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Computed Tomography (CT)

I CT refers to the cross sectional imaging of objects using computer
processed projection data.

1. First a source of x-rays(the emitter) projects rays through the object
which are partially absorbed by various structures within the object.

2. The x-rays are then picked up by the detectors on the other side and
each ray’s intensity is recorded.

3. This allows the total attenuation of each ray to be calculated, since the
intensity that each started with is known.

4. The emitter-detector pair are then rotated through an angular interval φ
and the process is repeated.
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Scanning methods

There are three main scanning methods in CT: parallel beam, fan beam, and
cone beam.

Figure : Parallel and fan beams
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Goal of CT

I The fundamental assumption of CT is that there exists an unknown
function f (x , y), which can be discrete or continuous, that describes the
x-ray attenuation of an object through a particular plane.

I The goal of CT is to reconstruct this cross-sectional image accurately
using as little projection data as possible.

I Different approaches are used to model the projection data and
reconstruct the image.

I The most prevalent projection models treat the x-rays as infinitesimal
lines, but in reality they have some finite width.

I Using an area based method, which takes into account the width of the
x-rays, can increase the accuracy of the projection data.
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Area Based Projection

I An area based projection
representation was first
mentioned in Kak’s classical CT
book [Kak 1988].

I Area based parallel beam
projection models have been
proposed by [Li & Zhu 2008, Zhu
et al 2008].

I No papers have specifically dealt
with an area based fan beam
projection model.

Figure : Area based projection
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Image Reconstruction Algorithms

I There are various reconstruction algorithms in CT. The two major
categories are analytical and algebraic approaches.

I Algebraic reconstruction involves solving linear systems of equations of
the form:

Ax = b. (1)

I Algebraic methods are superior to analytical when (1) posses a large
amount of noise.

I The major drawback of algebraic reconstruction is the large
computational load, however as computer performance has improved in
the last few decades this method has become more widely utilized.
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Algebraic Reconstruction in CT

Goal: solve the system (1), where:

I A∈ RM×N2
: each row of A corresponds to a beam of two x-rays at a

particular rotation angle θ relative to the initial position. Each entry
represents the fractional area that the beam covered of that square in
the image.

I x: the image as a vector.

I b: the projection data vector.

I N: the size of the image.

I M: ( # of beams) (# of x-ray resources).
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ART and classical Cimmino

We will be using four algebraic reconstruction algorithms to test our model.

I The first is the algebraic reconstruction technique(ART) algorithm.

x (k+1) = x (k) + λk
(bi − aix (k))

||ai ||22
(ai )T . (2)

I The second is the classical Cimmino algorithm.

x (k+1) = x (k) + λk

M∑
i=1

wi
(bi − aix (k))

||ai ||22
(ai )T . (3)
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Compressed Sensing

I The theory of compressed sensing [Candes & Wakin 2008, Donoho
2008] has recently shown that signals and images that have sparse
representations in some orthonormal basis can be reconstructed from
much less data than what the Nyquist sampling theory requires
[Shannon 1998].

I In many cases in tomography we can model the image as piecewise
constant, such that the gradient,µ, is sparse. The image can then be
reconstructed using total minimization of the gradient [Candes & Wakin
2008, Yu & Wang 2009].

I Then we can reconstruct the image by solving:

minTV (|µ|) s.t. Ax = b. (4)
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BCPCS and BCIMCS

I The other two reconstruction algorithms we used here are block scheme
compressed sensing based iterative algorithms proposed by [Li & Zhu
2010].

I The third algorithm is block cyclic projection for compressed sensing
(BCPCS), which uses a block scheme based on ART.

I The last algorithm is block Cimmino for compressed sensing (BCIMCS),
which uses a block scheme based on classical Cimmino.

I These last two algorithms apply block iterations and TV minimization
alternatively to reconstruct the image.
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Main Idea

I We start by creating an NxN grid with the object in the middle of the
grid and coordinates (i , j) attached the top right corner of each pixel in
the grid. This grid becomes the matrix Img.

