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Abstract

RNA-protein binding is critical to gene regulation, controlling fundamental processes includ-

ing splicing, translation, localization and stability, and aberrant RNA-protein interactions are

known to play a role in a wide variety of diseases. However, molecular understanding of

RNA-protein interactions remains limited; in particular, identification of RNA motifs that bind

proteins has long been challenging, especially when such motifs depend on both sequence

and structure. Moreover, although RNA binding proteins (RBPs) often contain more than

one binding domain, algorithms capable of identifying more than one binding motif simulta-

neously have not been developed. In this paper we present a novel pipeline to determine

binding peaks in crosslinking immunoprecipitation (CLIP) data, to discover multiple possible

RNA sequence/structure motifs among them, and to experimentally validate such motifs. At

the core is a new semi-automatic algorithm SARNAclust, the first unsupervised method to

identify and deconvolve multiple sequence/structure motifs simultaneously. SARNAclust

computes similarity between sequence/structure objects using a graph kernel, providing the

ability to isolate the impact of specific features through the bulge graph formalism. Applica-

tion of SARNAclust to synthetic data shows its capability of clustering 5 motifs at once with a

V-measure value of over 0.95, while GraphClust achieves only a V-measure of 0.083 and

RNAcontext cannot detect any of the motifs. When applied to existing eCLIP sets, SARNA-

clust finds known motifs for SLBP and HNRNPC and novel motifs for several other RBPs

such as AGGF1, AKAP8L and ILF3. We demonstrate an experimental validation protocol, a

targeted Bind-n-Seq-like high-throughput sequencing approach that relies on RNA inverse

folding for oligo pool design, that can validate the components within the SLBP motif. Finally,

we use this protocol to experimentally interrogate the SARNAclust motif predictions for pro-

tein ILF3. Our results support a newly identified partially double-stranded UUUUUGAGA

motif similar to that known for the splicing factor HNRNPC.
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Author summary

RNA-protein binding is critical to gene regulation, and aberrant RNA-protein interac-

tions play a role in a wide variety of diseases. However, molecular understanding of these

interactions remains limited because of the difficulty of ascertaining the motifs that bind

each protein. To address this challenge, we have developed a novel algorithm, SARNA-

clust, to computationally identify combined structure/sequence motifs from immunopre-

cipitation data. SARNAclust can deconvolve multiple motifs simultaneously and

determine the importance of specific features through a graph kernel and bulge graph for-

malism. We have verified SARNAclust to be effective on synthetic motif data and also

tested it on ENCODE eCLIP datasets, identifying known motifs and novel predictions.

We have experimentally validated SARNAclust for two proteins, SLBP and ILF3, using

RNA Bind-n-Seq measurements. Applying SARNAclust to ENCODE data provides new

evidence for previously unknown regulatory interactions, notably splicing co-regulation

by ILF3 and the splicing factor hnRNPC.

Introduction

RNA-protein binding is a fundamental biological interaction vital to the diverse functions of

RNA, including key roles in RNA splicing, translation, localization and stability [1–4]. How-

ever, the sequence features that determine affinity to RNA-binding proteins (RBPs) are

unknown for most RBPs, including the vast majority of the hundreds of RBPs in the human

proteome. Moreover, even for RBPs with known binding motifs, existing sequence motifs are

only weakly predictive of which RNA regions will be bound. Deciphering these RNA binding

features is crucial for mechanistic understanding of RNA-protein binding and understanding

how RNA regulation impacts human health. RNA-protein interactions are known to play a

role in a wide variety of diseases including muscular dystrophy, fragile X syndrome, mental

retardation, Prader-Willi syndrome, retinitis pigmentosa, spinal muscular atrophy, and cancer

[1–5].

Short single motifs are usually used to describe RNA-protein binding elements, e.g. as com-

piled in the RBPDB experimental database [6], but such motifs have often had poor predictive

power. As an example, Hogan et al identified transcripts bound to 40 yeast RBPs and then

searched their UTR regions for overrepresented sequences [7]. They were able to find statisti-

cally significant motifs for only 21 RBPs, and in many cases previously known motifs could

not be found. This issue of poor predictive power for single motifs has continued even with

finer resolution assays such as CLIP-seq, which can localize binding sites to within a few nucle-

otides [8,9]. For example, in CLIP-seq for LIN28–RNA interaction sites in human somatic and

embryonic stem cells [10], the most overrepresented sequence motif (GGAGA) was found in

less than 13% of the sites.

A possible explanation for this problem is that proteins have the potential to interact with

multiple sequence motifs. For instance, it is known that Gemin5, a peripheral protein of the

survival of motor neuron (SMN) complex in metazoan organisms [11–13], is responsible for

recognition of the Sm site of snRNA [14,15]. This recognition is mediated by a WD40 repeat

domain located in the N-terminus [16–18], yet there is also a bi-partite non-canonical RNA-

binding domain at the C-terminus which modulates IRES-dependent translation [19,20].

However, computational methods to distinguish multiple motifs simultaneously have not been

developed.

SARNAclust RNA motif identification
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Existing computational approaches for RNA motif detection, which have been geared

toward single motif discrimination, have had moderate success. RNA motif analysis has often

been carried out by repurposing DNA motif finder tools such as MEME [21], PhyloGibbs [22]

or cERMIT [23], but these methods cannot take into account RNA secondary structure. Many

known RBPs do bind to single stranded RNA (ssRNA), but it remains unclear how much sec-

ondary structure impacts binding. Some methods have incorporated aspects of RNA structure,

e.g. by biasing for single stranded regions [24,25] or searching over a limited set of structural

contexts (paired, loop, unstructured, miscellaneous) [26–28]. However, the predictive power

of these methods remains low, likely because of the limited number of considered contexts

compared to the diversity of possible RNA structures. For example, Kazan et al. tested their

algorithm on 9 RBP-interaction sets and found an average AUC value of only 0.64 [28].

Approaches that consider structural contexts using machine learning algorithms such as Sup-

port Vector Machines [29], Hidden Markov Models [30,31] or Deep Learning [32–34] have

been developed. Some have improved cross-validation AUC values to 0.8 to 0.9 [34–36],

though common caveats to current approaches are that they rely on immunoprecipitation

training sets with uncertain specificity, that they have not been developed to handle multiple

motifs, or that they have abstracted structural constraints rather than considering exact RNA

structures.

