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Studying cancer immunotherapy using
patient-derived xenografts (PDXs) in
humanized mice
Yunsik Choi1, Sanghyuk Lee1, Kapyoul Kim1, Soo-Hyun Kim2, Yeun-Jun Chung2 and Charles Lee1,3

Abstract
Cancer immunotherapy is a promising way to eliminate tumor cells by using the patient’s own immune system.
Selecting the appropriate animal models to develop or validate preclinical immunotherapeutic trials is now an
important aspect of many cancer research programs. Here we discuss the advantages and limitations of using
genetically engineered immunodeficient mouse models, patient-derived xenografts (PDXs), and humanized mouse
models for developing and testing immunotherapeutic strategies.

Introduction
Immune surveillance against cancer is an important

protection of the host to restrain carcinogenesis and
sustain cellular homeostasis. Immune surveillance has
three essential phases: elimination, equilibrium, and
escape1. During the interaction of host cells with tumor
cells, the immune system is usually capable of recognizing
tumor cells from novel cell surface antigens that arise
from genetic and/or epigenetic changes in the tumor cells.
To overcome this immune surveillance, tumor cells can
use a variety of mediators for immunosuppression. For
example, T-cell activation can be suppressed by adenosine
and vascular endothelial growth factor A, which are
released by tumor cells under hypoxia. Another
mechanism for immune suppression is when tumor cells
downregulate major histocompatibility complex (MHC)
class I (reducing the presentation of intracellular peptide
fragments on the cell surfaces of tumor cells) or disable
other components of the antigen-presenting process, to
escape T-cell recognition2, 3.

The concept of cancer immunotherapy was initiated by
William B. Coley, who observed tumor shrinkage and
disappearance following treatment with a bacterial toxin
in the 1890s. Since then, immunotherapy has subse-
quently developed into a novel method for treating cancer
by reinforcing the immune system, rather than attacking
the tumor cells directly with chemotherapeutic agents.
Immunotherapy treatment can be broadly classified as
either cancer vaccines, adoptive cellular immunotherapy,
or therapies using immune checkpoint blockades4.
To perform systematic preclinical cancer immunother-

apy studies, it is important to select appropriate animal
models. Various animal models, namely, genetically
engineered mice, patient-derived xenografts (PDXs), and
humanized PDX mouse models, can be used for testing
new anticancer immunotherapies. In this review, we dis-
cuss the basic principle of PDXs and humanized mouse
models and their applications in cancer research. We also
discuss the limitations of these models and review stra-
tegies that may be used to overcome these limitations.

Cancer immunotherapy
The host immune system has an important role in

tumor development and control. Cancer immunotherapy
uses the immune system to eliminate tumor cells.
Currently, there are various approaches to cancer
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immunotherapy, including cancer vaccines, adoptive cell
therapies (ACT) and immune checkpoint blockade
therapies (Table 1).

Cancer vaccines
Cancer vaccines can be classified into the following two

categories: prophylactic and therapeutic5. Prophylactic
vaccines have been used with considerable success for the
prevention of cancers of viral origin such as for cervical
and liver cancers6, 7. Therapeutic vaccines have been
developed to specifically stimulate CD8+ and CD4+

T cells. These vaccines can then target the differentiated
antigens expressed on the cell surfaces of tumor cells8.
However, cancer vaccines, consisting of short peptides,
can be rapidly cleared before being loaded onto antigen-
presenting cells (APCs). In other cases, the therapeutic
benefits can be limited by an insufficient immunization or
response to a selected tumor antigen3. Finally, these
vaccines require knowledge and purification of tumor-
specific antigens. Since this is still quite limited, this
technology is currently applicable to only a few types of
cancers and stages9.
Dendritic cells (DCs) have been shown to be more

efficient at antigen presentation and the induction of T-
cell immunity compared to other APCs such as macro-
phages. In this approach, DCs are isolated from the
patient’s peripheral blood mononuclear cells (PBMC),
loaded with tumor antigens ex vivo, activated, and

then reinfused back into the patient10, 11. Indeed, DC
vaccinations have already produced some meaningful
clinical results in a subset of patients with advanced
cancers12. For instance, treatment with sipuleucel-T (a
cellular product based on enriched blood APCs briefly
cultured with a prostatic acid phosphatase fusion protein)
achieved an approximate four-month improvement in the
median survival for some patients with metastatic prostate
cancer13, 14.

