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ARTICLE OPEN

Role of noise and parametric variation in the dynamics of gene
regulatory circuits
Vivek Kohar 1 and Mingyang Lu 1

Stochasticity in gene expression impacts the dynamics and functions of gene regulatory circuits. Intrinsic noises, including those
that are caused by low copy number of molecules and transcriptional bursting, are usually studied by stochastic simulations.
However, the role of extrinsic factors, such as cell-to-cell variability and heterogeneity in the microenvironment, is still elusive. To
evaluate the effects of both the intrinsic and extrinsic noises, we develop a method, named sRACIPE, by integrating stochastic
analysis with random circuit perturbation (RACIPE) method. RACIPE uniquely generates and analyzes an ensemble of models with
random kinetic parameters. Previously, we have shown that the gene expression from random models form robust and functionally
related clusters. In sRACIPE we further develop two stochastic simulation schemes, aiming to reduce the computational cost
without sacrificing the convergence of statistics. One scheme uses constant noise to capture the basins of attraction, and the other
one uses simulated annealing to detect the stability of states. By testing the methods on several synthetic gene regulatory circuits
and an epithelial–mesenchymal transition network in squamous cell carcinoma, we demonstrate that sRACIPE can interpret the
experimental observations from single-cell gene expression data. We observe that parametric variation (the spread of parameters
around a median value) increases the spread of the gene expression clusters, whereas high noise merges the states. Our approach
quantifies the robustness of a gene circuit in the presence of noise and sheds light on a new mechanism of noise-induced hybrid
states. We have implemented sRACIPE as an R package.

npj Systems Biology and Applications            (2018) 4:40 ; doi:10.1038/s41540-018-0076-x

INTRODUCTION
Noise or stochastic fluctuations in molecular components have
been shown to play important role in many biological processes,1–
3 such as phenotypic switching and gene expression coordination
in cell differentiation and cell cycle,4 in both prokaryotic5 and
eukaryotic organisms.3,4,6,7 Noise can propagate in a gene network
with a cascade of circuit motifs, and the expression level of a gene
can vary up to six orders of magnitude between cells.1,8 On the
one hand, processes in gene regulation induce noise in the
expression of transcripts or proteins, owing to factors such as
transcription bursting and low copy numbers;1,8,9 on the other
hand, stochastic gene expression can influence the dynamics of
biological systems8 or even create new dynamical features like
oscillations, bistability etc.1,10–13 It is not hard to imagine that,
through evolution, cells eventually learn to use gene expression
noise for their own advantage. For example, noise-induced cell-to-
cell variability in protein levels in an isogenic cell population
allows cells to assume different, functionally important and
heritable fates.3,14 This heterogeneity in clonal populations of
cells may be essential for many biological processes as it enables
the cells to respond differently to inducing stimulus.1 Conversely,
heterogeneous individuals in different environments can produce
the same cell phenotype through phenotypic buffering/
capacitance.8

Previous studies have unveiled many features of stochasticity in
gene expression,15,16 yet a comprehensive and quantitative
understanding of the noise-induced dynamics is still elusive.17

Various mathematical frameworks18–20 have been developed to

model the dynamics of gene regulatory circuits (GRCs) governing
cellular processes. Here, a GRC is a functional regulatory network
motif, composed of a small set of interconnected regulators. To
study the stochastic dynamics of gene circuits, various simulation
schemes have been developed, including stochastic simulation
algorithms (SSA, such as Gillespie algorithm21), methods solving
stochastic differential equations (SDEs), asynchronous random
Boolean network model,22 hybrid methods that capture the
multiscale nature of different types of noise24 and incorporate
stochasticity in both discrete and continuous variables.23 However,
most of these methods require a fixed set of kinetic parameters
that are associated with the regulation of individual genes, such as
production rates, degradation rates, and binding/unbinding rates
of protein–DNA (dis)association. Unfortunately, it is very hard to
measure these parameters directly from experiments,18 and
therefore it limits the accuracy and prediction power of the
traditional simulation schemes.
We have recently developed a systems-biology modeling