Recently, Maticzka and colleagues developed the graph kernel-based GraphProt to handle

sequence and structure together and applied it to learn motifs from CLIP-seq data [37], finding

motifs that were predictive of binding for the protein PTB. However, this approach has not

been tested for RBPs that bind to double stranded RNAs, and it is unknown whether the effec-

tiveness would depend on the types of structures to which individual proteins bind. Moreover,

GraphProt reports at most one motif and classifies the remaining data as noise. A more general

approach would be to use clustering to allow for multiple possible motifs. A related method is

GraphClust [38], which uses a sequence/structure graph kernel to cluster RNAs, and a recent

extension called RNAscClust [39] incorporates orthologous sequence conservation to improve

the RNA folding estimates into the clustering process. However, these methods are tailored to

cluster non-coding RNAs, and it is unknown if they would be effective for the clustering of

CLIP-seq sites.

Here, we propose a method, SARNAclust (Semi-Automatic RNA clustering), to cluster, as

opposed to classify, RNA motifs that bind to a given RBP from CLIP-seq data. To our knowl-

edge, this is the first approach to attempt to cluster CLIP-seq peaks in order to discover poten-

tially multiple RNA motifs that bind to a given RBP. The most related approach we know of is

AptaTrace [40], which uses clustering to identify multiple possible RNA motifs from HT-SE-

LEX experiments. However, AptaTrace is not optimized for CLIP-seq data since it relies on k-

mer context information during evolution of a sequence pool over multiple SELEX rounds,

while CLIP-seq provides a static snapshot. Another recent method, RNAcompete-S [41] clus-

ters multiple components that contribute to a single binding motif, but is not designed to han-

dle distinct motifs arising from separate binding domains.

Here we present a novel pipeline to address these problems in RNA-protein motif identifi-

cation. We first describe our pipeline, which consists of 3 steps (peak discovery, motif discov-

ery and motif experimental validation), with particular attention to the novel computational

motif discovery algorithm SARNAclust. Next we benchmark SARNAclust on synthetic data

and validate our experimental protocol on a known double-stranded RNA motif. We then

show SARNAclust motif predictions for a set of RBPs with eCLIP data and experimentally vali-

date the motif of one such RBP. Finally, we discuss the results and implications of this pipeline

in the Discussion section.

SARNAclust RNA motif identification
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Results

Overview of the pipeline

We present a mixed computational/experimental pipeline to derive RNA motifs that bind to a

given RBP based on immunoprecipitation data. The motivation for our pipeline is two-fold:

first, to discover motifs where both sequence and structure are necessary; and second, to

enable identification of more than one motif per RBP through optimized clustering over the

CLIP peaks.

Our complete software pipeline includes source code to process data files from a CLIP

experiment (see Methods), to calculate secondary structure of the peaks using RNAfold, to

cluster peaks according to sequence only, and to cluster peaks according to sequence/structure

using SARNAclust. In addition, we provide a protocol for experimental validation of candidate

motifs, including in silico design of instances of the motif using RNAiFold [42,43]. Fig 1 shows

the flowchart of our pipeline. S1 Fig shows the flowchart of the peak analysis.

A key element of SARNAclust is the graph transformation that allows for the calculation of

a similarity value between pairs of sequence/structures. These similarity values provide the

input for the clustering of CLIP peaks. Flexible parameters in SARNAclust allow it to be used

as a guidance system to identify well-supported motifs and test their key features.

SARNAclust. Given a set of RNA sequence/structures calculated using RNAfold (or any

other RNA structure prediction method), SARNAclust then clusters them. Similarities

between pairs of sequence/structures are computed using the graph kernel in EdEN [44],

which is equivalent to that used in GraphClust [38] and GraphProt [37]. However, parameter

choices before applying this kernel for clustering are critical for accurate detection of motifs,

which we have optimized as described below. To use the graph kernel we first transform the

sequence/structures into graphs. Our pipeline allows for several different transformations

based on either the complete graph or the bulge graph [45] (See Fig 2). The complete graph

represents the secondary structure with all node connections between consecutive nucleotides

or base pairs. The bulge graph is a condensed representation similar to the concept of abstract

RNA shape [46].

In the complete graph (top) nodes are nucleotides and edges between nodes correspond to

either base pairing (bp) or backbone links (bb). In the bulge graph (bottom) the structure is

collapsed into structural elements, where “h” is hairpin loop, “i” is internal loop or bulge and

“s” is stem (double stranded). “t” stands for the 3’ single stranded region.

SARNAclust provides the following options for graph transformations (see S2 Fig):

• Option 1: GraphProt-like consists of the complete graph plus a hypergraph, which is a less

condensed version of the bulge graph.

• Option 2: GraphProt-like where the hypergraph is substituted by the bulge graph.

• Option 3: Bulge graph.

• Option 4: Bulge graph plus corresponding sequence in hairpin loops.

• Option 5: Bulge graph plus corresponding sequence in internal loops and bulges.

• Option 6: Bulge graph plus corresponding sequence in external loops.

• Option 7: Bulge graph plus corresponding sequence in base paired regions.

• Option 8: Bulge graph plus corresponding sequence in hairpin loops, internal loops and

bulges.

• Option 9: Bulge graph plus corresponding sequence in all unpaired regions.

SARNAclust RNA motif identification
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• Option 10: Bulge graph plus sequence everywhere.

• Option 11: Bulge graph plus complete graph where sequence in base paired regions is not

taken into account.

We have provided a range of options because different RNA-binding proteins will vary in

their dependence on different structural features, and in many cases such features may be

known from the domains in the protein. These include options that exhaustively consider

structure but may be more sensitive to noise (e.g. option 1) and those that reduce the set of

considered structural contexts (e.g. option 11). For example, for options 9 or 11 to be suitable,

the key binding element in the RNA should be expected to occur in unpaired regions but

within a precise structural context. Overall, Options 1, 2 and 10 allow arbitrary sequence and

structure motifs, but in decreasing order of resolution. The appropriate choice among these is

an empirical question related to the noisiness of the data, which we investigate below. All other

options consider sequence only within a specified structural context: i.e. internal loops, bulges,

external loops, or double stranded regions. Among these, our prior expectation is that Options

9 and 11 would be the most effective, since they focus on sequence effects in single stranded

regions. In the following section we show the effect of these transformations when applying

our methods to synthetic data for different types of motifs.

