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Genomic Profiling of T-Cell 
Neoplasms Reveals Frequent JAK1 
and JAK3 Mutations With Clonal 
Evasion From Targeted Therapies

INTRODUCTION

T-cell neoplasms are known for their clinically 
aggressive behavior and for their high risk of 
relapse and resistance to conventional cytotoxic 
regimens. Adult patients with precursor neo-
plasms, such as acute T-cell lymphoblastic leu-
kemia (T-ALL), or with mature neoplasms, such 
as T-cell non-Hodgkin lymphoma (T-NHL), 
have a 5-year survival rate of 20% to 30% even 
after intensive multiagent chemotherapy.1-6 
There are rare exceptions to these dismal out-
comes, such as children and adolescents who 
have T-ALL or anaplastic large-cell lymphoma 
(ALCL) with unique gene rearrangements (ie, 

ALK positivity or DUSP22 positivity) in whom 
5-year survival rates are greater than 70% to 
80% with similar chemotherapy regimens.5,7,8 
However, relapsed disease is challenging to 
cure. Clearly, novel therapeutic approaches are 
needed, and the development of commercially 
available next-generation sequencing has raised 
the possibility that genomically directed therapy 
may be applied to T-cell leukemias and lym-
phomas. Genomic profiling has been performed 
on several histopathologic subtypes of T-cell 
leukemias and lymphomas to better charac-
terize the molecular genetics.9-13 Interestingly, 
recent genomic profiling has discovered frequent 
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aberrations within the Janus kinase (JAK)–signal 
transducer and activator of transcription (STAT) 
pathway in both precursor (T-ALL) and mature 
(T-NHL) T-cell neoplasms, which suggests that 
JAK kinase inhibition may be important thera-
peutically.14

JAKs are encoded by four paralogous genes, 
JAK1, JAK2, JAK3, and TYK2. These tyro-
sine kinases are recruited to cytokine receptors, 
where they transduce signals by phosphorylation 
of key substrates—most important, STAT pro-
teins that bind DNA and regulate gene expres-
sion. JAK1 mutations have been found in 10% 
of childhood T-ALLs.15 Our laboratory and 
others have found JAK3 mutations in cutaneous 
T-cell lymphoma (CTCL), adult T-cell leuke-
mia/lymphoma (ATLL), T-cell prolymphocytic 
leukemia (T-PLL), and natural killer/T-cell 
lymphoma (NKTL).16-20 Analyses of human leu-
kemia lines and mouse models show that JAK 
mutations typically are activating and cause 
constitutive signal transduction, which may be 
blocked by tyrosine kinase inhibitors. Two such 
ATP-competitive inhibitors have been approved 
by the US Food and Drug Administration (FDA) 
for human use. Ruxolitinb is approved for use in 
myeloproliferative neoplasms, and tofacitinib is 
approved for rheumatoid arthritis.21,22

In this study, we deployed a commercially avail-
able hybrid-capture/next-generation sequencing 
platform to characterize major recurrent onco-
gene and tumor suppressor aberrations in 91 
T-cell neoplasms. This targeted approach found 
that 33% of samples had JAK-STAT abnormali-
ties, which included missense mutations in JAK1 
and JAK3, rearrangements in JAK2 and JAK3, 
and missense mutations and amplifications of 
STAT3 and STAT5. We analyzed an index case 
of T-PLL, a deadly mature T-cell neoplasm 
with both JAK1 and JAK3 gain-of-function 
missense mutations.23 This patient with T-PLL 
had experienced progression during multiple 
lines of chemotherapy but experienced disease 
response with ruxolitinib, a JAK1/2 inhibitor. 
The patient eventually experienced relapse as a 
result of clonal expansion of T-PLL cells with 
gain of function of JAK3 and downregulation of 
CD45. To our knowledge, this study is the first 
to demonstrate an in vivo response to ruxolitinib 
in a T-cell neoplasm, which underscores the 
importance of the interleukin-2 receptor gamma 
chain IL2RG/JAK1/JAK3 cytokine pathway in 

the pathogenesis of T-cell neoplasms and sup-
ports inhibition of JAK enzymes as therapy.