method, named random circuit perturbation (RACIPE),25 to deal
with this long-lasting issue of parameter uncertainty. RACIPE takes
the GRC topology as the only input, and generates an ensemble of
models with random kinetic parameters. Then conventional
ordinary differential equation based simulation is used for each
random model to obtain steady-state gene expression. Finally,
statistical analysis is performed on the in silico gene expression
data from all the models to obtain the robust features. From our
previous tests on simple GRC motifs and the biological regulatory
circuits governing epithelial-to-mesenchymal transition (EMT)25
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and B-cell development,26 etc., we found that the steady-state
solutions from an ensemble of random models form several
distinct clusters according to their expression patterns, which
correspond to the functional states of the circuits (e.g., the
functional states AONBOFF and AOFFBON for a toggle switch with
two genes A and B). The spread of the parameters of the models
in a particular cluster can be associated with the robustness of the
functional state against the parametric perturbation.
As the original RACIPE is based on deterministic analysis, it

cannot characterize the stochasticity of gene expression. To
facilitate the stochastic analysis, here we present a modeling
method that integrates stochastic methods with RACIPE. Com-
pared to existing methods, this method has the following
advantages. First, the stochastic RACIPE (sRACIPE) provides a
holistic picture to evaluate the effects of both the stochasticity in
cellular processes and the parametric variations. Typically the
noise in cellular processes is regarded as “intrinsic” if it is caused
by the stochastic nature of transcriptional, translational, and post-
translational regulations due to either low copy number of
molecules or slow switching among the states of promoter
structure, chromatin epigenetics, or nuclear architecture.8 If the
noise is due to pathway-specific or global differences in the
abundance of cellular components, or due to differences in the
timing of cell-cycle events, it could be considered as “extrin-
sic”.27,28 Segregating the effects of “intrinsic” and “extrinsic” noises
in gene expression is not straightforward and is being actively
studied.1,29 Our randomization-based method, sRACIPE, captures
the effects of both the intrinsic and extrinsic noises as it
incorporates both the stochastic fluctuations and the parametric
variations. Second, sRACIPE allows us to evaluate the effects of
noise on the cellular states of a GRC. In conventional mathematical
modeling, a cellular state is defined as a stable steady state (fixed
point) of a nonlinear dynamical model. However, when the
signaling of the system alters, the corresponding fixed point shifts
accordingly. Therefore, it is particularly difficult to associate
different steady states to a cellular phenotype. To deal with this
issue, we define a distinct cellular state as one of the clusters of
steady-state gene expression profiles from random models.26 With
sRACIPE, we can evaluate how gene expression noise affects the
formation of the clusters and the changes in their expression
patterns. Third, the stochastic analysis can quantify the relative
stability of the steady states for systems allowing multiple states.
This is especially hard in the original RACIPE, where the
deterministic analysis is adopted to solve the rate equations and
where every stable steady state was considered equally probable.
To integrate the stochastic analysis with RACIPE, we have to

address an important challenge as described below. Typically, one
starts from an initial condition and runs stochastic simulation for a
long time to obtain the steady-state probability distribution and
transition rates. In RACIPE, we generate a large (~ 104–106)
number of random models and this stochastic simulation scheme
will have a very high computational cost. Moreover, each model
has a distinct set of kinetic parameters; therefore, the convergence
of one model does not necessarily imply the convergence of
another. A good simulation scheme has to be designed to reduce
the computational cost without sacrificing the convergence of
statistics.
In the following, we will introduce the stochastic analysis

methods employed in sRACIPE. We will first describe two
simulation schemes—a constant noise-based method to estimate
the basin of attraction of various states and another simulated
annealing (SA) based method to compare the relative stability of
different states and find the most stable state of GRCs. We will
illustrate the methods using the canonical double-well potential
system. Afterward, we will apply sRACIPE on a toggle switch,
circuits with coupled toggle switches and an EMT network.25,30 We
will demonstrate how the parametric variation and noise influence
the functions of GRCs by both model simulations and analysis of

single-cell gene expression data. The workflow of the sRACIPE
method is presented in Fig. 1a.