I We assume that the emitter starts at a distance of d from the left hand
corner of the grid along the 45◦ line, and let this situation correspond to
θ=0.

I Now we need to calculate the area intersection formulas for this
situation in order to find the entries of A.

I This calculation is eased by the fact that the fractional areas above the
45◦ line are a reflection of the ones below, hence we need only calculate
the areas on one side.

Phillip Stevens Area Based Fan Beam Projection Model for CT



Outline
Introduction

Projection Model
Numerical Simulation

Conclusion

Main Idea
Intersection Cases
Simulation of Image Rotation

We call the βth beam below the 45◦ line, Bβ. It has upper ray Rβ−1 and
lower ray Rβ. Each ray is an angle γ away from the neighboring rays.

Figure : The βth beam
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Symmetry Theorem

Theorem: If Bβ covers area A within square (i , j), then B−β will cover the
same area A within the square (j , i).
Proof: The slope for each ray Rm is: tan(π4 −mγ).
So the slope for R−β is tan(π4 + βγ)
and the slope for Rβ is tan(π4 − βγ) = cot(π2 − (π4 − βγ)) = cot(π4 + βγ) =
1/(tan(π4 + βγ)).
Thus Rβ and R−β have reciprocal slopes.
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Proof Continued

Now Rβ and R−β start from the same point, so if Rβ goes through the point
(x1, y1) then R−β must go through the point (y1, x1). Therefore if Rβ−1 and
Rβ cover fractional area A in square (i , j), then R−β+1 and R−β cover the
same fractional area A of square (j , i).

Thus calculating the fractional area formulas for the beams under the 45◦

line gives us the fractional area formulas for the beams above.
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Image Rotation

I In reality the emitter-detector pair rotates around the object, however
this means that new projection area equations will have to be formulated
for each possible viewing angle.

I It is simpler, and equivalent, to consider that the object itself rotates
while the emitter and detector remain stationary.

I This means that for the purposes of constructing A, we need only
consider the area formulas calculated for the trivial case where the
emitter is on the 45◦ line.
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Intersection Cases

I We begin the process of calculating the intersection formulas by looking
at the possible number of ways in which two neighboring rays below the
45◦ line can intersect the grid.

I Suppose that we are looking that the i th column of squares and that the
beam in question has an upper ray Rβ−1 and a lower ray Rβ.

I A and B are the intersection points of Rβ−1 with the vertical lines i − 1
and i respectively.

I C and D are the intersection points of Rβ with the vertical lines i − 1
and i .

I E and F are where Rβ−1 and Rβ intersect with one of the horizontal
points of the grid.

Phillip Stevens Area Based Fan Beam Projection Model for CT
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The βth beam has upper ray Rβ−1 and lower ray Rβ

and γ is the angle between each ray.

Ay= (i−1 + d√
2

) · tan
(π

4
− (β − 1) · γ

)
− d√

2

By= (i+ d√
2

) · tan
(π

4
− (β − 1) · γ

)
− d√

2

Cy= (i−1 + d√
2

) · tan
(π

4
− β · γ

)
− d√

2

Dy= (i+ d√
2

) · tan
(π

4
− β · γ

)
− d√

2

Ex =
bByc+ d/

√
2

tan
(π

4
− (β − 1) · γ

) − d√
2

Fx =
bDyc+ d/

√
2

tan
(π

4
− β · γ

) − d√
2
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Figure : Cases 1 & 2
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Figure : Cases 3 & 4
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I Now we have the ability to build the first set of rows for the matrix A
which will eventually be used to construct all of A, since the other rows
of A will be linear transformations of the originals.

I Each row of A has a coordinate k, which is determined using total
rotation angle θ, rotation interval φ, the number of beams(BS), and
beam location β, which is positive below the 45◦.