PATIENTS AND METHODS

Patient Samples, Processing, Sequencing

Patient peripheral blood or bone marrow was 
banked after informed consent under a protocol 
approved by the Vanderbilt institutional review 
board. Workflows have been described as the 
commercially available Foundation One and 
Foundation One Heme assays. DNA and RNA 
samples were extracted from fresh liquid speci-
mens (blood or bone marrow aspirate). Adaptor- 
ligated libraries were created from DNA and 
cDNA as described.24 Libraries were sequenced 
on Illumina HiSeq2500 (Illumina, San Diego, 
CA) to > 500× coverage depth for DNA and > 8M 
total pairs for RNA. DNA and RNA sequence 
data were processed with a customized analysis 
pipeline designed to accurately detect multiple 
classes of genomic alterations—specifically, base 
substitutions, indels, focal gene amplifications, 
homozygous gene deletions, gene fusions, and 
genomic rearrangements (Data Supplement).24

Gene Expression

The RNA sequencing workf low has been 
described previously. It also is detailed in the 
Data Supplement.25

Antibodies and Staining

See the Data Supplement for lists of antibodies 
used in this study. Cell staining also is described 
in Data Supplement.

Mass Cytometry and Phospho-Flow

Samples were stained and prepared for the mass 
cytometer as previously described. A description 
also is in the Data Supplement.26

Phosphatase Enzyme Assay and Inhibitor 
Studies

Frozen pre- and post-treatment T-PLL cells 
and Jurkat cells were lysed in hypotonic buf-
fer and prepared with cytosol, as described.27 
Ruxolitinib and tofacitinib were purchased 
from Selleck Chemicals (Houston, TX), and 
working solutions were prepared in dimethyl 
sufoxide (DMSO). T-PLL cells were plated in 
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RPMI/10% fetal calf serum and treated with 
DMSO alone or with various concentrations  
of drug. Cell viability was quantified with a 
CyQuant assay (Invitrogen, Carlsbad, CA), as 
described.17,27 Statistical analyses were performed 
with GraphPad Prism (La Jolla, CA).

RESULTS

Genomic Profiling of T-Cell Leukemias and 
Lymphomas

We analyzed 91 occurrences of diverse T-cell 
leukemias and lymphomas for alterations in 405 
cancer-causing genes by comprehensive hybrid  
capture of genomic DNA followed by next- 
generation sequencing (Data Supplement). On 
the basis of the WHO classification scheme, 
the cohort was composed of 25 precursor T-cell 
neoplasms (ie, T-ALL, acute lymphoblastic leu-
kemias) and 66 mature T-cell neoplasms (ie, 
angioimmunoblastic lymphoma [AITL; n = 8], 
ALCL [n = 7], CTCL [n = 14], peripheral T-cell 
lymphoma [PTCL; n = 16], T-cell large granular 
leukemia [T-LGL; n = 11], T-PLL [n = 7], and 
NK/TL [n = 3]). The cohort showed a marked 
male predominance for both immature and 
mature T-cell neoplasms (4:1 and 1.75:1, respec-
tively; Data Supplement) consistent with the 
epidemiology of these cancers.28,29 Samples were 
sequenced at a mean exon depth of ×489 by Illu-
mina HiSeq. As shown in Figure 1 and the Data 
Supplement, the most common gene alterations 
was CDKN2A/B, followed by TET2, NOTCH1, 
JAK3, TP53, STAT3, NRAS, DNMT3A, JAK1, 
RHOA, MLL2, and others.

The frequencies of gene alterations were com-
pared between immature (T-ALLs) and mature 
T-cell neoplasms: NOTCH1 (48% v 3%, P < .001), 
FBXW7 (16% v 1.5%, P = .0191), and NRAS 
(24% v 4.5%, P = .0117) mutations were more 
frequent among T-ALL than mature T-cell  
neoplasms. STAT3 mutations (0% v 18%,  
P = .032) were more common in mature T-cell 
neoplasms (Table 1); 31.8% (29 of 91 samples) 
had alterations in the JAK-STAT pathway. 
JAK3, which involved 13% (12 of 91 samples) 
of samples, was the most commonly mutated 
kinase, followed by JAK1, which was mutated 
in 7.7% (seven of 91 samples). There were two 
occurrences of JAK2 rearrangement (n = 1 each 
in CTCL and T-ALL) and five occurrences 
of ABL1 rearrangements (n = 1 CTCL, n = 1 
T-PLL, and n = 4 T-ALL). JAK3 mutations 