Adoptive cell therapy
The treatment of cancer patients with immune cells

isolated from the body, expanded ex vivo, and reinjected
into the patient for tumor cell targeting that ultimately
induces cell death is called ACT. In the host, T-cell-
mediated antitumor immune responses can be triggered
by APCs that capture antigens from tumor cells. T cells
then scan for unrecognized MHC-peptide complexes,
which would alert them to potentially threatening foreign
antigens and then lead to the activation of their T-cell
receptors15. Tumor cells generally express antigens that
are characteristic of their tissues of origin, and tissue-
differentiated antigens are attractive targets for ACT.
For immunotherapies based on the adoptive transfer of

tumor infiltrated lymphocytes (TILs), genetically engi-
neered T cells that express T-cell receptors (TCRs) with a
high affinity and specificity for target antigens would be
an excellent treatment option16–20. Chimeric antigen

Table 1 Categories of cancer immunotherapies

Strategy Basic mechanism and major advantages Major disadvantages References

Vaccines Enhances CD4+ and CD8+ T-cell responses

Some success has been reported, such as for cervical

cancer.

Free peptides are rapidly cleared from the body before

binding to antigen-presenting cells (APCs).

Most antigens in cancer cells are also found in normal cells

(i.e., not cancer-cell specific).

There can be insufficient immunization and responses to a

specific tumor antigen.

3, 5, 6

Adoptive cell

therapy (ACT)

Tumor infiltrated lymphocytes (TILs) trigger tumor

cell death and eradicate the tumor.

Engineered T-cell receptors (TCRs), with a high

affinity and specificity for tumor antigens, are

capable of activating T cells to target cancer cells.

Adoptive transfer of lymphocytes generates a high

avidity in effector T cells.

Not all patients can participate in these clinical trials, as they

are generally restricted to patients capable of undergoing

lymphodepletion- and IL-2-based treatments.

Mispairing the engineered TCR α- and β-chains can occur in

the engineered T cell.

There have been safety issues encountered, manufacturing

is complex and costs remain high.

3, 15, 16

Immune

checkpoint

blockade

This method enhances preexisting anticancer

immune responses that are dependent on T cells.

There is the potential for a long-term survival

following treatment.

It has been shown to be applicable to multiple

cancer types.

T-cell responses could take several months to occur

There is a significant amount of toxicity observed among

patients.

A minority of patients, treated with immune checkpoint

blockade therapy, actually experience a durable response.

3, 25, 26
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receptors (CARs) are one way for providing specificity to
transduced T cells (CAR-T cells) and can originate from
antibodies. CARs recognize MHC-nonrestricted struc-
tures on the surfaces of target cells, whereas
TCRs recognize mainly intracellular antigens that
have been presented as peptide complexes with MHC
molecules21, 22. The genetic modification of T cells for
ACT can confer new antigenicity to recipient T cells.
However, there are several limitations to this method. For
example, current approaches have only monoclonal spe-
cificity and may only be effective for the treatment of a
small proportion of the tumor cells. In the case of
genetically engineered TCRs, mispairing of TCRs with
endogenous TCR chains can also occur23.

