice.
As originally described, C22 mice used in this study had a

strong phenotype within weeks of birth, including an unsteady
gait and sudden reaction to loud noises.11 Subsequently, the
mice developed distinct motor disabilities, with nerve
demyelination and muscle atrophy by about 6 months of
age.31,44,45 Our study was initiated at 7 weeks of age, as only at
this age we detected significant impairment of the C22 mice on
the rotarod, as compared with age-matched Wt littermates
(Figure 5B). In our laboratory, we have been breeding the C22
mice for nearly 15 years, and over time the animals became less
phenotypic and are now similar to what has been described for
the C3 mice.26 However, by genotyping we detect the human
PMP22 transgene by PCR; the copy number is unchanged
from tissue banked from mice studied several years ago, and
the human protein is highly expressed.13 Still, these mildly
affected C22 mice benefitted from the AUY922 therapy, which
we distinguished by improvements in both nerve and muscle
morphology. In comparison, the more severely affected TrJ
mice only showed improvements in nerve morphology without
behavioral or skeletal muscle benefits. The difference in the
response of the C22 and TrJ mice to AUY922 therapy could be
the results of underlying developmental deficits in the
neuromuscular system in TrJ that are refractory to HSP
therapy.46 The heightened inflammation in nerves of TrJ mice,
as compared to the C22 model,13,47 could be an additional
factor in impacting the response. Furthermore, at the baseline,
nerves from both TrJ and C22 mice have elevated levels of
HSP70;32 however, only in the C22 samples did we detect a
significant increase upon AUY922 treatment. The variance in
drug effectiveness could be the result of differences in drug
metabolism, as well as the genetic defects, and emphasizes the
need for optimization of drug therapies for the various forms of
PMP22-linked neuropathies, in mice and humans.
Albeit the availability of animal models and advancements in

the understanding of CMT1A pathobiology, the therapeutic
options for affected patients are limited. One of the promising
therapeutic candidates, ascorbic acid, elicited prominent
improvement of the neuropathic phenotype in C22 mice;12

however, it has failed in independently conducted clinical
trials.48,49 Progesterone antagonists are another class of
therapeutic drugs which promoted improvements in motor
performance in rats that overexpress PMP22.50 The high
toxicity and potential side effects of available progesterone
antagonists, however, impeded further testing in human clinical
trials.51 Another small molecule, rapamycin, an activator of
autophagy and an immunosuppressant, improved the myelin
structure of TrJ sciatic nerves without significant benefits in
motor performance.47 The rapamycin study emphasizes the
potential distinct response of nerve and muscle tissue to drugs,
when using systemic administration. Besides natural and

engineered drugs, dietary supplements have been explored to
alleviate neuropathic symptoms. For example, curcumin, and
more recently pyruvate supplementation in conjunction with
NT-3 gene therapy, has shown benefits in improving nerve
morphology and motor performance in TrJ mice.33,52

Curcumin, which is known to work through the HSP70
pathway,42 could be readily tested as a food supplement in
CMT1A patients. Together, these preclinical studies in rodents
emphasize the need for stringent evaluation of potential drug
candidates, preferably in more than one independent animal
model.
As of today, there have been two human clinical trials for

CMT1A, both using orally available molecules. The first trial
tested ascorbic acid (vitamin C) to correct the expression of
the overproduced PMP22;12,53 however, this multicenter trial
with nearly 500 CMT1A patients proved unsuccessful in
providing benefits.49 A recent international Phase 3 clinical
trial for CMT1A used pleiotropic drug therapy, including a low
dose combination of baclofen, naltrexone, and D-sorbitol.54

Formal publication on the results from this clinical trial has not
been made public. In a recent study, PMP22 antisense
oligonucleotides (ASOs) were utilized to treat C22 mice and
CMT1A rats, and a 50% reduction was reported in the PMP22
mRNA, with significant improvements in myelinated axons.55

Therefore, an additional approach could involve the combined
use of small molecules, gene therapy, dietary supplements such
as curcumin, phospholipids, and/or exercise. While the
underlying subcellular pathogenesis of hereditary demyelinat-
ing neuropathies is complex and might be significantly distinct
across the genes involved, the neuromuscular system has
robust plasticity,56 which aids repair. While optimization of
HSP90 inhibitor drug dosing and the route of administration
needs improvement for efficacy, our results suggest that
activation of the chaperone pathway alone, or in combination
with another therapeutic approach, may provide benefits in
ameliorating the neuropathic phenotype in affected individuals.