were present with a similar frequency in T-ALL 
and in mature T-cell neoplasms (Fisher's exact 
test, P = .19) but were highly frequent in cer-
tain mature T-cell neoplasms, such as T-PLL 
(five [71%] of seven samples). Interestingly, all 
five occurrences of T-PLL had the M511I JAK3 
mutation; all of the JAK3 and JAK1 mutations 
were in the Catalogue of Somatic Mutations 
in Cancer (COSMIC; http://cancer.sanger.
ac.uk/cosmic) database, frequently within the 
pseudokinase domains of the proteins (Fig 2).30 
JAK3 missense mutations have been identified 
previously in CTCL and ATL.16 Focal STAT3, 
STAT5A, and STAT5B amplifications were iden-
tified in two occurrences (n = 1 each in CTCL 
and ALCL), in addition to missense mutations 
within the SH2 domains of STAT3 and STAT5B, 
such as STAT3 D661Y/V in T-LGL (Fig 2). 
STAT5 and STAT3 gene alterations were mutu-
ally exclusive with JAK1 or JAK3 mutations. 
PTCL6 had mutations in STAT3 and JAK1 at 
7% allele frequencies, respectively, and likely 
were separate clones. JAK1 and JAK3 mutations 
were observed in the same tumor in five occur-
rences, but concordant mutations in the same 
cell could not be confirmed (Data Supplement). 
JAK3 mutations were concordant with muta-
tions in TP53 in four samples; NOTCH1 muta-
tions, in four samples; and CDKN2A deletions, 
in three samples (Data Supplement).

Exceptional Response of a JAK1-Mutant 
T-PLL

We evaluated a 62-year-old woman in our clinic 
with relapsed T-PLL. She presented with con-
stitutional symptoms, splenomegaly, and leuke-
mic blood counts that had increased to greater 
than 150,000/µL and progressed through 
alemtuzumab; cyclophosphamide, doxorubicin, 
vincristine, and prednisone (CHOP); romide-
psin; and pralatrexate. The T-PLL cells were 
CD2+CD3+CD4+CD7+CD8−CD56−CD57− (Fig 
3A), had clonal T-cell receptor rearrangement 
(data not shown), and had infiltration of bone 
marrow (Figs 3B through 3E). The T-PLL cells 
(90% of peripheral-blood mononuclear cells) 
were analyzed by hybrid capture followed by 
next-generation sequencing. As shown in Figure 
3F, the T-PLL cells had a JAK1 V658F muta-
tion at 40% allele frequency and a JAK3 M511I 
mutation at 5%. Other notable mutations were 
in ATM and TP53 at allele frequencies of 92% 
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Fig 1. Targeted next-generation sequencing of T-cell neoplasms. (A) Bar graph shows the frequency of genetic aberrations (color coded) in 91 
samples of T-cell leukemias or lymphomas. The y-axis shows the percentage of total samples. (B) Tile plot shows recurrent genetic aberrations in 
all 91 samples. Lines bracket immature T-cell neoplasms (T-cell acute lymphoblastic leukemias [T-ALLs]). The x-axis shows the T-cell neoplasm 
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and 78%, respectively, which suggests loss of 
heterozygosity (Data Supplement). Both JAK1 
and JAK3 mutations had been described in 
hematologic malignancies and have proven to 
be oncogenic in various assays.20,30-32 The clonal 
JAK1 mutation could be targeted by ruxolitinib, 
a kinase inhibitor with activity against JAK1/2.21 
The patient was agreeable to this off-label ther-
apy and received 20 mg twice daily; her periph-
eral count (90% T-PLL) declined from 142,000/μl  
to 85,000/μl within 5 days. By day 7 day, her 
spleen, which was palpable at 4 cm below the 
costal margin before therapy, was no longer pal-
pable. She experienced no adverse effects from 
ruxolitinib, and her leukocyte count stabilized 
to approximately 60,000/µL for more than 110 
days. During the 100 days before ruxolitinib 
therapy, the patient required 10 apheresis units 
of platelets and 7 units of packed red blood 