Once the graph transformation has been applied, SARNAclust allows the user to apply one

of several clustering algorithms and returns the clusters along with a consensus sequence/

structure for each. The inputs to the clustering module are: 1) the file with the sequence/struc-

tures, 2) EdEN dimension [38], 3) EdEN radius, 4) the clustering method, and 5) the graph

transformation option. To retrieve a motif from a cluster, we align the peaks of each cluster by

both sequence and structure [47] and discard those where the alignment score is 0. Detailed

descriptions of the pipeline, manuals, and source code are available at https://github.com/

idotu/SARNAclust.

Benchmarking on synthetic motif data

To test the effectiveness of SARNAclust, we generated 100 sequences for each of the 5 synthetic

motifs in Table 1. We then combined these 500 sequences with 1000 random sequences to act

as noise and then tested the ability of SARNAclust to sort these into separate clusters. Each

synthetic motif corresponds to a hypothetical RNA motif that would bind a protein binding

domain. The 5 motifs represent: a special structure with no sequence conservation (special_-
structure) or a conserved sequence within a certain structural context in a hairpin loop

(GAGA_in_Hairpin), in a bulge (AUG_in_Bulge), in an external loop (pyrimidine_tract) or in a

double stranded region (GGUCG_in_left_stem). Sequences for each motif were generated

using RNAdualPF [48], which samples from the low energy ensemble of sequences compatible

with the given structure and with the corresponding sequence constraints (see Table 1). The

1000 random sequences were generated uniformly randomly (i.e. sampling each nucleotide

with 0.25 probability) with lengths distributed the same as the lengths of the synthetic motifs.

All motif and random sequences can be found in S1 Data.

Clustering of these 1500 sequences indicated that SARNAclust was able to distinguish mul-

tiple clusters corresponding to the original motif groups. As a clustering method we used

DBSCAN from the sklearn package, surveying over possible values for the threshold parameter

Fig 1. CLIPseq motif finding pipeline. Bam files for sample and control are processed through our peak detection

module. The structure of each peak is calculated using RNAfold and the resulting sequence/structure peaks are

clustered using SARNAclust.

https://doi.org/10.1371/journal.pcbi.1006078.g001

SARNAclust RNA motif identification
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Fig 2. Graph formalisms. Complete graph and bulge graph sequence/structure representations used in SARNAclust. (top) complete graph and (bottom) bulge graph

for example sequence/structure: GGGGAAACCAACCUGU and ((((. . .))..)). . . ..

https://doi.org/10.1371/journal.pcbi.1006078.g002

SARNAclust RNA motif identification
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that specifies the minimal similarity for two data points to be in the same cluster, and with

graph kernel options R = 2 and D = 2. This threshold is a dissimilarity threshold—at a thresh-

old of x, 2 sequence/structures cannot be in the same cluster if their similarity measure is less

than 1-x. Fig 3 shows the different V-measure (a measure of clustering quality, see Methods)

values for each graph transformation and each threshold value. S2 Data shows other measures

of quality of clustering (see Methods) assessed by comparing the true cluster label for each

sequence versus the one yielded by the clustering algorithm.

We observed that SARNAclust was able to recover each category of motif, though optimiza-

tion of the choice of graph transformation enhanced detection of each motif class. As can be

seen, use of each graph transformation yielded the corresponding motif at low to mid thresh-

old values but false positives increased as the threshold parameter increased. For instance,

option 4 finds the GAGA_in_hairpin motif easily at low thresholds. Although option 6 per-

forms well, it benefits from the fact that most motifs do not have external loops and may not

be as general as other options. For most motif instances option 6 is only able to use the bulge

graph features to discriminate motif instances from one another. The GraphProt-like options

(1 and 2) perform well at high threshold values, but cannot successfully cluster at low thresh-

olds. This is due to the excess number of features specified in this graph transformation, mak-

ing it difficult to cluster instances unless they are nearly identical. Option 2 contains fewer

features than option 1 and thus performs better. Options 10 and 11 are simplified GraphProt-

like versions and achieve the best results with v-measure values of over 0.95. Option 9 achieves

high quality values as well, and for a large range of threshold, especially with respect to FMS.

For comparison, we also applied GraphClust to the same set of synthetic motifs. We note

that we did not choose the GraphClust extension RNAscClust here because the folded struc-

tures are pre-determined for these synthetic designed sequences, and therefore the folding

improvements of RNAscClust do not offer any advantages. We used the default GraphClust

parameters except graph kernel R and D, which were set to the values we used in SARNAclust,

and the minimum length of sequence was set so that all the 1500 sequences would be consid-

ered. GraphClust returns by default 5 clusters, which we would expect to correspond to the 5

synthetic motifs. GraphClust returns the seed and extended sequences for each instance, and

we calculated several clustering quality measures for each (Adjusted Rand Index (ARI),

Adjusted Mutual Information (AMI), Homogeneity Score (HS), Completeness Score (CS), V-

measure score (VMS) and Fowlkes-Mallows score (FMS)).

SARNAclust outperformed GraphClust as shown in Table 2. Note that the GraphClust v-

measure values in both scenarios are under 0.1, while SARNAclust with option 11 achieves

better results for almost all thresholds, including >0.95 at threshold 0.5. This indicates that the

Table 1. Synthetic motifs used to test SARNAclust.

Motifs

special_structure NNNNNNNNNNNNNNNNNNNNNNNNNN Sequence

((.((((.. ((. . .))..))..)))) Structure

AUG_in_Bulge NNNNAUGNNNNNNNNNNNNN Sequence

((((. . . (((. . .))))))) Structure

pyrimidine_tract NNNNNNNNNNNCCUCU Sequence

((((. . .)))). . . .. Structure

GAGA_in_Hairpin NNNNNGAGANNNNN Sequence

(((((. . . .))))) Structure

GGUCG_in_left_stem NNGGUCGNNNNNNNNNN Sequence

(((((((. . .))))))) Structure

https://doi.org/10.1371/journal.pcbi.1006078.t001

SARNAclust RNA motif identification
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difference between clustering CLIP peaks and RNAs are substantial enough that the SARNA-

clust provides superior performance over GraphClust. This is likely due to the large combina-

torial complexity of GraphClust’s parameter space.