Immune checkpoint blockade therapy
Immune checkpoints are regulators of the immune

system and play an important role in preventing self-
attacks by the immune system24. Malignant cells usually
express unique antigens, which allow our immune system
to differentiate them from our normal cells and subse-
quently remove them. However, many tumor cells have
evolved a mechanism to escape from the host immune
system, by expressing cell surface molecules, which
interact with immune checkpoint receptors on T cells
causing the T cells to erroneously classify the tumor cells
as healthy normal cells. Hence, inhibiting these check-
point receptors (on either the host T cells or the tumor
cells) can potentially be an effective means for allowing
the host T cells to again properly classify tumor cells.
Well-known immune checkpoint inhibitors include those
that target programmed cell death protein 1 (PD-1,
also known as CD279) or cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4, also known as CD152)
(Fig. 1a, b)25, 26. Already, a significant number of clinical
studies have been conducted using this strategy for cancer
therapy and have demonstrated efficacy of immune
checkpoint blockades in a variety of solid tumors and
hematologic malignancies27.

Overview of PDX models
In vitro methods for testing anticancer drugs can

employ monolayer cell cultures or organoid cultures and
are especially beneficial in genetic modification and high-
throughput screening assays. However, these methods
have some limitations such as the selective proliferation of
clonal cells28. PDX models are thought to overcome some
of these limitations and seem to preserve key character-
istics of the patient’s tumors, including histological fea-
tures, genomic signatures, and the genetic heterogeneity
of cells in a tumor mass29. Therefore, they seem to
recapitulate many aspects of the original patient tumor
and can potentially serve as a more accurate predictive
platform for therapeutic outcomes30.

Generation of the PDX models
PDX models are generated by the implantation of fresh

human tumor tissues into immunodeficient mice, to
reduce rejection of the tumor cells by the mouse. Tumor
tissues, no larger than 2 mm3, are implanted into immu-
nodeficient mice either subcutaneously or orthotopically
(i.e., at the same tissue-of-origin site). One or two frag-
ments are generally implanted into each mouse. The
tumor masses are then grown to ~1000mm3 in size, at
which point, the tumors can be cryopreserved, char-
acterized, or dissected again for reimplantation and pro-
pagation in additional mice (Fig. 2). For hematological
cancers, PBMCs or bone marrow samples from patients
with leukemia are engrafted either in the blood stream or
into the bone marrow31, 32. The continued propagation of
the human tumors in the immunodeficient mice make
PDX models a renewable resource for cancer studies.
There are a variety of immunodeficient mice that can be

used for PDX models: severely compromised immune-
deficient (SCID) mice, athymic nude mice, non-obese
diabetic (NOD)–SCID mice, and recombination-
activating gene 2 (Rag2)-knockout mice33. More
recently, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ(NSG) mice
have become the mouse strain of choice for such PDX
studies because this mouse has no IL-2 receptor gamma,
which is an important component of the surface receptor
of immune cells that transduce signals from six kinds of
interleukins. Since the signaling pathway of IL-2 receptor
gamma is needed for the differentiation and function of
many hematopoietic cells, the absence of this receptor
leads to a dysfunction in innate immunity, including
natural killer (NK) cells. This makes the NSG mouse a
very effective model for the engraftment of primary tumor
tissues or cells34, 35.

Applications of PDX models in cancer research
PDX models for exploring drug efficacy and the
mechanism of resistance
PDX models have already been used in a diverse range

of preclinical cancer research projects. For example, a
recent study using PDXs demonstrated the inhibition of
the nuclear exporter for antitumor efficacy in a triple-
negative breast cancer36. In another study, lung cancer
PDX models revealed the antitumor activity of
kinetochore-associated protein 2 siRNA37. Similarly,
another study demonstrated the antitumor effects of
multikinase inhibitors in PDX models of hepatocellular
carcinoma38.
One problem that continues to be explored is how well

the drug efficacy data using these PDX models correlate
with actual clinical outcomes39. Several studies have been
published that seem to suggest that in some cases, there
can be good correlations between the two. For example,
one study showed a high correlation between PDX models
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Fig. 1 Regulation of antitumor immunity and immunotherapy targets. a Programmed cell death protein-1 (PD-1) inhibits the activation and
function of T cells. When PD-1 on activated T cells binds to programmed cell death ligand 1 (PD-L1) or programmed cell death ligand 2 (PD-L2) on
tumor cells, T cells become inactivated, allowing tumor cells to evade the host immune response. Anti-PD-1 or PD-L1 antibodies can inhibit
suppressive effects of tumor cells and enhance antitumor activities. b T-cell activation requires both TCR signaling and co-stimulatory signaling
(CD28). When T cells get activated, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is upregulated and displaced by CD28 binding to B7 due to
higher binding affinity. The binding of B7 proteins to CTLA-4 inhibits T-cell activation