cells; conversely, during ruxolitinib therapy, 
she received 3 apheresis units of platelets and 
2 units of packed red blood cells. Unfortu-
nately, by day 116, the leukemic blood count 
increased to 116,000/µL, and a bone marrow 
biopsy confirmed relapsed disease (Fig 3G). 
The patient developed worsening thrombo-
cytopenia that did not respond to cytotoxic 
chemotherapy, and she died as a result of the 
disease. Acquired resistance to ruxolitinib and  
the pan-JAK inhibitor, tofacitinib, was cell intrin-
sic, because it was observed ex vivo. Pretreat-
ment T-PLL cells were more sensitive to  
ruxolitinib (50% inhibitory concentration [IC50], 
3.85 × 10−8 M) and tofacitinib (IC50, 8.64 × 
10−8 M) compared with post-treatment cells  
(post-ruxolitinib IC50, 4.21 × 10−7 M; post- 
tofacitinib 50IC50, 2.86 × 10−6 M; P < .001; 
Fig 3H).
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Fig 1. (Continued). subtype of each individual sample: angioimmunoblastic T-cell lymphoma (AITL); anaplastic large-cell lymphoma (ALCL); 
cutaneous T-cell lymphoma (CTCL); natural killer/T-cell (NKT) lymphoma; peripheral T-cell lymphoma (PTCL); T-ALL; T-cell large granular 
leukemia (T-LGL); and T-cell prolymphocytic leukemia (T-PLL). The y-axis shows genes with boxes colored blue for substitution/insertions 
or deletions (indels), gold for gene amplifications, gray for homozygous deletions, dark red for truncations, and dark blue for gene fusions or 
rearrangements (as noted in A).
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Genetic and Immunophenotypic Analysis of 
Resistance to Ruxolitinib Therapy

At relapse, the JAK3 M511I allele frequency 
had increased from 5% to 28%, whereas the 
allele frequency of JAK1 V658F had decreased 
from 40% to 18% in the T-PLL cells (Fig 3F). 
TP53, ATM, and other mutational frequencies 
did not change (Data Supplement). The pre- 
and post-ruxolitinib T-PLL cells were analyzed 
by RNA sequencing, in which the steady state 
abundance of mutant mRNAs approximated 
the allele frequencies (Data Supplement). The 
pre- and post-ruxolitinib/relapse T-PLL cells 
were analyzed for 28 cell surface antigens by 
mass cytometry. The multidimensional stain-
ing pattern was analyzed by viSNE, an algo-
rithm that maps cells on to a two-dimensional 
plot.33 Peripheral-blood mononuclear cells from 
healthy donors were stratified into distinct cell 
populations that corresponded to specific lin-
eages: CD4+/CD8+ T cells, natural killer cells, 
macrophages, and B cells (Fig 4A). The T-PLL 
cells from the patient case were clustered into a 
unique island composed of 95.3% total periph-
eral cells and few nonmalignant cell types (Fig 
4A). The sample after relapse occurred showed 
two distinct leukemic populations (Figs 4A and 
4B): one which resembled the pre-ruxolitinib 
sample (46.1%), and a new island that emerged 
with drug resistance (50.6%). CD45 protein 
expression was the major feature that discrimi-
nated the two relapsed cell populations (Figs 4C 
through 4D). The CD45+ population resembled 
the pretreatment cells except for reduced expres-
sion of CD127 (interleukin 7 receptor [IL-7R]). 
The CD45lo/− population showed increased 
CD27 (TNFRSF7), CD44 (H-CAM), CCR4, 
and CCR7 and reduced CD43 (leukosialin) 
compared with pre- or post-treatment CD45+ 
cells (Figs 4C through 4D).

CD45 is a receptor tyrosine phosphatase encoded 
by the PTPRC gene that negatively regulates 

JAK-STAT and T-cell receptor signaling.34,35 
CD45 downregulation coincident with clinical 
relapse on ruxolitinib implied that it may be a 
mechanism for ruxolitinib resistance. The JAK1 
mutation was not detectable by Sanger sequenc-
ing, but the JAK3 mutation was clonal and pres-
ent in CD45hi, CD45intermediate, and CD45− cells 
(Figs 5A and 5B). CD45RO and CD45RB were 
the mRNA isoforms expressed by the T-PLL 
cells (via RNA sequencing and flow cytometry; 
Data Supplement). Whole-transcriptome anal-
ysis on pre- and post-treatment samples found 
that PTPRC mRNA abundance was reduced 
significantly in the relapsed sample by 1.95-fold 
(P = 3.18E−74; Fig 5D), which approximates the 
50% reduction in protein levels observed by 
flow cytometry. JAK1, JAK2, and JAK3 mRNAs 
also were downregulated significantly (Fig 5D). 
JAK1 and JAK3 were probed by Western blot 
analysis of whole-cell lysates and showed lower 
protein abundance in the relapsed sample com-
pared with lysates before ruxolitinib treatment 
(Fig 5C).