We also compared whether a classification-based approach to motif detection could iden-

tify the synthetic motifs as well as SARNAclust. To handle multiple motifs, we used classifica-

tion to identify the best motif iteratively, at each step removing the sequences containing the

prior best motif. For this comparison we chose RNAcontext [28], which uses classification to

identify one motif at a time based on sequence and structure. Remarkably, the first iteration of

RNAcontext could not find any of the synthetic motifs (S3 Fig). In fact, the sequence motif (of

length 11) returned has a very low information content of 5 bits (when a completely fixed

Fig 3. SARNAclust benchmarking. V-measure scores at different threshold values for each of the graph transformation options.

https://doi.org/10.1371/journal.pcbi.1006078.g003

Table 2. GraphClust and SARNAclust results on synthetic data.

Type of Cluster ARI AMI HS CS FMS VMS

GraphClust Seed 0.017 0.011 0.012 0.365 0.685 0.024

GraphClust Extended 0.059 0.043 0.045 0.537 0.693 0.083

SARNAclust Option 2 0.64 0.56 0.56 0.82 0.84 0.84

SARNAclust Option 11 0.96 0.94 0.96 0.94 0.95 0.95

https://doi.org/10.1371/journal.pcbi.1006078.t002

SARNAclust RNA motif identification
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sequence of length 11 would have an information content of 22 bits). This is likely because the

RNAcontext approach is not well-suited to the benchmark set as it contains multiple signals

from distinct overrepresented motifs as well as noise. Interference among the motifs appar-

ently causes RNAcontext to be unable to report any single motif with high confidence.

Experimental validation with RNA Bind-N-Seq

As part of our pipeline for identifying binding motifs, we developed a targeted RNA Bind-

N-Seq (RBNS) protocol [49] to experimentally test motif predictions. We first tested this pro-

tocol on Stem Loop Binding Domain Protein (SLBP), which binds a known motif [50] found

in the 3’UTR of histone mRNAs. In the RNA Bind-N-Seq protocol, randomly generated

40-mers are tested for their efficiency in binding a protein. Because any RNA molecule of

length 40 can form over 200 trillion secondary structures, it is not possible to fully sample this

space. Therefore, we performed RBNS measurements of SLBP-RNA binding with several

thousand designed sequences to ascertain the validity of our experimental validation

approach.

To do this, we first used RNAiFold [43] (See Methods) to design four different types of

sequences as illustrated in S1 Table (153, 4106, 4107 and 4106 sequences of each respectively).

These sequences were chosen to test whether binding requires sequence conservation in the

loop region or the stem region of the motif, and also whether relocation of the loop sequence

to a different structural context (i.e. a bulge) could still lead to protein-RNA binding. We then

performed RBNS in duplicate using purified GST-SBP-SLBP (Glutathione-S-transferase Strep-

tavidin-Binding Peptide SLBP) to pull down the designed RNA sequences [49]. As a nonspe-

cific binding control, we also performed RBNS with the same RNA against purified GST-SBP.

Each protein was expressed in E. coli and affinity purified (S4 Fig), and pulled down RNA was

reverse transcribed with a primer containing a 10 nt random sequence to enable collapsing of

PCR duplicates during data analysis. The resulting cDNA was then PCR amplified to attach

Illumina sequencing primers and indices.

Only the consensus motif [50] exhibited a clear shift from the control, indicating that the

motif definition is specific and that all the variant versions of the motif have decreased binding.

Fig 4A shows the difference between GST-SBP RBNS and GST-SBP-SLBP RBNS, quantified

by the shift in percentage of reads of each type. Only the consensus motif has a significant

enrichment with respect to the control (t-test p-val = 0.00147). To assess p-values of individual

sequences, we used DEseq [51] to compare the read counts (S3 Data) of sequences in the pool

to the controls. This analysis showed that only sequences from the consensus motif bind to

SLBP significantly. Moreover, all but 7 of these consensus sequences are significantly overrep-

resented in the SLBP bound pool (Adjusted p-val > 0.01). Furthermore, S5 Fig shows the

sequence logos for all the consensus sequences that bind or do not bind significantly, respec-

tively. The logos indicate that long stretches of U’s near the apical region of the hairpin loop

compromise binding affinity, which is to be expected since they are energetically unfavorable

and therefore prone to render the hairpin unstable.

To further validate these results and the validity of our RBNS-like experimental protocol,

we performed several gel shift experiments (Fig 4B). We incubated 6 RNA probes selected

from the RBNS data with purified GST-SBP-SLBP. S3 Data shows the 6 selected sequences

highlighted in red. These include 2 from the consensus binding group, one with strong bind-

ing affinity in the RBNS assay (consensus A) and one with no significant binding affinity (con-

sensus B). There are also 4 extra sequences from the remaining types where the RBNS binding

signal was not significant. As expected, only the consensus A sequence shows binding to SLBP,

confirming our conclusions from the p-value analysis and validating the RBNS protocol.
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SARNAclust predicts novel motifs in ENCODE eCLIP data

Given these validations of the computational and experimental pipeline, we then applied SAR-

NAclust to predict motifs from real immunoprecipitation data. First, we verified that SARNA-

clust could find the motif for SLBP. In order to do so, we downloaded SLBP eCLIP [52] data

from the ENCODE project (www.encodeproject.org). After applying our peak discovery pipe-

line we were left with only 49 peaks, most of them (i.e. 35) found indeed in histone genes.

After calculating the secondary structure of each peak using RNAfold, we ran SARNAclust.

Fig 5 shows the motif found for options 1, 2 and 10 at threshold 0.6, as well as option 7 at

threshold 0.5. These are the most suited options since they account for sequence in double

stranded regions, which is important for SLBP. Options 7 and 10 yield less specific clustering,

meaning that they need higher thresholds (i.e. the clusters contain more sequences) to find the

motif, consistent with their being coarser representations of the sequence/structure. As can be

seen, the motif found is very similar to the canonical motif [50]. No other clusters were found,

showing SARNAclust is effective even if only one motif exists.