■ METHODS
Mouse Colonies and Genotyping. A founder pair of C22 mice

(MGI: 2183770) obtained from Dr. Clair Huxley11 were bred on
C57Bl/6 or on CBA/CaJ background for multiple generations.
Heterozygous Trembler J (TrJ, MGI: 1856217) mice on a C57BL/6J
background were bred to wild type C57BL6/J mice, obtained from
Jackson laboratories. All animals were maintained under SPF
conditions within the University of Florida animal care facilities and
strictly in compliance with procedures approved by the Institutional
Animal Care and Use Committee (IACUC). For genotyping C22
mice, DNA was obtained from tail biopsies of less than 8 day old pups
and analyzed by PCR using the following primer sets: C22- 5′
TTCTGCTGCCTGTGAGGAC 3′ and 5′ GGGTGAAGAG-
TTGGCAGAAG 3′ which yield a 209 bp product. The endogenous
mouse PMP22 was identified using the following primers: 5′
GGTTGCCAAACTGGAGTGAT 3′ and 5′ CGGCTCTGTC-
AAGATTAGCC 3′ yielding a 458 bp product. TrJ mice were
genotyped as described.34 At weaning age, littermates were segregated
by genotype and sex and randomly assigned to vehicle and AUY922
treatment groups. All efforts were made to reduce the number of
animals used and to minimize their discomfort.

Analysis of Transgene Copy Number and Genetic Back-
ground. To investigate the milder phenotype observed in our present
colony of C22 mice, we analyzed the PMP22 transgene copy number
and the genetic background of the mice used in this study, in
comparison to archived material from 10 years ago, when the
phenotype more closely matched previous reports. The liver was used
as the source of genomic DNA, and QPCR was performed for the
human PMP22 transgene using mouse Pmp22 as an internal standard,
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as described.26 Four archived samples, and four samples from mice
used in the present study, were analyzed. No change in transgene
copy number was detected between the two sets of tissue samples. As
an alternative explanation for the change in phenotype, we also
examined the genetic background of the mice using a panel of 48 SNP
markers spanning the autosomes and X chromosome. These markers
are used routinely for genetic quality control at The Jackson
Laboratory. This analysis revealed that the archived samples were a
mix of C57BL/6J and C57BL/6N genetic backgrounds, whereas the
mice used in the current study were predominantly CBA/Ca but still
carried some heterozygous C57BL/6 alleles on a subset of
chromosomes. On the basis of these analyses, we conclude the
change in phenotype is due to the change in genetic background.
However, as all studies described here used contemporaneous
littermate controls and did not rely on historical data for comparison,
this does not influence the interpretation of our results.
Cell Culture Models. Nonmyelinating Schwann cell cultures were

established from the sciatic nerves of postnatal day 2 rats, as
described.10 The cells were maintained in DMEM (Gibco, Thermo
Fisher, Waltham, MA) and supplemented with 10% FCS (HyClone,
Thermo Fisher), 100 μg/mL bovine pituitary extract (Biomedical
Technologies Inc., Stoughton, MA), and 5 μM forskolin (Calbio-
chem, Millipore, Burlington, MA). Dorsal-root ganglion (DRG)
explants were established from embryonic day 12−13 Wt and C22
embryos.15 Briefly, DRGs were dissociated in 0.25% trypsin (Gibco)
and plated onto collagen-coated cell culture wells. DNA isolated from
each embryo was used for genotyping, as described above. All explants
were maintained in MEM (Gibco), 10% FCS (Hyclone), 0.3%
glucose (Sigma-Aldrich, St. Louis, MO), 10 mM HEPES (Gibco), and
100 ng/mL nerve growth factor (Harlan Bioproducts for Science,
Indianapolis, IN) for 7 days. The cultures were then supplemented
with 50 μg/mL ascorbate for an additional 7 days to promote myelin
formation. For Schwann cell-depleted neuronal cultures, explants were
subjected to alternate-day treatment with 5-fluoro-2′-deoxyuridine
(FUdR) for 10 days and then continued on the same paradigm
described above.15

In Vitro Pharmacologic Treatment Paradigms. HSP90
inhibitor compounds, including AT13387 (S1163), AUY922
(S1069), BIIB021 (S1175), SNX5422 (S2656), and STA9090
(S1159), were purchased from Selleckchem (Houston, TX) and
stored at a stock concentration of 1 mM in DMSO. Primary Schwann
cells were treated with HSP90 inhibitors at the indicated
concentrations in complete media (see above), 24 h after seeding.
DMSO served as the vehicle control while geldanamycin (GA) was
used as a positive control for heat shock pathway activation. The DRG
explant cultures were maintained for 7 days in ascorbate-containing
media prior to treatment with either DMSO, AUY922 (100 nM), or
BIIB021 (100 nM), every third day (72 h apart). Cultures were
procured, 24 h after the third treatment, for either biochemical or
immunochemical analyses.15