Next, the tyrosine phosphatase activity was ana-
lyzed in lysates prepared from T-PLL cells pre-  
and post-ruxolitinib/relapse therapy. Immuno-
depletion with a specific antibody against CD45 
reduced total tyrosine phosphatase activity to 
20% to 22% of normal, which confirmed that 
CD45 was the major enzyme to contribute to 
this enzyme activity in T-PLL cells (Fig 5E). The 
specific activity of tyrosine phosphatase in pre- 
ruxolitinib lysates was 3.40 µmol/min/mg (95% 
CI, 3.10 to 3.70 µmol/min/mg), which decreased 
54% to 1.85 µmol/min/mg (95% CI, 1.58 to 
2.12 µmol/min/mg) in the post-ruxolitinib/ 
relapse sample (P < .001; Fig 5F). Thus, the cel-
lular phosphatase activity reflected the decreased 
CD45 protein levels, which paralleled the decrease 
in PTPRC mRNA abundance. Interestingly, there 
was another T-PLL case with a JAK3 M511I 
mutation that had downregulated CD45 at the 

ascopubs.org/journal/po JCO™ Precision Oncology 7

Fig 3. A case of T-cell prolymphocytic leukemia (T-PLL) that responded to specific JAK1 inhibitor, ruxolitinib. (A) Dot plots show the immuno-
phenotype of the T-PLL cells at presentation as analyzed by flow cytometry; T-PLL cells were interpreted as TdT− CD1− CD3+ CD5+ CD7+ CD4+. 
Photomicrographs of (B) peripheral-blood smear and (C) bone marrow biopsy that shows marked hypercellularity. Bone marrow aspirates (D) with 
homogeneous cells and (E) at high power, which shows neoplastic cells with fine chromatin and prominent nucleoli. (F) Foundation One panel 
analysis of T-PLL cells before (pre-RX) and after (post-RX) ruxolitinib treatment. Major gene mutations are shown with their major allele frequen-
cies and the number of reads. For example, JAK1 V658F was present in the pre-RX sample at 40% supported by 772 reads. (G) Plot of the total 
leukocytes for the patient; y-axis shows cells number (×103); gray brackets show the normal range of peripheral leukocyte number. The x-axis shows 
time in days with some clinical features highlighted. Dark blue arrows, time points of physical exams that show a palpable spleen 4 cm below costal 
margin before ruxolitinib therapy; spleen mass was not palpable after treatment. Dark gold arrows, time of first Foundation One analysis, the start 
of ruxolitinib therapy, and the Foundation One Heme panel analysis at relapse. (H) Bar graphs of T-PLL cells treated in vitro with varying concen-
trations of ruxolitinib (left panel) or tofacitinib (right panel) in molar (M) quantities; the y-axis shows cell viability. Blue bars, pre-RX samples; gold 
bars, post-RX/relapse samples. Error bars are standard error of the mean for three independent experiments.
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time of disease relapse after treatment with 
combination cyclophosphamide, doxorubicin, 
vincristine, and prednisone chemotherapy (Data 
Supplement).