We then used SARNAclust to predict motifs for several RBPs from the ENCODE project,

which is generating RNA crosslinking immunoprecipitation assays that are expected to even-

tually cover>200 known human RNA Binding Proteins using eCLIP [52]. We downloaded a

set of 20 RBPs from ENCODE eCLIP experiments at www.encodeproject.org, each with 2 rep-

licates and a control. We selected these RBPs due to the fact that they contain either double

stranded RNA binding domains or unknown RNA binding domains. We discarded all heli-

cases since they are known to promiscuously bind to double-stranded RNAs with no clear

motif. We identified novel motifs with SARNAclust using the same graph kernel parameters as

in the synthetic data section (R = 2,D = 2) and the same DBSCAN algorithm for clustering.

We used options 9,10, 11 for their overall performance on the synthetic data, along with option

2 for its similarity to GraphClust, at the best performing thresholds (0.3–0.55).

Table 3 shows the list of RBPs chosen for this study, along with their RNA binding domains

and the number of peaks found by our peak discovery pipeline. Note that none of these RBPs

had previously known motifs in the two most relevant motif databases: RBPDB [6] and

ATtRACT [53]; and only one RBP (EIF4G) has a motif described in the two recent publica-

tions on ENCODE eCLIP [54] and RBNS [55].

We found motifs for several proteins, with results dependent on the choice of options (see

S2 Table). However, analysis of the data under the GraphProt algorithm (equivalent to SAR-

NAclust with option 2) was unable to find any clusters for all but 2 RBPs. Similarly, RNAcon-

text yielded motif predictions with low Area Under the Receiver Operating Curve values,

ranging from 0.111 (NKRF) to 0.546 (AKAP8L), and most motifs had low sequence complex-

ity and information content. In contrast, SARNAclust with options 9, 10 and 11 was able to

find clusters almost for all RBPs (all of them for option 9, all but 1 for option 11 and all but 5

for option 10). We focused on clusters with sequence conservation signal in addition to struc-

tural information, as those without sequence information would be more difficult to interpret

and experimentally validate. This is also why we removed helicases, as we would expect those

to lack sequence conservation. Nevertheless, we were able to find several interesting cases, as

described below.

Fig 4. RBNS-like validation using known SLBP motif. a) Percentage shift in the sequences of each group of RNAs for SLBP RNA-bind-n-

seq. GST-SBP samples are used as a non-specific binding control b) Gel shift results for select probes tested in the RBNS when incubated

with purified GST-SBP-SLBP. The Consensus A (CA) probe shows more binding relative to Consensus B (CB), Consensus Loop Only A

(CLA), Consensus Loop Only B (CLB), Loop In Bulge (LIB) and Loop Stem Only (LST). Sequences for each probe and their RBNS results

can be found in S4 Data. � indicates p< 0.05, �� indicates p< 0.005 assessed by t-test.

https://doi.org/10.1371/journal.pcbi.1006078.g004
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SARNAclust results were consistent with k-mer analysis but provided additional structural

context. K-mer overrepresentation results [3] for k = 4,5,6,7,8,9 on these RBPs are shown in S3

Table. Most of the k-mers found were either GU repeats or a stretch of guanines GGGG. SAR-

NAclust was able to find these GU repeat motifs as well simultaneously with structure. How-

ever, SARNAclust did not reveal other candidate motifs for those proteins, suggesting that

those RBPs with repetitive motifs bind to double stranded structures indiscriminately.

Single stranded motifs. Although our main interest was to find motifs with secondary

structure, we did find several single-stranded motifs. For instance, both AGGF1 and AKAP8L

present a motif consisting of a series of CA repeats that are single-stranded (found with both

options 9 and 10). Moreover, for AGGF1 we found a second motif consisting of a CCAU

repeat that was also single-stranded. Another set of proteins present motifs containing single-

stranded GU repeats. These are DKC1 (for which we also find a cluster where the GU repeat is

double-stranded), EFTUD2 and EIF4G. For EIF4G, this GU repeat motif is similar to that

reported in both ENCODE analysis of eCLIP [54] and RBNS [55]. However, we also found

another motif with greater complexity for EIF4G, namely a single-stranded bipartite motif:

GUGUGU-GAGAGA.

A novel ILF3 motif. Most interestingly we found several motifs for ILF3, including one

with both secondary structure and sequence information. These motifs are shown in Fig 6.

Note that the motif in Fig 6A is very similar to the one found for the splicing regulator

HNRNPC (See Fig 2F in [56]). Therefore, we downloaded the HNRNPC eCLIP data from

ENCODE and ran it through our peak discovery pipeline and applied SARNAclust. Indeed,

we found the same motif as the one in Fig 6A. We did not find the slightly different motif

depicted in Fig 6B, indicating that the 6a version is the common motif.

Validation of a novel motif for ILF3

Because of the strong predictive motif for ILF3 from SARNAclust, as evidenced by its clusters

and signal for double-strandedness, we next used the RBNS approach to validate these motifs.

Fig 5. SARNAclust motif discovered for SLBP. Consensus sequence/structure motif found for SLBP by SARNAclust

with graph transformation options 7 and 10.

https://doi.org/10.1371/journal.pcbi.1006078.g005

Table 3. ENCODE RBPs analyzed by SARNAclust.

RBP Domains #Peaks

AGGF1 G-patch 2207

AKAP8L C2H2 (2) 2307

DGCR8 DRBM (2) 1929

DKC1 PUA 1573

DROSHA DRBM 1473

EFTUD2 Tr-type G 2557

EIF3D RNA-gate 12159

EIF4G2 MIF4G 6415

FAM120A RNA-binding 27826

FASTKD2 RAP 380

ILF3 DRBM (2), DZF 3410

NKRF R3H 10681

SMNDC1 Tudor 258

TBRG4 RAP 196

https://doi.org/10.1371/journal.pcbi.1006078.t003
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ILF3 is known to be involved in many processes such as transcription, translation, regulation

of cell cycle or viral replication [57]. However splicing has only recently been reported as a pos-

sible function [58], and confirmation of this HNRNPC-like motif would shed light on a poten-

tially novel function. We therefore used RBNS to test the binding of the predicted motifs with

ILF3 and whether it requires a specific RNA structure. Using RNAiFold we designed

sequences for 4 different perturbations of the motif as shown in S4 Table (19, 2680, 2680, and

2680 sequences of each motif class respectively). For each motif class, we attempted to generate

a few thousand sequences. However, only 19 designed sequences were obtained for the

UUUUUGAGA-unpaired motif class due to the fact that unpaired structures tend to have

higher free energies than paired structures (see Methods). Similarly as for SLBP, we performed

RBNS with purified GST-SBP-ILF3 using an RNA pool based on the motifs in S4 Table.

