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RESEARCH ARTICLE Open Access

The innate immune response to ischemic
injury: a multiscale modeling perspective
Elena Dimitrova1, Leslie A. Caromile4, Reinhard Laubenbacher2,3* and Linda H. Shapiro4*

Abstract

Background: Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded
Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous
ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these
mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases.
The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents
can be designed that antagonize their harmful effects while preserving host defense functions. This requires an
understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as
technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific
pathway components, predict potential outcomes and identify safe and effective therapeutic targets.

Results: We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures
the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential
pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific
regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic
interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation,
macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by
assessing its ability to reproduce published data not used in its construction.

Conclusions: These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair
to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating
ischemic/inflammatory injury.

Keywords: Ischemic injury, Boolean network, Multiscale dynamic model, TLR4, Inflammation, Macrophages

Background
Regardless of the initial insult, optimal healing of
damaged tissue relies on the precise balance of pro-
inflammatory and pro-healing processes of innate in-
flammation to the extent that variations in either arm
can exacerbate many diseases from obesity to auto-
immunity. Consequently, focusing on the mechanisms
and molecules responsible for maintaining this delicate
balance may identify novel regulatory nodes that are
fundamental to the overall orchestration of tissue repair.

Dissection of the steps by which these pivotal regulatory
proteins operate will increase our understanding of these
interdependent responses and allow the development of
more specific, effective and clinically translatable thera-
peutic targets to enhance the healing process and im-
prove clinical outcomes.
Tissue damage resulting from ischemic injury invariably

leads to cell death and activates the same innate inflam-
matory responses triggered by pathogenic organisms. The
early steps of these responses proceed via a combination
of shared and tissue-specific features involving numerous
cytokines, signaling cascades and itineraries that drive the
recruitment, differentiation and expansion of macro-
phages. In general, subpopulations of myeloid cells of
distinct origins; resident macrophages, neutrophils, mono-
cytes and their progeny M1 and M2 macrophages,
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orchestrate the interrelated phases of inflammation, prolif-
eration, and remodeling [1–4]. Resting tissues harbor spe-
cific and diverse populations of ‘resident’ macrophages,
thought to be seeded during embryogenesis, that maintain
tissue homeostasis [5, 6]. In response to injury, resident
macrophages produce pro-inflammatory molecules that
initially attract the short-lived neutrophil population from
the circulation into the wound, which are critical for initial
removal of debris in preparation for repair [7–9]. Subse-
quently, a distinct lineage of circulating innate immune
cells, the monocytes, is recruited from the blood stream to
the injured tissue which then sequentially differentiate
into distinct macrophage subsets (M1 and M2 macro-
phages, see below) [10, 11], Fig. 1, potentially in response
to inflammatory resolution pathways [12], molecules se-
creted by cells at the site [13] or other as yet undetermined
changes in the physical, cellular or molecular composition
of the healing tissue [14, 15]. The monocyte-derived M1
macrophages differentiate into M2 macrophages. These
subsets have opposing activities and participate in the
healing process in distinct phases; M1 [M(IFNγ) or clas-
sical macrophages] participate in promoting the local in-
flammatory response and clearing dead cells and as the

microenvironmental conditions change as inflammation
progresses, can differentiate/polarize into M2 macrophages
[M(IL-4) or alternative macrophages] that suppress inflam-
mation and contribute to tissue regeneration [16]. The
critical role of the monocyte-derived macrophages in post-
ischemic healing is illustrated by studies in which systemic
depletion of macrophages showed markedly impaired
wound healing and perfusion recovery [17, 18].
Macrophages and other cells constitutively display

members of germline-encoded Pattern Recognition Re-
ceptors (PRRs) that recognize molecular signatures
shared by invading pathogens (Pathogen-associated mo-
lecular patterns, PAMPs) and endogenous ligands re-
leased from damaged cells (Danger-associated molecular
patterns, DAMPs). Upon recognition of these distress
signals, PRRs rapidly activate their associated cells to
eradicate the infection, remove cell debris and heal the
damage. Members of the Toll-like receptor (TLR) family
are predominant PRRs expressed on the cell-surface or
in endosomes that stimulate the precise signal transduc-
tion and gene expression programs that guide the innate
immune response in response to PAMPs and DAMPs.
Ten human and twelve murine TLRs have been

Fig. 1 Scheme of the innate immune response to injury. Injury triggers the production of DAMPs in the tissue that activate intracellular responses
via TLR4, initially in the resident macrophages and later from recruited macrophages (large gray oval). TLR4 activation stimulates two intracellular
pathways, the MyD88-dependent (blue rectangles), resulting in production and secretion of the chemoattractant CCL2 which serves to recruit
additional immune cells from the circulation (right). In response to CCL2, M1 monocytes leave the circulation and enter the tissue where they
differentiate into pro-inflammatory M1 macrophages that clear toxic debris and become activated to produce more CCL2, perpetuating the
inflammatory response. TLR4 can also signal via a MyD88-independent endocytic pathway (center left) that is mediated by CD13, TRIF
and IRF3. Increased activation of this pathway can lead to production of cell-damaging ROS and increased DAMPs. Finally, M1 macrophages convert
into pro-healing M2 macrophages which dampen the pro-inflammatory response by blocking production of CCL2 and DAMPs, leading to resolution
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identified and are differentially activated by different li-
gands. For example, TLR3 detects double-stranded viral
RNA, while TLR4 specifically recognizes the PAMP lipo-
polysaccharide displayed by gram-negative bacteria. Im-
portantly, TLR4 also recognizes a number of DAMPs
released by damaged cells and thus is critical to proper
healing following ischemic injury, such as myocardial in-
farction, peripheral artery occlusion and stroke [19–24].
Dysregulation of these pathways triggers what are often
extreme inflammatory responses resulting in further tis-
sue damage, prolonging and exacerbating the disease
[25–27]. An intricate system of control points exists to
ensure the proper response consisting of positive and
negative regulators, feedback loops and cross-talk among
signaling pathways.
Predicting and accurately testing the outcomes of tar-