Enhanced Phosphorylations Downstream of 
JAK1/JAK3 at Relapse

CD45 has been shown to directly dephosphor-
ylate JAK1 and JAK3, which suggests that its 
loss of function should show increased activ-
ity of JAK3 or JAK1. To analyze JAK activity, 
we probed the intracellular phosphorylation of 
key substrates in T-PLL cells pre- and post- 
ruxolitinib/relapse treatment by flow cytom-
etry. The percentage of T cells that expressed 
basal levels of phospho-STAT1 (p-STAT1) and 
p-STAT5 were increased in pre-ruxolitinib 
cells and in post-ruxolitinib/relapse cells com-
pared with healthy T cells (p-STAT1: 22.72% 
and 21.24%, respectively, v 0.79%; p-STAT5: 
57.52% and 54.84%, respectively, v 2.21%), 
whereas no cells in any condition expressed basal 
phosphorylation of p-STAT6, which served as a 
control (Fig 6B). T-PLL cells with the lowest 
expression of CD45 had the highest proportion 
of p-STAT5–positive cells at baseline before any 
stimulation (Fig 6C). To assess whether T-PLL 
cells had increased sensitivity to cytokine stimu-
lation in addition to increased basal signaling, we 
stimulated each sample with 20 ng/mL of cyto-
kine for 15 minutes. Signaling was quantified 
as previously described36,37 by using the median 
fluorescence intensity of per-cell phosphopro-
tein to create a fold-change. Increased phos-
phorylation of STAT5 was seen after in vitro 
stimulation with IL-2, IL-4, IL-7, IL-21, and 
interferon gamma, but not with IL-9, in both 
pre- and post-ruxolitinib/relapse–treated sam-
ples compared with healthy T cells (Fig 6D). A 
comparison between pre- and post-ruxolitinib/
relapse T-PLL cells showed similar p-STAT5 
levels at baseline and after stimulation by cyto-
kines (Fig 6D). For example, there was an 
IL-2–induced 1.49-fold change in p-STAT5 for 
pre-ruxolitinib samples and 1.44-fold (compar-
ison of arcsine transformed raw values) change 
for post-ruxolitinib/relapse samples. To under-
stand the effects of CD45 expression, we gated 
on CD45hi, CD45lo, and CD45− post-ruxolitinib/
relapse T-PLL cells and analyzed p-STAT5 and 
p-STAT6 basally and in response to stimuli. 
CD45hi had the lowest p-STAT5 response to 

IL-2 (0.23-fold), followed by CD45lo (0.61-fold) 
and CD45− (1.24-fold; Fig 6D); this pattern was 
seen for all common gamma chain cytokines 
compared with control (p-STAT6; Figs 6D 
and 6E). In summary, T-PLL cells were hyper- 
responsive to common gamma chain cytokines, 
and CD45 expression was negatively correlated 
with p-STAT5 at relapse.

DISCUSSION

In this study, diverse T-cell neoplasms were pro-
filed by targeted next-generation sequencing 
of the exomes from approximately 400 known 
tumor suppressors and oncogenes. Among onco-
genic mutations, JAK-STAT (33%) alterations 
were the most common. The cohort was com-
posed of occurrences submitted to Foundation 
Medicine as a result of relapsed or resistant dis-
ease, so the observed genetic alterations may be 
specific to advanced-stage disease or therapeutic 
resistance. Nevertheless, the mutation frequen-
cies for JAK3 (13% of occurrences) and for 
JAK1 (8.7%) were consistent with genomic pro-
filing studies focused on specific disease subtypes 
(ie, T-ALL, ATLL, T-PLL, and CTCL15-19; less 
often, AITL and PTCL).38,39 The JAK muta-
tions in this study were mutually exclusive with 
STAT3 and STAT5 gene alterations, as expected, 
because STAT3 and STAT5 proteins are down-
stream of IL2RG (common gamma chain)/
JAK1/JAK3–restricted cytokines. Interestingly, 
recent data in cell lines and mouse models sug-
gest that JAK1 enzyme activity is required for 
mutant JAK3 effects.40-42 However, as in the 
index case, the mutations were co-occurring but 
not present in the same cell; allele frequencies 
approached 50% for JAK1 and JAK3 mutations 
in the same tumor.