Fig. 2 Generation of PDX models for chemotherapy. Tumor tissues from cancer patients are implanted into immunodeficient mice (P0)
subcutaneously or orthotopically. After the growth of tumor tissues in P0 mice, these tissues are used for genomic analysis such as whole exome
sequencing (WES), RNA sequencing (RNA-seq) and copy number alteration (CNA) analysis and can be preserved or reimplanted into new mice for
tumor cell passaging. After more expanding of these tumor xenografts, in vivo drug response testing can be performed in these models
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and clinical trials for over 3300 drug response datasets40.
In another study, PDX models of colorectal cancers
treated with an epidermal growth factor receptor inhi-
bitor, cetuximab, showed comparable response rates to
those of the patients in whom the tumor orginated41.
Finally, responses to sirolimus, sunitinib, and dovitinib,
but not erlotinib, were largely correlated between PDX
models and corresponding clinical outcome results for
renal cell cancers42.
Having a good correlation between PDX models and

clinical trials provides a chance to find novel biomarkers
for drug reactivity. For example, in a melanoma PDX
model introducing vemurafenib resistance, the resistant
tumors showed dependency on BRAF signaling due to the
elevated BRAF (V600E) expression43. These data suggest
the possibility that elevated BRAF expression could be
used as a biomarker for vemurafenib resistance43.
Another study found a molecular mechanism for

gemcitabine resistance through the use of PDX models for
pancreatic cancer44.

PDX models for co-clinical trials
Co-clinical trials are preclinical research studies that

can be conducted in parallel with human patient treat-
ments in the clinical setting. In this application, PDX
models are generated from cancer tissues of patients in
clinical trials, and the PDXs are treated with the same and
possibly additional therapies to follow clinical responses45.
The responses to new agents, mechanisms underlying the
responses to treatment, and explorations of prognostic
biomarkers can be studied by using established PDXs
from patients being treated. Using such co-clinical trials,
strategies for new combinations can also be suggested. For
example, a phase II co-clinical trial of arsenic trioxide in
relapsed small cell lung cancer revealed that PDX mod-
eling reliably reproduced clinical outcomes46. Another

Fig. 3 Generation of humanized mice for immunotherapy models. The NSG mice are irradiated with whole body gamma irradiation. Human
CD34+ hematopoietic stem cells (HSCs) are intravascularly injected into NSG mice at 5 weeks. Humanization for the engraftment of human HSCs is
monitored by flow cytometry of use for determining the percentage of differentiated human CD45+ cells in the peripheral blood of the mice. Patient
tumor tissues are then engrafted into ‘humanized’ mice and used for studying the efficacy of variety therapies. These humanized PDX models can
also permit the study of human immune responses, including the analysis of TILs, cytokines, and antibodies
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recent study revealed that the response to dovitinib in
lung squamous cell carcinomas could be predicted by
signatures of FGFR gene expression47. Such co-clinical
trials provide a chance to evaluate the efficacies of several
drugs, in isolation or combination, in a cost-effective and
cost-efficient manner.

Limitations of PDX Models
Although PDX models are excellent in vivo platforms

for precision medicine, they have several limitations that
should be noted. First, the development of a PDX model
from a patient can take as long as 6 months (or longer) to
establish. In addition, certain tumor types, such as pros-
tate cancers, are difficult to establish as PDX models,
presumably because of the need for additional, unknown
“factors” needed for proper tumor growth. Finally, those
tumors that have genetic heterogeneity cannot always be
recapitulated in serial passages if the genetic heterogeneity
is not all represented in the dissected tumor that is
passaged.