RESULTS
Sampling schemes for stochastic analysis
The temporal dynamics of a gene circuit can be obtained through
numerical simulations of SDEs or Gillespie/kinetic Monte Carlo
algorithms. A standard approach is to start with a random initial
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Fig. 1 Illustration of sRACIPE. a The workflow of sRACIPE. The
method integrates two ensemble-based sampling schemes—con-
stant noise with multiple initial conditions (MIC) and simulated
annealing (SA). b Illustration of the stability and basin of attraction
using an example of a double-well potential. Upper left: High noise
enables frequent transitions between the minima, and the steady-
state probability distribution in each well is proportional to the
stability of the well. Upper right: Intermediate noise permits a larger
number of transitions from the less stable well to the more stable
well, and some trajectories are trapped in the more stable well.
Bottom left: As the noise is decreased further, the annealing based
sampling scheme results in more occurrences of the particles in the
more stable well. Bottom right: For low noise cases, the transitions
between wells are rare. Thus, each well traps all the particles in its
basin of attraction, and the steady-state probability distribution is
proportional to the basin width of the wells
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condition, run the simulation at a constant noise level for a long
time, and record the state variables at equidistant time points. The
histogram of these state variables gives the steady-state
probability distribution of the system. Here, we refer to this
sampling method as single initial condition (SIC) sampling
scheme.
For a system with multiple minima and a low noise level, the SIC

method converges slowly as the system gets trapped in a local
minimum.31 To address it, we can instead perform statistics on an
ensemble of simulations. Here, the method performs multiple
simulations for a short simulation time starting from different
initial conditions, and then it records the state variables only once
at the end of each simulation. This approach, referred to as
multiple initial conditions (MIC) sampling scheme, has three
advantages: (1) it can simultaneously sample multiple configura-
tions of the system, therefore providing better coverage; (2) it can
be naturally integrated into RACIPE as RACIPE is also an ensemble-
based method; (3) it can be easily parallelized as each initial
condition evolves independently of others. Indeed, MIC and its
variants32,33 have been adopted in simulations of equilibrium
systems, but it is nontrivial for non-equilibrium systems.32

However, in the low noise scenario, while MIC can sample
multiple configurations (thus basins of attraction34,35), each of the
trajectories is still trapped in a local minimum; therefore, it does
not estimate the stability of the minima.
Here, we propose another sampling scheme based on SA36 to

investigate the stability of a system. This sampling scheme also
generates an ensemble of simulations using multiple initial
conditions. Each simulation starts with a random initial condition
and a large noise level. Then, a constant noise simulation is
performed for relaxation, and the state variables are recorded. The
corresponding histogram of state variables from the ensemble of
simulations gives the steady-state probability distribution at that
noise level. After the initial stage, the noise is reduced to a slightly
lower level. Here, the states obtained from the simulations of the
previous noise level provide a good estimate of the initial

conditions for the simulations at the next noise level. This
procedure is repeated till the system reaches zero noise. The
simulations from the whole protocol produce steady-state
probability distributions at various noise levels. The initial high
noise allows the simulations to adequately sample multiple
minima, while the intermediate to low noise levels allow more
transitions from less stable minima to more stable minima,
eventually reaching the most stable state (Fig. 1b). In the Methods
section, we describe how we integrated the sampling schemes
into RACIPE. In the following sections, we will show how we tested
the sampling schemes to study the stochastic dynamics of GRCs.

Comparison of the sampling schemes in double-well potentials
We first tested the three schemes in the canonical double-well
potentials (analytical functions in SI). Calculation of such potentials
for GRCs is usually difficult and computationally intensive.37,38

Tests were performed on four variants of double-well potentials,
where each variant differs from others in terms of the basin width
and/or stability of wells. In SIC, the histogram of the particle
positions was obtained from the positions at equidistant time
points from a long simulation at a specific noise level. In MIC, the
histogram was generated from the final positions of multiple short
simulations for a fixed noise. In the SA scheme, histograms for
different noise levels were obtained from the final positions of all
the short simulations for the corresponding constant noises
during SA.
In Fig. 2, for each potential variant (1st row), the 2nd–4th rows

show the corresponding steady-state probability distributions at
different noise levels using SIC, MIC, and SA, respectively. At high
(blue curves) and intermediate (orange curves) noise levels, the
probability distributions from all the methods converge in all the
four variants, as noise is large enough to induce sufficient
transitions between the two states. However, at low noise levels
(green curves), a single trajectory is trapped in one of the basins.
Thus, SIC, unlike the ensemble-based methods MIC and SA, never