Most important, the JAK1 and JAK3 muta-
tions were functionally significant, because 
they induced constitutive phosphorylations 
of downstream STAT5 proteins. p-STAT3 
was not observed in the T-PLL cells (data not 
shown), although it is an important downstream 
substrate in other T-cell neoplasms, such as 
ALCL.43 Thus, signaling patterns downstream 
of JAK1/JAK3 may be unique to disease sub-
type. STAT1 and STAT5 phosphorylations in 
T-PLL could be inhibited by the specific JAK 
inhibitors ruxolitinib and tofacitinib.44 In the 
index case, treatment with ruxolitinib induced an 
impressive clinical response. These compelling 
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Fig 6. T-cell prolymphocytic leukemia (T-PLL) cells have constitutive phospho-STAT1 (p-STAT1) and p-STAT5. Intracellular signaling 
responses, monitored by using phospho-flow cytometry, of peripheral-blood mononuclear cells (PBMCs) from healthy donors, and from the 
patient with T-PLL before (pretreatment) and after (post-treatment) relapse experienced during ruxolitinib treatment. (A) Biaxial plots show 
expression of CD45 and CD3 on healthy donor and T-PLL samples. Blue gates indicate populations defined by expression of CD45 (hi, lo, 
and negative). CD3+ included peripheral T cells in health donor and all T-PLL cells. (B) Biaxial plots show basal p-STAT-1, p-STAT5, and 
p-STAT6 in CD3+ CD45hi cells. (C) Biaxial plot shows CD45 versus p-STAT5 and p-STAT6 at the time of relapse. Right panel, bar graph of 
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minimum value. Graphs are shaded from black to yellow to reflect ratios from zero to four, as shown by the scale. Y-axes show counts, and 
x-axes show fluorescence.
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data argue for oncogene dependence upon the 
JAK-STAT pathway in T-PLL, results that 
may extend to other T-cell neoplasms with JAK 
mutations. Furthermore, this oral drug worked 
when intensive parenteral therapies had failed to 
control the disease.

This study showed two cell-intrinsic mecha-
nisms to account for resistance to ruxolitinib: 
expansion of the mutant JAK3 T-PLL clone 
and downregulation of CD45. In in vitro stud-
ies, the IC50 of ruxolitinib for JAK1 is 3.3 
nM; for JAK2, it is 2.8 nM45; and for JAK3, it 
is 428 nM.45 This diminished potency against 
JAK3 probably accounted for the expansion of 
the mutant JAK3 clone from 10% before rux-
olitinib to 56% at relapse. The T-PLL cells 
showed cross-resistance to tofacitinib, which has 
a nanomolar IC50 for JAK3.46,47 The downreg-
ulation of CD45 protein appears to be an addi-
tional resistance mechanism at relapse. Reduced 
CD45 proteins reduced the total tyrosine phos-
phatase activity in the T-PLL cells, which cor-
related with increased p-STAT5. PTPRC mRNA 
abundance was decreased, which suggests either 
enhanced mRNA degradation or transcriptional 
repression. The expression pattern of CD45 in 
a clonal T-PLL population resembles position- 
effect variegation, an epigenetic phenomenon.48,49 
Because the primary leukemia samples were 
consumed, we were unable to directly transduce 
PTPRC cDNA to test if JAK inhibitor sensitivity 
could be restored. Thus, a cooperative genetic 
interaction between PTPRC loss of function and 
JAK3 M511I remains speculative. We observed 
an additional case of T-PLL with a clonal JAK3 

M511I mutation that had similarly downregu-
lated CD45 after disease relapse during CHOP 
chemotherapy, which suggests that downregu-
lation of the CD45 protein may play a role in 
chemotherapy resistance. Notably, Porcu et al50 
discovered deletion, missense, and nonsense 
mutations in PTPRC in T-ALL—evidence that 
supports a tumor suppressor role for PTPRC 
in this disease. Furthermore, Porcu et al50 also 
showed concordant loss of function in PTPRC 
and gain of function in JAK1 or IL7R, which 
suggests that these two hits cooperate in T-ALL 
pathogenesis. In fact, the authors described aug-
mented p-STAT5 when PTPRC was knocked 
down by small interfering RNA. Our studies 
on the index case are similar to these findings, 
because we also observed an inverse correlation 
between CD45 levels and p-STAT5, albeit in 
T-PLL. Our studies do suggest that PTPRC may 
be a tumor suppressor in more mature T-cell 
neoplasms in addition to precursor T-ALL and 
that its loss of function may be an important 
resistance mechanism to ruxolitinib. Finally, the 
data presented in this study support the design 
of larger phase I/II clinical trials to test ruxoli-
tinib on its own or in combination with cytotoxic 
therapies in T-cell neoplasms. A basket design in 
which patients with rare T-cell subtypes may be 
enrolled on the basis of the presence of JAK1 or 
JAK3 mutations may be most informative.
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