Humanized mice with PDXs: a groundbreaking research
platform for cancer immunology
As outlined above, PDX models can be a useful resource

for preclinical trials; however, these are limited to che-
motherapeutic drugs. For immunotherapeutic options, an
intact immune system is required. The use of mice with a
murine immune system is limiting, as it does not accu-
rately recapitulate the human immune system. Therefore,
creating a mouse with a human immune system
(a “humanized mouse”) is a better vehicle for immu-
notherapeutic efficacy testing.

Creating humanized mice: an in vivo model that uses
human immune systems
The ultimate goal of humanization is to generate mice

with a fully competent human immune system, capable of
mounting anticancer immune responses for specific
immunotherapeutic interventions (Fig. 3). In its most
basic form, the NSG mouse can be engrafted with various
types of human leukocytes and purified human CD34+

hematopoietic stem cells (HSCs), obtained from bone
marrow, umbilical cord blood, fetal livers or thymus
tissues48.
Humanized PDX models are generated by implanting

fresh human tumor fragments into these humanized mice.
Initially, NSG mice that are 5 to 12 weeks old are first
irradiated with 50 to 250 cGy whole body gamma irra-
diation to enhance engraftment. Then, 3 × 104–1 × 105

human CD34+ HSCs are intravascularly injected into
each irradiated NSG mouse. At approximately
10–12 weeks of age, engraftment of the human HSCs can
be confirmed by assessing for differentiated human
CD45+ cells (leukocyte common antigen) in the

peripheral blood of the mice using flow cytometry.
Human CD45+ cells can be detected as early as 4 weeks
after the engraftment of HSCs49. Successful engraftment
of a human immune system can be considered when the
mice have more than 25% human CD45+ cells in their
peripheral blood. The process for generating humanized
mice is summarized in Fig. 3. Specific PDXs can then be
inserted into the humanized mice, and an immunother-
apeutic agent is subsequently applied for testing.
Afterward, the host immune response to an immu-
notherapeutic agent can be analyzed using different
methods (Fig. 3).
To produce humanized mice effectively, several

immunodeficient mouse strains have been developed. For
example, the NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV IL-3,
CSF2, KITLG)1Eav/MloySzJ (also known as NSG-SGM3)
mice expresses human IL-3, Granulocyte-macrophage
colony-stimulating factor (GM-CSF) and stem cell factor
allows for the stable engraftment of human HSCs for
humanization50. In addition, the NOD,B6.SCID Il2rγ−/−

KitW41/W41 (NBSGW) mice, which carry mutations in
c-Kit, support the transplantation of HSCs without irra-
diation51, 52. The human SIRPA and IL15 knockin
(SRG-15) mice also showed an increased development of
intraepithelial lymphocytes, innate lymphoid cell subsets
and NK cells53.
Ideally, the humanized mice being used would have the

same immune system from which the PDX was derived.
However, it is very difficult to obtain CD34+ cells from
the cancer patient, and therefore, an allogenic immune
approach is usually used.

Application of humanized mice with PDXs for
cancer research
The tumor microenvironment
The relationship between the tumor and the sur-

rounding stromal and immune cells is highly complex and
an area of exciting research54. Indeed, the interplay
between the rapidly dividing cancer cells and the sur-
rounding stromal tissue is thought to be one critical factor
in treatment efficacy55. Cancer cells can interact with the
stromal microenvironment in several ways. (1) As cancer
cells divide, they can recruit cells that contribute to the
infrastructure of the growing tumor, including fibroblasts,
endothelial cells, and circulating immune cells56. Che-
mokines released from cancer cells, stromal cells and
leukocytes can regulate angiogenesis. Cancer cells also
produce cytokines (protein messengers that tell other cells
when and where to launch an immune response) to
control nearby immune cells and help them escape
immune surveillance. Using humanized mice, Morton and
colleagues reported that human immune cells maintained
the microenvironment of engrafted cancer PDXs57. The
human immune cells, which infiltrated the engrafted
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tumors, induce lymphangiogenesis and sustain the origi-
nal gene expression profile of the PDX57. This study
indicates that interactions between stromal immune cells
and tumor cells are indeed important in maintaining the
integrity of the original tumor.