x

Pr
ob

ab
il

it
y 

di
st

ri
bu

ti
on

M
IC

SA

Po
te

nt
ia

l

SI
C

a b c d

Fig. 2 Tests of the stochastic analysis methods using double-well potentials. First row shows four variants of double-well potentials. a The two
wells have identical stability as well as the basins of attraction; b the left well has lower stability than the right well, but their basins are same; c
two wells have same stability but asymmetric basins with the right well having a larger basin, and d the two wells differ in stability as well as
basins such that the left well is more stable but has a smaller basin of attraction. The 2nd–4th rows show the histogram of the steady states for
different sampling schemes, namely, single initial condition (SIC, 2nd row), multiple initial conditions (MIC, 3rd row) and simulated annealing
(SA, 4th row) for each of the four potentials and at three different noise levels—high (blue), intermediate (orange) and low noise (green). All of
the methods converge for the high and intermediate noise levels whereas, for the low noise, the particle is trapped in a random well in the SIC
scheme, MIC captures the basin of attraction of the wells and SA captures the most stable well. The equations, parameter values and figures
for other noise levels (Fig. S1) are available in SI
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yields a converged distribution for all the variants. For the
symmetric double-well potential (Fig. 2a, Fig. S1), both MIC and SA
yield same probability distributions in all the cases. When the two
wells have same basins of attraction but different stability
(potential), MIC provides equal probability in both wells but SA
identifies the more stable well (Fig. 2b, Fig. S1). If the two wells
differ in their basins of attraction but have same minimum
potential values (Fig. 2c, Fig. S1), the probability distributions
obtained from MIC are proportional to their basins of attraction.
However, SA has all the probability in the well with the larger
basin. Lastly, when one well has larger basin width and the other
is more stable (Fig. 2d, Fig. S1), SA correctly yields all the
probability in the more stable well (supplementary video),
whereas the probability distribution from MIC is proportional to
the basin width. Altogether, our tests demonstrate that MIC and
SA complement each other, especially for low noise cases, when
MIC better estimates the basin of attraction and SA better
estimates the stability.

Expression noise induces state merging
In the above sections, we have described two ensemble-based
sampling schemes for stochastic analysis. In the Methods section,
we further introduce sRACIPE, which integrates MIC and SA
sampling schemes with RACIPE. We applied sRACIPE to a toggle
switch GRC consisting of two mutually inhibiting genes (Fig. 3a,

the rate equations shown in SI). Here, MIC was used to obtain the
gene expression profiles for an ensemble of models. To obtain
features at different noise levels, we considered the noise level as
an additional model parameter and randomized it from a uniform
distribution ranging from 0 to 50. Figure 3a shows the 2D
histogram of the normalized gene expression at different noise
levels. At low noise levels, we observe two distinct clusters or
states, as evident from the histogram on the left showing the
distribution of the expressions of gene A for noise levels between
0 and 1. The distribution is similar to that from the deterministic
analysis. As the noise levels increase, the two states merge, and we
find a single peak in the distribution of gene expressions for noise
levels between 49 and 50 (the histogram on the right in Fig. 3a).
This observation of state merging can be explained as follows.
When the noise increases, the contribution of noise on gene
expression exceeds the contribution of the regulatory interactions.
Therefore, the circuit under high noise does not have the two
distinct states anymore; instead, the only state left has similar
expression of both genes. Since the two clusters are symmetric,
both MIC and SA produce the same results.
Here, we treated the noise level as a control parameter and

evaluated the changes in gene expression. In a sense, this analysis
can be considered as a global bifurcation analysis. Unlike
traditional bifurcation diagram, where one alters a single
parameter and keeps the other parameters constant, this global
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Fig. 3 Application of sRACIPE to a toggle switch circuit. The stochastic analysis was performed using the MIC scheme. a The circuit diagram is
illustrated on the left. The middle panel shows the heatmap of steady-state expression levels of gene A at different noise levels. The histogram
on left shows the two distinct states for low noise (D<1), and the histogram on the right shows a single state for high noise (49<D<50). b
Heatmaps of the normalized gene expression levels of the two genes for different parametric variations and noise levels. The parametric
variation increases from top to bottom and the noise level increases from left to right. Two distinct clusters observed at low noise merge into a
single new cluster at high noise. Parametric variation increases the spread of the clusters but does not affect their relative positions
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bifurcation analysis considers variations from the other para-
meters as well. Thus, sRACIPE method has the potential to provide
global pictures of systems under the control of one parameter,
which in this case is the noise level. Similar analysis can be
performed for any other parameter (Fig. S3).