Fig 7 shows the shift in percentage of reads of each type and its difference between

GST-SBP-1, GST-SBP-2 non-specific binding controls and ILF3-1, ILF3-2 samples. Only the

motif UUUUUGAGA-paired exhibited a significant positive shift from the control (p-

val<0.005 using the t-test), supporting the novel motif. We also used DEseq to analyze differ-

ential representation of sequences in the ILF3 bound and unbound pools (S4 Data). Only

sequences from the UUUUUGAGA-paired motif showed significant binding to ILF3, con-

firming and specifying the computationally discovered motif. 1551 out of 2680 sequences

showed increased binding (T-test, p-adj<0.05), while only 6 sequences showed decreased

binding. These targeted RBNS results suggest that among the motifs tested, that the UUUUU-

GAGA-paired shows the strongest binding. In comparison, we observed no significant enrich-

ment or depletion in binding from any of the 19 sequences representing the UUUUUGAGA-

unpaired motif. The paired and unpaired sets of sequences each spanned a range of base com-

positions. The only systematic difference in the two sets was that all of the unpaired motif

sequences contained a poly-A sequence that bound to the UUUUU region while preventing

pairing of the GAGA region. This is likely a structural constraint, though we cannot rule out

that the polyA sequence could also have a sequence-dependent effect on binding. Because the

sequences from all motif groups were incubated with the protein at the same time, we note

that the lack of enrichment of other motifs is a comparative effect impacted by the stronger

Fig 6. SARNAclust motifs for ILF3. SARNAclust finds 4 different clusters: a) UUUUUGAGA single-stranded motif;

b) UUUUUGAGA where GAGA belongs to a stem region; c) GU repeats and d) CU rich region.

https://doi.org/10.1371/journal.pcbi.1006078.g006
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binding of UUUUUGAGA-paired motif sequences. Another factor is that RNA Bind-n-Seq

does not capture indirect binding interactions mediated through multiprotein complexes,

which may be relevant for some of the other motifs. A special case is the GU repeat motif pre-

dicted by SARNAclust for ILF3 (GU-repeats motif in S2 Table), which did not show enriched

binding. GU-rich motifs were predicted for many other ENCODE RBPs as well ([54]and S3

Table), and we speculate that the presence of such sequences in CLIP data may be due to

experimental noise.

These results indicate that ILF3 binds to a UUUUUGAGA motif with most nucleotides in

double-stranded regions. They also suggest a relationship between ILF3 and HNRNPC, which

has been reported to have a similar motif, though that motif was reported to be single stranded.

To explore this further, we analyzed the overlap of ILF3 and HNRNPC peaks in ENCODE

eCLIP data. Overall, ILF3 has 822 peaks that fall in anti-sense Alus. 322 of these peaks are

shared with HNRNPC peaks, and 146 of those (45%) contain the UUUUUGAGA sequence.

Conversely, ILF3 has 285 peaks in anti-sense Alus covering a UUUUUGAGA sequence, and

146 of such peaks (51%) are shared with HNRNPC. Thus from both perspectives a substantial

fraction of sites overlap between ILF3 peaks, HNRNPC peaks, and UUUUUGAGA sequences

Fig 7. RBNS-like for ILF3 motifs. Percentage shift in the sequences of each cluster of RNAs for ILF3 RNA-bind-n-seq. GST-SBP samples are used as a

non-specific binding control. � indicates p< 0.05, �� indicates p< 0.005 assessed by T-test.

https://doi.org/10.1371/journal.pcbi.1006078.g007
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within anti-sense Alus. Our motif analysis predicts 67 of the 146 common sites (46%) to have

the paired version of the UUUUUGAGA motif, suggesting there may be some flexibility in

RNA structure at the overlapping sites.

Discussion

SARNAclust is a novel computational method that can effectively process and analyze data

from CLIP experiments in order to predict RNA motifs likely to bind individual proteins. A

key novelty of SARNAclust is that it can assess RNA binding motifs at the level of the complete

RNA structure, rather than only taking into account abstractions of structural context. The

SARNAclust approach of clustering rather than classifying distinguishes it from prior meth-

ods, allowing it to identify motifs even without training data. This is an important aspect for

CLIP-seq, for which the specificity of experimental measurements is not well understood due

to diverse effects such as multiple binding modalities and sources of noise.

Application of SARNAclust and the new RBNS validation approach allowed us to experi-

mentally verify ILF3 binding to a newly predicted UUUUUGAGA motif. The signal for this

was distinct from repetitive GU or CU motifs, supporting the idea that those repetitive

sequences are not true binding sequences. More broadly, SARNAclust allowed us to investi-

gate the relative importance of structure, which has been challenging for RNA-protein interac-

tions, and we found that structure significantly affected the RBNS results for both SLBP and

ILF3. Structural changes to each of several components of the SLBP motif reduced binding,

and the new motif for ILF3 exhibited a bias for double-strandedness.

Although identification of RBPs that bind to multiple motifs will require further investiga-

tion, the multi-domain structure of many RBPs suggest this is a likely possibility. The combi-

nation of SARNAclust and our target RBNS validation already allows us to separate multiple

distinct signals from noise, making it suited to this ongoing challenge. In contrast, other meth-

ods have more difficulty in resolving multiple signals simultaneously. In addition to our results

on synthetic motifs, we found that when we selected 1000 ILF3 peaks at random and inputted

them to RNAcontext, we found no similar motif to the ones output by SARNAclust (S6 Fig).