Humanized mouse model for cancer immunotherapy
Numerous recent studies have now demonstrated the

advantages and advancements of cancer immunotherapy
using humanized mice. For example, in a recent study, a
renal cell carcinoma (RCC) mouse model was generated
orthotopically with PBMCs to evaluate the antibody effi-
cacy targeting the carbonic anhydrate IX protein in RCC.
This study demonstrated that the antibody inhibited
cancer growth by priming T-cell activity58. In October
2017, Akiyama and colleagues demonstrated that the
STAT3 inhibitor, STX-0119, had an antitumor activity,
whereby lymphocytes accumulated within the engrafted
tumor tissues of the humanized mice59. Similarly, another
study demonstrated that a PD-1 inhibitor could effectively
restrain osteosarcoma pulmonary metastasis60. Finally,
Hu Z et al., collected T cells from humanized mice, and
found these T cells to have cytotoxic activity to melanoma
cells in vitro in an antigen-specific manner. The transfer
of these T cells to a melanoma-bearing PDX model sub-
stantially extended the animal’s survival61. This study
demonstrates that humanized mice are a useful resource
to study the functions of antigen-specific T cells for
cancer immunotherapy.
Humanized mouse models can also be used to study the

complicated relationship between tumor development,
oncolytic viruses, and the human immune system.
Tsoneva and colleagues placed lung carcinomas into
humanized mice to determine the interaction of the
oncolytic vaccinia virus (VACV) with the host immune
system and how it affects tumor growth62. They validated
the efficacy of combination therapy using CTLA4-
blocking antibody and VACV, which was only possible
with the humanized mouse model62.
Humanized mouse models have also been used to study

the efficacy of ACT treatments. For example, to study
ACT and the immune checkpoint blockade, Jespersen and
colleagues inserted melanoma tumor cells and T cells
from the same patient into humanized mice and showed
tumor inhibition63. Interestingly, T cells from ACT non-
responders failed to inhibit tumor growth in the same
model63. It would be important to explore more studies
for many other types of well-characterized human
cancers.

Human microbiota-associated mice
The microbiota comprises commensal and other

microorganisms that inhabit the epithelial barriers of the
host body64. The microbiota regulates many physiological

functions in the host body, including metabolism, hema-
topoiesis and immunity65. The homeostatic interaction
with these microorganisms is particularly important for
the development of the host immune system65–67. How-
ever, commensal microorganisms exist in a balance that, if
significantly altered, enters dysbiosis, which can be asso-
ciated with the etiology of many types of cancers68–72.
Indeed, recent studies have shown some evidence that the
microbiota, especially within the gut, can impact the
efficacy of certain cancer therapies, including che-
motherapy, radiotherapy and immunotherapy73. Con-
sidering the importance of the microbiota, further studies
of the effects of the microbiota on biological responses
would be useful.
Because germ-free mice have no microbes, researchers

have tried to control the microbiota through direct
inoculation with a specific microorganism or combina-
tions of them64. Therefore, researchers have developed
human microbiota-associated mice that are established
from germ-free mice by fecal microbiota transplanta-
tion74, 75. This method has been used to study the inter-
action between the host and microorganism as well as the
effects of microbes on human health and diseases,
including cancers64.

Future directions
In this review, we have shown many advantages for the

use of humanized mice in studying cancers. In particular,
there is an ongoing need to generate more comprehensive
and functional immune systems within these humanized
mice and identify new practical approaches that would
enable autologous experiments that engraft diseased tis-
sues and immune cells from the same individual for a
more accurate understanding of disease progression
and personalized treatment efficacy. Despite the noted
limitations, the use of PDX models in humanized
mice has already provided many insights into the
behaviors of diverse cancers within their native
tumor microenvironments, under the effects of human
immune cells. As humanized PDX models continue to
improve and truly recapitulate the human biological
system, these models will provide an unprecedented
research platform in cancer immunology and persona-
lized medicine.
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