I The following formula determines k for each row ak of A:

k =

{ (
θ
φ + 1

2

)
(BS) + β + 1 for β < 0(

θ
φ + 1

2

)
(BS) + β for β > 0

,

where β = ±1, ...,± (BS)
2 .

I Note also that the original block corresponds to a θ=0 because we
assume the detector and object always start in this orientation.
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Simulation of Image Rotation

I We want to model the rotation of the emitter-detector pair by rotating
the object, which means rotating Img.

I However, while rotating the image should allow us to multiply x by ak

and achieve the proper b value, our true goal here is to reconstruct the
vector x , which is not possible if the arrangement of the components is
changing.

I So we need to discover how a rotation on x affects its inner product
with the row ak , so that one could change each ak as needed.

I In pursuit of this end we model the rotation of Img as a linear
transformation on x using a matrix Q.

I The rotated image vector is found using

xθ = Qθx .
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Rotating Rows

For any row k and the corresponding values of β and θ,

anxθ = anQθx = bk ,

where n =

{
BS
2 + β + 1 for β < 0
BS
2 + β for β > 0

,

so an is one of the original rows created. Thus for our model, any row ak ,
which is a permutation of original row an, can be found using the following
formula

ak = anQθ.

Thus A can be fully computed from just the first block.
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Introduction

I We tested four algorithms on system (1) created by our projection
model, ART, Classical Cimmino, BCPCS, and BCIMCS using MATLAB
coded programs.

I We reconstructed two test images using these algorithms, the
Shepp-Logan head phantom [Kak 1988] and a real cardiac CT image
[TEAM RADS].

I We used a PC (8GB, 2.5GHz CPU) for the numerical tests.
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Imaging Parameters

There are five main parameters we need to consider when numerically
constructing A. The first three parameters affect both the size of A and its
effectiveness as a projection model, but the last two only affect the latter.

I N (Image Size)

I φ (angle step)

I # of detectors

I γ (ray separation)

I d (distance from emitter to bottom left corner of our grid)
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Table : Parameters and Projection Data

Experimental Parameters
N # of D’s φ # of views d γ kmax ε

256 95 4 90 80 0.6383◦ 100 10−6

Projection Model Data
Size of A Time to compute A

8460x65536 1694.49 seconds
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Table : Numerical Data

Algorithm Run Time(s) k ||b − Ax (k)||∞
ART Shepp-Logan 2998.72 100 0.9716

CIM Shepp-Logan 3326.63 100 259.7246

BCPCS Shepp-Logan 2060.70 100 1.2741

BCIMCS Shepp-Logan 2119.18 100 42.9673

ART Cardiac 2828.22 100 0.9513

CIM Cardiac 3298.62 100 249.0146

BCPCS Cardiac 1822.51 100 1.3103

BCIMCS Cardiac 1900.28 100 24.8333
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Discussion

I Purpose: to create the weight matrix A such that the image x could be
reconstructed from the projection data b.

I Our projection model is a success, with minor modifications needed.

I Possible future applications include the testing and development of new
reconstruction algorithms.
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Summary

I Our model can be used to compute the projection for fan beam scanning
with a curved detector bank.

I We increase accuracy of projection data by taking into account the finite
width of the beams, and thus improve the capability of testing
reconstruction algorithms.

I This is the first model specifically dealing with area based fan beam
projection, though similar models have been proposed for parallel beam.

I We reduce computation load by treating the detector as lying along the
45◦ line and using the rotation matrix Q to find the rest of A.

I In our numerical simulations the reconstruction algorithms were able to
successfully reconstruct the image from b, the projection data.
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Future Work

I Derive a more exact rotation matrix Q for each angle θ.

I Allow the number of detectors to be even.

I Minimize memory storage and computation time for projection model
programs.

I Test the proposed projection model with other phantoms and real CT
images.

I Apply the proposed projection model to the research of other iterative
reconstruction algorithms in CT.
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