Differential roles of noise level and parameteric variation
We further explored the behavior of the toggle switch GRC by
changing both the noise level and parametric variation (see
Methods for the definition). Using both the noise level and
parametric variation as two control parameters, we can plot a

global 2D bifurcation diagram, as shown in Fig. 3b. We observe
that, while an increase in the spread of parameters around a
median value increases the spread around the two states, an
increase in noise level brings the states closer, and eventually, for
large noise levels, the two states merge. This new state is different
from the two states obtained from the deterministic analysis
(when noise is zero) and corresponds to the previously unstable
state in which both genes are expressed. These results are
consistent with previous studies in that gene expression noise can
create new states of a GRC.5,10,12,15,28,39–42 We demonstrated this
point by sampling a large space of parameters and systematically
evaluating the circuit behaviors. Moreover, our results indicate
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differential roles of the parametric variation and expression noise
in influencing circuits’ behavior.

Application of sRACIPE to complex GRCs
Next, we studied some complex circuits, i.e., a toggle switch with
one self-activation link, a toggle switch in which both genes are
self-activating, and a circuit with five coupled toggle switches (Fig.
4). Similar to the earlier toggle switch example, the number of
states as well as the gene expression pattern of these states
changes with the increase in noise levels. These circuits have more
than two states (i.e., clusters) and different states merge at
different noise levels, suggesting these states have different levels
of stability. For example, in the toggle switch with self-activations
on both genes, the third intermediate cluster merges before the
merging of two larger clusters. We used both of MIC and SA to
evaluate the basins of attraction and the stability of the states.
Similar to the double-well potential cases discussed earlier, we
observe that the number of models in the different states at high
noise is similar for both MIC and SA (again indicating that both
methods estimate the stability), and more stable states have a
larger number of models. At low noise, the difference between the
two methods can be observed prominently for the toggle switch
with one self-activation, indicating different basins of attraction
and stability of the two states. The difference is less evident in the
symmetric cases where the two dominant states are not affected
much, but the intermediate state has a lesser number of models at
low noise using the SA method. In short, sRACIPE provides a global
view of the dynamics of GRCs and allows the estimation of the
basin of attraction by MIC and the stability by SA.
The measure of basin of attraction and stability by sRACIPE

could nicely interpret recent experimental observations by Wu
et al.43 on a synthetic toggle switch circuit with self-activations on
both genes (Fig. 4a, the middle circuit). Wu et al. found that this
circuit can exhibit four distinct states where the expression of the
two genes are low–low, low–high, high–low and high–high. From
the experiments, the synthetic circuit initially resides in the
low–low state. Increasing the strength of the self-activations for
both genes by drug inductions drives the circuit from the low–low
to high–high state. The order of the inductions determines
whether the circuit goes from low–low to high–high through the
low–high or high–low state (Fig. 4b 1st and 2nd columns).
To better recapitulate the circuit’s dynamical behavior, we

applied sRACIPE to generate an ensemble of random models, from
which we selected all of the quadrastable models for further
analysis. Using both MIC and SA at zero noise limit (Fig. S2), we
found that the basin of attraction of the low–low state is much
larger than that of the high–high state; whereas the high–high
state is much more stable, as no model was found in the low–low

state after annealing. We adjusted the parameter ranges of the
models (see SI) and found that the simulations work well in the
low noise limit (Fig. 4b). Indeed, the noise in the system cannot be
large, as no multiple states were observed in the absence of drug
inductions and the initial low–low state is a stable state.
Interestingly, our simulation results can explain the finding43 that,
when the inductions are removed from the high–high state, the
models continue to stay in the high–high state even when the
parameters are back to the values used before the induction. To
the best of our knowledge, this difference in the basin and
stochastic stability of the low–low and high–high states has not
been studied earlier, and our sRACIPE framework has an
advantage over traditional simulation methods to analyze these
features.

Quantification of GRC’s robustness
We also observed that noise improves system’s response time, or
so as to say, the time that the circuits take to reach the steady-
state probability distribution decreases with the increase in the
noise levels (Fig. 5a for the results of the toggle switch GRC). Here,
we compared the probability distributions at multiple time points
to the probability distributions at the end of the simulations by
the Bhattacharyya distance (BD, details in SI Methods) between
them. Saturation in the BD values implies that the system has
relaxed and converged. At higher noise levels, there is more
variability in the steady-state distributions, so the saturated BD
values are larger for higher noise levels. But the system reaches
this saturated BD value in shorter simulation time. Further, we
found that self-activating switches have larger BD than switches
without self-activations (Fig. 5b), indicating that circuits with self-
activating loops are less robust against noise. Figure 5b shows the
BD curves for different noise levels and the robustness of the
circuit against noise (RD values, see Methods for the definition) for
several toggle-switch-like circuits and some three-node circuits.