Cell Viability Assay. Schwann cells were plated at a seeding
density of 104 cells/well in a 96-well plate (Nunc, Thermo Fisher),
coated with poly-L-lysine (Sigma), and treated with either DMSO or
an HSP90 inhibitor at the desired concentrations for 24 h.15 At the
end of the treatment, cells were incubated in a mixture of MTS (3-
(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium) (333 μg/mL) and phenazine methosulfate
(25 μM) for 2 h at 37 °C, producing the soluble formazan product
(Promega, Madison, WI). The formazan product was measured
spectrophotometrically at 490 nm and graphed as a percent of
DMSO-treated controls using GraphPad Prism v5.0 software.
Quantitative RT-PCR. Rat Schwann cells, treated with either

DMSO or the selected HSP90 inhibitor compounds (100 nM), were
harvested in TRIzol (Invitrogen, Carlsbad, CA), and RNA was
isolated as per the manufacturer’s instructions. A 1 μg portion of total
RNA was used to synthesize cDNA using the SuperScript III first
strand synthesis kit (Invitrogen). The same volume of undiluted
cDNA from each sample was used for real time (RT)-PCR analysis,
using the SYBR GreenER qPCR kit (Invitrogen) and QuantiTect
Primer for HSP70 (QT00370489) or GAPDH (QT00199633). The

normalized transcript levels of HSP70 relative to geldanamycin (GA)
were determined using the 2−ΔΔCT method.57 Values obtained were
analyzed and graphed with the help of GraphPad Prism v5.0 software.

AUY922 Administration, Rotarod Testing, and Serum and
Liver Analyses. During the course of the study, the body weight of
each mouse was recorded twice per week. Baseline rotarod
measurements were obtained before the start of the compound
treatment at 12 weeks of age for C22 and at 6 weeks of age for TrJ
mice. The mice were trained the first 2 days at 5 rpm for 60 s: three
trials/day, with 30 min breaks.16 On the third day, mice were tested
on the rotarod, accelerating from 16 to 36 rpm in steps of 4 rpm
increase/min.42 The control groups were injected intraperitoneally
(i.p.) twice/week with the vehicle consisting of 10% DMSO, 5%
Tween-20, and 85% saline.23 The treatment groups received 2 mg/kg
AUY922, using the same route and vehicle for administration. Dosage
for AUY922 was determined on the basis of the half-life of the
compound in plasma23 and results of the in vitro experiments (see
Figures 2 and 3). Rotarod testing was done on all groups monthly,
where all mice underwent the same 3 day testing. The time on the
rotarod before falling was recorded for each mouse and graphed. The
study was terminated after 20 weeks of drug treatment. At
termination, the mice were sacrificed within 4 h after the final
injection, and blood and tissue samples were collected. Blood was
collected into tubes with clot activator gel (BD 365967, Franklin
Lakes, NJ) and centrifuged at 10 000 rpm for 5 min to isolate serum.
Serum and liver samples were sent to Charles River Laboratories
(Wilmington, MA) for processing and analysis of AUY922
concentration via protein precipitation, followed by LC-MS/MS
using glafenine and carbamazepine as internal standards.

In Situ Isometric Twitch Torque Analyses. The isometric
twitch torque analysis was performed on the tibialis anterior (TA)
muscle and anterior tibial tendon. Under anesthesia, the skin and
fascia surrounding the distal hindlimb were surgically removed
exposing the TA. A braided (4−0) silk surgical suture (Teleflex
Medical, Wayne, PA) was secured around the anterior tibial tendon
before all tendons to the foot were detached. Mice were positioned in
dorsal recumbence on a preheated physiology table to maintain body
temperature at 37 °C. A clamp was used to secure the hindlimb at 90°
at the knee, and the paw was positioned to the physiology table using
transpore surgical tape (3M). The anterior tibial tendon was secured
to a 300C-LR-FP muscle lever (Aurora Scientific, Aurora, ON,
Canada). Cathode and anode electrodes were inserted distal to the
fibular to stimulate the peroneal nerve. Under control of the Dynamic
Muscle Control (DMC) and Analysis (DMA) Software suite (Aurora
Scientific), optimal electrode placement was determined by
repositioning of the electrodes and stimulating the nerve at 1 Hz
until the maximum twitch amplitude was recorded for a given
position. Optimal length-tension was determined by performing the
isometric twitch stimulation at an increasing range of amplitudes and
tensions until the maximum twitch amplitude was observed. Three
successive tetanic stimulations (200 Hz, 100 pulses per train, 60 s
between independent stimuli) were performed, and the muscle was
allowed to rest for 5 min. Single stimulations at 15, 30, 60, 100, 120,
160, and 200 Hz were then performed with 30 s between each
successive frequency, and the resulting torque was recorded and
analyzed using DMC and DMA (Aurora Scientific).