The similarity of the new ILF3 motif to that for HNRNPC is intriguing, as it was shown in

[56] that HNRNPC competes with another protein U2AF2 for binding of 3’ splice sites to regu-

late the inclusion/exclusion of exons. They concluded that HNRNPC prevents inclusion of

cryptic exons while U2AF2 promotes it, with RBP binding often occurring in antisense Alu

elements. Based on this competition, we would expect U2AF2 to have a similar binding site to

HNRNPC. However, the predicted motif for HNRNPC is much more similar to that for ILF3

than it is to the predicted U2AF2motif (Table 3). We speculate that ILF3 might compete with

either HNRNPC or U2AF2 for binding of similar regions.

In this paper we have introduced a new pipeline with a powerful clustering algorithm SAR-

NAclust for analyzing CLIP data in order to cluster CLIP peaks into different binding motifs.

We have verified the effectiveness of SARNAclust on synthetic data and used RNA Bind-n-Seq

to experimentally validate predictions for new and known motif predictions from ENCODE

data. These studies included surveying over different biophysical models and clustering

thresholds to identify those likely to work best for real datasets (i.e. options 9,10, 11 at cluster-

ing thresholds 0.3–0.55). We have also shown the utility of our RBNS approach by validating

its results using gel shift experiments. Still we are we are cognizant of the fact that different

RBPs will vary in binding affinity and modality, particularly those with different types of RNA

recognition motifs, and further studies will be needed to confirm the generality of these meth-

ods for all RBPs. In the future and as more eCLIP data sets for double-stranded binding RBPs

become available, we expect SARNAclust will be a valuable tool to discover new motifs, to
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probe the combinatorial interactions of RNA-binding proteins, and to elucidate their func-

tional importance.

Methods

ENCODE data

ENCODE data (www.encodeproject.org) correspond to a set of CLIP experiments described

as enhanced CLIP (eCLIP), which modifies the iCLIP method to include improvements in

library preparation of RNA fragments. See [52] for details. All data were downloaded through

the ENCODE Project website. For proteins with more than one experimental cell type, we

used the data from the K562 female cell line.

Computational pipeline

Bam to peaks file processing. We calculated the set of clusters or peaks for each RBP by

running pyicoclip on the ENCODE bam files (2 replicates each). The software pyicoclip is part

of the pyicoteo software for analysis of high-throughput sequencing data [59] (available at

https://bitbucket.org/regulatorygenomicsupf/pyicoteo). Pyicoclip implements the modified

False Discovery Rate approach proposed in [3] to determine significant clusters in a list of

genomic regions. Pyicoclip implementation, together with the pyicoteo software, offers a flexi-

ble and effective framework for the processing and analysis of different types of CLIP-Seq data,

with or without associated controls. We chose pyicoteo for its speed and because its modular

architecture allowed us to adapt the CLIP-Seq analyses for data standardization. In order to

generate a final set of peaks for each RBP, we used peaks that overlapped both replicates and

subtracted peaks overlapping with the control. We chose this approach rather than using

enrichment thresholds in order to minimize noise from any systematic measurement biases.

For each peak we tracked the gene it overlapped, the type of region within the gene, and the

genomic sequence.

Structure prediction. All structures are predicted using RNAfold from the Vienna Pack-

age on the exact binding region without extending it. We chose this after considering an alter-

native approach with more flexibility in handling edge effects. The other approach would

calculate base pairing probabilities of the binding region with 100nt (an adjustable parameter)

extended on each end, followed by a form of Nussinov folding. However, we found that such

an approach led to comparable results as when RNAfold was simply applied to the binding

region alone.

Clustering algorithm. The clustering algorithm is the main component in our pipeline.

Given a set of RNA sequences along with their predicted secondary structures, it identifies

clusters of similar RNAs by encoding both sequence and structure as a graph, and using the

EdEN kernel similarly as in GraphClust. The pipeline accepts several parameters to control

both the graph transformation and the clustering. It also allows for the use of only sequence

information in a sliding window fashion. The clustering algorithms supported are: K-means,

Mean Shift, DB-Scan, Affinity Propagation and Spectral Clustering from sklearn package

(http://scikit-learn.org/stable) and Density Clustering [60] in an in-house implementation.

Details are in the full implementation available at the Github site. For the clustering of the syn-

thetic motif data we used the EdEN graph kernel with DB-SCAN, surveying over possible val-

ues for the DB-Scan parameter threshold (http://scikit-learn.org/stable/modules/generated/

sklearn.cluster.DBSCAN.html), which specifies the minimal similarity for two data points to

be in the same cluster. Other parameter choices were radius = 2 and distance = 2 with min_-
samples = 10 (see [38]).
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For the ENCODE predictions, to balance memory constraints we limited peaks to those with

length between 10 and 80 nucleotides, and we broke down separate stem loops into different

derived peaks. Moreover, only 1400 sequences could only be considered at each time, so we

extended SARNAclust to deal with multiple iterations and merge similar clusters at the end.

SARNAclust runtime. In our benchmarking, using DBSCAN for all RBPs with more

than 1400 peaks, SARNAclust takes an average of 6 minutes per iteration. Usage times will

vary somewhat for different systems, since SARNAclust uses disparate external tools, such as

EdEN for the graph transformation, sklearn for the clustering and locarna for the alignment of

the clusters. Inside SARNAclust we limit the number of peaks to be analyzed per iteration

(1400) due to memory constraints. Therefore, only RBPs with very few peaks end up taking

less time per iteration. Runtimes are also impacted by the length of the peaks, the complexity

of the predicted structure, the choice of transformation and EdEN parameters, and the choice

of clustering algorithm.

Clustering quality measures. The Adjusted Rand Index (ARI) (http://scikit-learn.org/

stable/modules/clustering.html#clustering-performance-evaluation) measures the similarity of

the two assignments ignoring permutations versus random expectations; Adjusted Mutual

Information (AMI) measures the agreement of the two assignments normalized against ran-

dom expectations; The Homogeneity Score (HS) quantifies the fact that each cluster should

contain only members of a single class, while the Completeness Score (CS) is based on whether

all members of a given class are assigned to the same cluster; V-measure score (VMS) is the

harmonic mean between HS and CS. The Fowlkes-Mallows score (FMS) computes the accu-

racy of overlap between the found clusters and the original benchmarks, with higher FM values

indicating greater overlap.