Application to a GRC governing EMT
Computational systems biology has been applied extensively44–47

to elucidate the gene regulatory mechanism of the decision
making of EMT during embryonic development, wound healing
and cancer metastasis.45,46,48,49 Here, we applied sRACIPE to an
EMT gene regulatory circuit in squamous cell carcinoma (SCC)
obtained by combining the recently published gene regulatory
networks (Epcam+ and Epcam− networks), which integrates
genome-wide transcriptional and chromatin profiling50 in SCC,50

with known interactions between EMT-related transcription
factors (TFs) from previous studies.25 Further, we removed the

Fig. 4 Application of sRACIPE to toggle-switch-like circuits. a Normalized gene expressions for several toggle-switch-like circuits using the MIC
and SA methods. When noise is low, the MIC scheme provides an estimate of the basins of attraction of the states, whereas SA identifies the
most stable state. At high noise, the two methods yield similar results. The results are presented for a toggle switch in which one gene is self-
activating (the leftmost panel), a toggle switch in which both genes are self-activating (the middle panel), and a circuit with five coupled
toggle switches (the rightmost panel). The activating links are shown in blue and the inhibitory links are shown in red. Principal components
analysis of the gene expression patterns was used for dimensionality reduction and the first two components are shown here. In all the cases,
increase in noise level brings the clusters together and eventually merges them into a final state. Some clusters merge first, suggesting that
they are less stable than the others. b sRACIPE simulations to recapitulate experimental observations of the dynamics of a toggle switch with
both self-activating genes. sRACIPE was applied to an ensemble of 350 quadrastable models (see SI for details). Starting from the low–low
steady state as the initial condition, the models can be driven to other steady states by enhancing the self-activation links, as shown in the
heatmap of the gene expressions. The induction is applied to Y only (1st column top), Y then X (1st column bottom), X only (2nd column top),
and X then Y (2nd column bottom), respectively. 3rd–6th columns show the dependence of the final gene expressions on the initial
conditions—low–low (top) and high–high (bottom), when the induction of X and Y self-activations are applied simultaneously. With all
models in the low–low state initially, the fraction of the low–low state decreases as self-activation inductions increase, and eventually for a
large induction, most of the models reach the high–high state (top 3rd–6th columns, left to right). When the inductions are removed (bottom
3rd–6th columns, right to left), the steady-state distributions don’t change significantly, and models do not switch back to the low–low state.
Induction factor (IF, see SI for details), the multiplier by which self-activation link parameters of gene X are increased to model the inductions,
are chosen as 15, 15, 1,1.55, 1.8, and 15, respectively (1st–6th columns)
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TFs that have inconsistent interactions in the Epcam+ and Epcam
− networks. The circuit diagram is shown in Fig. 6a.
We compared the simulation results with the single cell RNA-

seq data for SCC cells undergoing EMT.49 The gene expressions
using hierarchical clustering analysis and principal components
(PC) analysis of the experimental and simulated data are shown in
Fig. 6 and Fig. S6–S8 in SI. Four clusters have been marked in the
PC plots of the experimental data which correspond to epithelial
(E) state (dark blue ovals) with high expressions of Cdh1, Epcam,
Esrp1, Krt5, Grhl2, Trp63, and Klf5, mesenchymal (M) state (red
ovals) with high expression of Zeb1, Twist1, Cdh2, Snai1, Cdh11,
Vim, Smad2, and Col3a1, hybrid state (light blue ovals) in which
some TFs from both states are expressed, and low-expression
state (orange ovals) in which all TFs have low expression. Hybrid
epithelial/mesenchymal (E/M) states30,46,49 with mixed character-
istics of collective cell migration have been found in both
experiments45,49 as well as several computational modeling
studies,30,46 including our previous RACIPE analysis.25 The cells
and models with these expression states that are derived from
PCA have been annotated in the hierarchical clustering plots.
Clustering of the steady states of the models in the sRACIPE

simulations of the EMT network yields clusters similar to the
experimental clusters (Fig. 6b). Next, we evaluate the stochastic