Western Blot Analyses. Cell harvesting and tissue homoge-
nization were done in sodium dodecyl sulfate (SDS) gel sample buffer
(62.5 mM Tris pH 6.8, 10% glycerol, 3% SDS), supplemented with
protease and phosphatase inhibitors.15 Protein concentrations were
measured using BCA assay (Pierce, Thermo Fisher). Digestions using
endoglycosidase H (EndoH) or N-glycosidase F (PNGaseF) enzymes
(New England Biolabs) were performed to assess the subcellular
processing of PMP22, as described.58 Equal amounts of proteins for
each experiment were separated on denaturing SDS gels and
transferred to nitrocellulose membrane (0.45 or 0.22 μm pore size)
(Bio-Rad, Hercules, CA). Membranes were blocked in 5% milk (in
Tris-buffered saline with 0.05% Tween-20) and incubated with the
indicated primary antibodies (Table 1) overnight at 4 °C. Bound
antibodies were detected with antirabbit, antigoat, antimouse IgG, or
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antichicken IgY HRP-linked secondary antibodies (Sigma) and
visualized with the chemiluminescence detection method (Perki-
nElmer Life Sciences, Waltham, MA). Films were digitally imaged
using a GS-800 densitometer (Bio-Rad) and were formatted for
printing, using Adobe Photoshop.
Immunostaining. Explant cultures were fixed in 4% paraformal-

dehyde (EMS, Hatfield, PA) and permeabilized in 100% ice-cold
methanol (Fisher Scientific, Hampton, NH). After blocking with 5%
normal goat serum, samples were incubated with anti-MBP
antibodies, overnight at 4 °C. Bound antibodies were detected with
Alexa Fluor 488 goat antirat IgG (Molecular Probes, Eugene, OR).
Coverslips were mounted using the Prolong Antifade kit (Molecular
Probes). Proximal regions of sciatic nerves were sectioned (5 μm
thickness) and processed for immunostaining with anti-PMP22
antibodies, as described.13 AlexaFluor 594-conjugated goat antirabbit
antibodies were used to detect the bound primary antibodies. Samples
which were processed in parallel without incubation with primary
antibodies served as the negative controls. Images were obtained using
a SPOT digital camera (Diagnostic Instrumentals, Sterling Heights,
MI), with a Nikon Eclipse E800 or an Olympus DSU spinning disc
confocal (Tokyo, Japan) microscope, using identical exposure
settings. Images were processed using Photoshop (Adobe Systems).
Myelin Internode Length Measurement. DRG cultures were

stained for MBP as described above, to label myelin internode
segments. The MBP-positive internodes were measured using ImageJ
software (NIH). Measurements from three independent experiments,
per treatment per genotype, were graphed using GraphPad Prism
software.
Morphometric Analyses of the Sciatic Nerve. Proximal ends

of sciatic nerves from vehicle- and AUY922-treated groups were fixed
by immersion in ice-cold 2% paraformaldehyde and 2% glutaralde-
hyde, in 0.1 M sodium cacodylate buffer at 4 °C.59 Plastic sections,
stained with toluidine blue, were prepared by the Robert P. Apkarian
Integrated Electron Microscopy Core at Emory University and
imaged with a light microscope (Zeiss Axioscop 2 plus). Axon
diameter, fiber diameter, myelin sheath thickness (n = 320−1100
fibers per group), and total area occupied by nerve fibers (n = 20−40
areas per group) were measured using ImageJ software (NIH).16 The
g-ratio was calculated as the axon diameter/fiber diameter, using the
respective values. The myelin sheath thickness was calculated as
[(fiber perimeter − axon perimeter)/2π].60

Cross-Sectional Area Analyses of TA Muscles. Fresh-frozen
TA muscles from C22 and TrJ mice, treated with vehicle or AUY922,
were sectioned at 10 μm thickness and immunostained with rabbit
antilaminin antibody to outline the individual myofibers. AlexaFluor
488-conjugated goat antirabbit secondary antibody was used to detect
the bound primary antibody, and Hoechst was used to label nuclei.

Images were captured using a Nikon DS digital camera fitted on a
Nikon Eclipse E800 microscope. Myofiber cross-sectional areas of
individual fibers were measured using ImageJ software (NIH) and
exported to GraphPad Prism v8.0.1 for analysis.

Data Analyses. For all comparisons, mean ± SEM was calculated,
and statistical differences were determined using unpaired the two-
tailed Student’s t-test. P-values <0.05 (*), <0.01 (**), and <0.001
(***) were considered to be significant. For in situ torque analysis,
significance was determined using two-way ANOVA with Sidak’s
multiple comparison between individual groups and frequencies. For
longitudinal rotarod analysis, significance was determined using two-
way ANOVA with Fisher’s LSD post hoc test.
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