RNAiFold to generate candidates. In order to generate candidate RNA sequences for the

RBNS experimental validation we used the RNA inverse folding software RNAiFold [43]. Given

a sequence/structure RNA motif, we attempted to generate thousands of sequences that fold

into the given secondary structure and maintain the given sequence constraints. Sequences gen-

erated by RNAiFold were used in the design of the RBNS pool. Moreover, we used RNAiFold to

generate sequences corresponding to perturbations of the SLBP and ILF3 motifs. This was done

by altering constraints and re-running RNAiFold, e.g. for SLBP we moved a sequence motif

from a stem loop to a bulge to generate a pool of sequences that would test whether location of

the sequence motif within the structure affected binding. One constraint to this design process

was that not all motifs were equally easy to design given their sequence/structure requirements

and the need to use specific primers. Sequences for the ILF3 UUUUUGAGA-unpaired motif

were particularly difficult to design because structures with base pairing tend to have lower

energy than unpaired structures, so we were only able to design 19 sequences for that motif.

Experimental pipeline

In vitro protein expression and purification. A previously generated pGEX6P1-based

expression vector containing streptavidin binding peptide (SBP)-tagged ILF3 was used for

ILF3 binding experiments. For SLBP experiments, the protein coding sequence for SLBP was

codon optimized for E. coli expression using the IDT Codon Optimization Tool and Gibson

assembled into pGEX6P1-SBP, which enhanced solubility compared to the human sequence.

Each plasmid was transformed into Rosetta(DE3) pLysS E. coli. Protein expression was

induced with 1mM isopropylthiogalactoside (IPTG) and grown for 4 hours at 16˚C. Soluble

protein was extracted from the bacteria using the Qproteome Bacterial Protein Prep Kit (QIA-

GEN). The proteins were then affinity purified using Glutathione Sepharose 4B and eluted in a

buffer containing 0.2% Triton X-100 and concentrated using Corning Spin-X UF with a 10
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kDa molecular weight cutoff (MWCO). Proteins were then equilibrated into RBNS binding

buffer (25mM Tris pH 7.5, 150mM KCl, 0.1% Tween, 0.5 mg/mL BSA, 3mM MgCl2, 1mM

DTT) using Zeba desalting columns 7KDa MWCO. Purified proteins were then frozen at

-80˚C for short-term storage. Protein concentrations were obtained using Pierce BCA Protein

Assay Kit. Protein purity was assessed using SDS-PAGE.

RNA pool generation for RNA Bind-N-Seq. Oligonucleotide sequences were ordered

from CustomArray Inc. in a 12,472 oligo pool. PCR was used to amplify the ILF3 pool (5’-CC

CATAATACTTGTCCCG-3’ and 5’-TAATACGACTCACTATAGGG-3’) and the SLBP pool

(5’-CTTGACTGCGAGCTGTTGA-3’ and 5’-TAATACGACTCACTATAGGTCACGTC-3’).

In vitro transcription of the oligo pool was performed using an AmpliScribe T7 High Yield

Transcription Kit. The RNA was purified by lithium chloride precipitation and resuspended in

RBNS binding buffer.

RNA Bind-N-Seq. RBNS was performed as described in [49]. 27 nM of each protein was

incubated with 750 pM of RNA. RNA was reverse transcribed using SuperScript III Reverse

Transcriptase and a primer containing a 10 nucleotide barcode for SLBP (5’- GTGACTGGAG

TTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNCTTGACTGCGTGCTGTTGA -3’)

and ILF3 (5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNCCC

ATAATACTTGTCCCG-3’). PCR was performed to amplify cDNA derived from the RBNS

RNAs and attach Illumina flow cell binding sequences and indices (5’- AATGATACGGCGAC

CACCGAGATCTACAC-i5_index-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’

and 5’- CAAGCAGAAGACGGCATACGAGAT-i7_index-GTGACTGGAGTTCAGACGTG

TGCTCTTCCGATCT-3’). DNA was sequenced on a MiSeq using a 200 cycle paired end kit.

RBNS data analysis. FLASH was used to join paired end reads that intersected, which is

expected for each of the sequences tested [61]. Reads that contained the anticipated primer

sequences were aligned using HISAT2 [62]. Reads aligning to the same sequence and contain-

ing the same 10 nucleotide random sequence were collapsed into one read using a custom

python script. The resulting counts were input to DEseq for analysis [51].

Gel shift experiments

Probes were in vitro transcribed and biotinylated using the Pierce RNA 3’ end biotinylation

kit. 1 nM of biotinylated probe was incubated with or without 320 nM GST-SBP-SLBP in

binding buffer consisting of 10 mM HEPES (pH 7.3), 20 mM KCl, 1 mM MgCl2, 20 mM DTT,

5% glycerol. The incubation period was 30 minutes, followed by gel electrophoresis on a native

TBE 4% polyacrylamide gel and transfer to a nylon membrane, all at 4˚C.

Membranes were processed using the ThermoFisher Scientific Chemiluminescent Nucleic

Acid Detection Module Kit. Images were captured on a Kodak ImageStation 4000MM Pro.

Supporting information

S1 Fig. Pipeline for CLIP peak detection. Given bam files for samples and control, pyicoclip

is used to detect significant peaks in each file. Afterwards, we filter those peaks that do not

appear in all the samples and remove those that can be found in the control. The resulting

peaks are annotated and the sequences for them (+/- 100 flanking nucleotides) are retrieved.

(DOCX)

S2 Fig. Graphical representation of all the graph transformation options. SF2.k corre-

sponds to graph transformation option k as explained in the main text. Examples are shown

for sequence/structure:

GGGGAAACCAACCUGU
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assays.
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S5 Fig. Logo for SLBP consensus motif sequences that a) show enriched binding and b) do

not show enriched binding.
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S2 Table. Comparison of RBP motifs found per graph transformation option and
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S3 Table. Best k-mer found for all RBPs considered. For each RBP, the z-score is given for
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S1 Data. All motif and random sequences generated for benchmarking SARNAclust.
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S2 Data. Clustering quality measures for each (Adjusted Rand Index (ARI), Adjusted

Mutual Information (AMI), Homogeneity Score (HS), Completeness Score (CS), V-mea-

sure score (VMS) and Fowlkes-Mallows score (FMS)) for all thresholds and options as

described in the benchmarking section.
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