effects on the dynamics of the EMT network. In the deterministic
case, the E and M state can be easily identified but there are only a
few models corresponding to the hybrid states. Moreover, there is
a significant proportion of models with low expression of all genes
(Fig. 6b, orange ovals). Inclusion of noise increases the proportion
of models in the hybrid state and decreases the proportion of
models in the low-expression state. Additionally, in the stochastic
simulations, the expressions of genes Cdh1 and Epcam in the
hybrid state are low which is similar to their expressions in the
experimental data. The simulation results are closer to experi-
mental observations when the SA scheme is applied instead of
simulations with constant noise, as with SA there are much less
models with the low-expression state. Similar to our observations
for toggle switch like circuits, we find that high noise in the EMT
network simulations merges the different states (Fig. S9).
We have explored possible mechanisms to stabilize the hybrid

EMT phenotype in our previous studies.46,51 Here, we present an
additional mechanism in which the hybrid EMT phenotype can be
stabilized due to the increase of gene expression noise. It would
be interesting to validate this hypothesis experimentally in the
future. Altogether, the incorporation of stochastic effects makes
the simulated gene expression closer to the experimental data
and the similarity increases further using the SA scheme.
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Fig. 5 Response time and noise robustness of gene regulatory circuits a Tests were performed on a toggle switch circuit. The Bhattacharyya
distance (BD) was calculated between the probability distribution of the gene expression sampled at the end of the simulations (simulation
time, T= 50) for 106 models at zero noise (D= 0) and the probability distributions at different time points during the simulations for different
noise levels. The BD value for D= 0 approaches zero after T= 15, indicating that the models have converged to steady-state solutions.
Simulations with larger noise converge faster, though BD is larger. b The response of BD with respect to the noise levels for toggle-switch-like
circuits (left panel) and some three-gene circuits (right panel). The numbers indicate the noise robustness (BD at D= 1.0) of different circuits
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Fig. 6 Application of sRACIPE to an EMT circuit in SCC. a An EMT transcriptional regulatory circuit (rightmost) was constructed by combining
existing Epcam− and Epcam+ networks in SCC and the other literature data. The activating links are shown as blue lines and arrows, and the
inhibitory links are shown as red lines and dots. b Hierarchical clustering and PCA plots of the distribution of gene expressions from the
experimental data (1st row) and simulated data by MIC (2nd and 3rd rows) and SA (4th and 5th rows). The steady states corresponding to the
E (dark blue) and M (red) states as well as the hybrid (light blue) and the low-expression (orange) states are marked in the Esrp1 gene
expression data. The gene expression distributions in the stochastic simulations match better than the gene expression distributions from the
deterministic case. PCA plots are colored by the expression levels of key marker genes for epithelial (Esrp1), hybrid epithelial (Klf5), hybrid
mesenchymal (Snai1), and mesenchymal (Vim) phenotypes
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DISCUSSION
In this work, we have developed a computational method, named
sRACIPE, to integrate stochastic analysis with the random circuit
perturbation (RACIPE) method. It allows us to study the effect of
both gene expression noise and parametric variation on any gene
regulatory circuit (GRC) using only its topology. This method is
relevant to the study of multi-stable biological processes and
simulates both cell-to-cell variation and stochastic gene expres-
sion for a cell population. To facilitate sampling, we proposed two
ensemble-based schemes for stochastic analysis. The two
methods, MIC and SA, complement each other to provide a
holistic picture, where MIC estimates the basin of attraction and
SA estimates the stability. We have found that GRCs with different
topology have different response times and sensitivity to noise.
Our tests show that expression noise and parametric variation

have qualitatively different effects on the states of GRCs within the
sRACIPE framework. Parametric variation slightly broadens the
spread of the states, while high expression noise causes states to
merge together. Here parametric variation refers to the spread of
the parameter ranges while keeping the median constant. Note
that the exact number and distributions of models in different
clusters depends on the model parameters and the type of
distributions from which we select the parameters, but the major
features like the number of clusters remain conserved.
By sampling only one initial condition for each model, sRACIPE

can easily generate as many as 106 models. One major challenge is
how to fully utilize such a large amount of gene expression and
parameter data to analyze the robust features of a GRC. These
data analysis methods can be potentially used to quantify the
robustness of a GRC and evaluate how this can be associated with
evolutionary fitness,52 estimate the Waddington’s epigenetic
landscape,53 and predict state transitions.38 A better under-
standing of stochastic behavior can be exploited to induce
desired cell states and control noise-induced transitions between
different states.54

Both gene expression noise and parametric variation are
common in biological systems.1,4,6,7,17,27,55 On the one hand, the
Gillespie algorithm (Fig S2) has been used to model the stochastic
dynamics of gene expression caused by low copy number and
slow switches between gene states.21 On the other hand, cells of
different size and microenvironment can be modeled by the same
rate equations but different kinetic parameters.56 Our method
allows the analysis of both factors, therefore being an invaluable
tool to study the nature of variation in a cell population, especially
with the advent of single-cell techniques.
We have found that GRCs with different circuit topology may

allow similar states but differ in their sensitivity to noise,
consistent with several theoretical and experimental studies.2,57

Biological circuits are usually robust against small noise; some-
times, they could even use noise for their functions.1 For example,
noise can create new states or destabilize existing
ones.5,10,12,15,28,39–42

In future, the sRACIPE framework can be extended to
incorporate time-dependent variation of parameters and/or noise
levels, which will shed light on the temporal dynamics of the
population of cells in these conditions. It has been shown that
coupling between homogenous cells in a tissue through signaling,
diffusion or active transport can both increase or decrease the
variability in the cells.58 It will be interesting to explore the effect
of such coupling in the heterogenous population of cells and/or
the coupling between time-dependent parameter variation and
stochastic gene expression.

METHODS
Integration of stochastic analysis into RACIPE
We introduce how sRACIPE integrates the sampling schemes with RACIPE.
In the case of double-well potentials, the simulations using multiple initial
conditions in MIC and SA can be considered as simulations of an ensemble
of identical models using only one initial condition for each model. In
contrast, the models in sRACIPE are not identical as it generates a large
ensemble of random models, and each of these models is subject to a
simulation scheme (either MIC or SA) using one initial condition only. We
chose this scheme because of the following reasons. First, since sRACIPE
generates a very large number of models, there are multiple models with
similar parameters, and a collection of these models will identify most of
the states. Second, as we learned from our previous studies, increasing the
number of models provides better convergence of the probability
distribution of the simulated gene expression data compared to increasing
the number of initial conditions.26 Third, we have tested and found similar
results when sampling multiple initial conditions for each random model
(Fig S4).
In the first MIC-based sampling scheme, for each model, a short

simulation is performed using a random initial condition and a fixed noise
to obtain the gene expression. Such gene expressions from all the models
are collected for further statistical analysis. This procedure is repeated for
other noise levels. In the second SA-based simulation scheme, we first pick
a random initial condition for a model and perform a simulation at a high
noise level. Then, for each model, using the final gene expressions from the
simulation at a higher noise as the new initial condition, we perform
another simulation at a slightly lower noise level. We repeat this procedure
until the noise level gradually decreases to zero (details in SI). The final
gene expressions from all the models are used for further statistical
analysis for the corresponding noise levels.

Parametric variation index
The parametric variation (P) is defined as the spread of the parameter
ranges relative to the parameter range used in the original RACIPE25 while
keeping the median constant. P is measured in percentages such that the
ranges are same if P is set to 100, and a smaller P implies a narrower spread
of parameter values. For any given value of P, if the range of a parameter is
set to be (xmin, xmax) by default in RACIPE, the new range (ymin, ymax) can be
obtained as

ymin ¼ ðxmaxþxminÞ
2 � xmax�xminð Þ

2
P
100 ;

ymax ¼ ðxmaxþxminÞ
2 þ xmax�xminð Þ

2
P

100 :
(1)

Noise robustness index
To quantify the robustness of GRCs against noise, we define the noise
robustness (RD) index of a GRC as the rate of the increase in the BD (details
in SI Methods) with the increase in noise level in the low noise limit:

RD ¼ lim
D!0

dðBDÞ
dD

: (2)

The larger the BD values, the lower the noise robustness.

CODE AVAILABILITY
sRACIPE has been implemented as an R package, freely available
for academic use at https://github.com/lusystemsbio/sRACIPE.

DATA AVAILABILITY
All the simulated data was generated using sRACIPE and can be reproduced using
the vignettes in the sRACIPE code available at https://github.com/lusystemsbio/
sRACIPE. The EMT network is available at the Network Data Exchange portal https://
doi.org/10.18119/N98C7Q. The single cell data for EMT in skin SCC is publicly
available from the NCBI Gene Expression Omnibus under accession number
GSE110357.
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