geting one or a combination of these nodes by biological
methods is challenging, prompting us to create a math-
ematical model that captures the mechanisms involved
at the tissue as well as the intracellular scale. This model
then allows the simulation of interventions at either
scale. As a modeling framework we have chosen a time-
and state-discrete model that captures the regulatory
logic of the different mechanisms and provides a qualita-
tive description of model dynamics without the need for
quantitative kinetic and other parameters. Such models
have been used extensively and there is evidence that
they provide an excellent framework for a variety of ap-
plications [28–33]. Should it become necessary later to
make quantitative assessments of processes, this discrete
model can be converted into a continuous model with
the same wiring diagram through the addition of
parameters.
In recent years, a systems biology approach using

mathematical modeling has been applied successfully to
the study of events related to vascular injury resulting
from myocardial infarction, peripheral artery occlusion
and stroke. Several modeling studies have focused on
the molecular level, in particular the response of growth
factors, such as VEGF [34–36], the effect of ischemia/re-
perfusion-induced phosphometabolite availability and
pH on ion channels and exchangers in cardiomyocytes
[37] and mitigation of the negative effects of reperfusion
by nitric oxide [38, 39]. Other studies have focused on
tissue-level phenomena such as hyperplasia formation
[40], reperfusion-induced vasogenic edema and cerebral
microvessel collapse [41], effects of tissue oxygenation
[42–44], or the mechanics of platelet deposition [45, 46].
The effect of postconditioning (intermittent periods of
ischemia applied during reperfusion) on the endothelial
layer of blood vessels was modeled in [47], and the in-
nate and adaptive immune response to ischemic injury
in the context of organ transplant surgery is presented
in [48]. To our knowledge, no general mathematical

models encompassing both the tissue and intracellular
scales have been proposed for the innate immune re-
sponse to ischemic injury, making the model presented
here novel.

Methods
Overview of the model
We created a dynamic mathematical model based on
numerous published biological studies of TLR4 signaling
in response to injury or infection in the tissue (reviewed
in [23, 24]) as well as our own studies of the role of
CD13 in this response [49]. To capture the nature of the
inflammatory response, we designed the model to initi-
ate in the tissue (tissue scale) and release molecules
which in turn trigger intracellular signaling mechanisms
(intracellular scale), transcription and production of me-
diators that are secreted into the tissue to participate in
a feedback loop to sustain further inflammatory cell in-
filtration and wound healing. In the wiring diagram of
the model (Fig. 2) injury is represented by the orange tri-
angular node, which has two possible states, 0 and 1, in-
dicating that injury is absent, respectively present. The
production of DAMPs (purple circular node) can assume
three possible states, representing ‘low, medium, high’,
on the one hand, which impacts the intracellular scale
by activation of signal transduction in resident macro-
phages (gray oval) and which, on the other hand, pro-
duces chemoattractants (CCL2) that recruit monocytes
from the circulation which differentiate into pro-
inflammatory (M1) and then into healing (M2) macro-
phages once in the tissue. Each resident or recruited
macrophage responds to the presence of DAMPS by ac-
tivating two pathways resulting in the production and
export of reactive oxygen species (ROS) and the inflam-
matory cytokine CCL2 (depicted as rectangular blue
nodes in the model). ROS is considered as either present
or absent, whereas CCL2 has three possible states, repre-
senting ‘low, intermediate, high.’ The M1 node in the
tissue scale (black circular) can take on three states: with
0 representing the absence of macrophage activation; 1
representing the standard inflammatory response, ini-
tially as activation of resident macrophages or recruited
macrophages as the response progresses; and 2 correspond-
ing to the exaggerated presence of pro-inflammatory M1
macrophages in exacerbated injury. As the healing process
progresses, M1 macrophages differentiate into pro-healing
M2 macrophages (purple circular M2 node) and, among
other effects, influence the intracellular pathways in the
macrophages to diminish the pro-inflammatory response.
While hundreds of intracellular and extracellular

molecules have been connected to the TLR4 pathway,
we have limited our nodes primarily to those with
published knockout studies with the understanding
that we will eventually expand upon this basic model.
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Finally, we have made numerous assumptions to simplify
the model. Specifically, we have assumed that the degree
of injury is such that there is a likely probability of reso-
lution and that injury induces uniform responses at all
levels regardless of individual attributes of the tissue, cell
or molecules. Similarly, we have assumed that the re-
sponse to injury is singularly mediated by the TLR4 path-
way and that tissue resident macrophages only participate
in the initiation of the response but not at later steps. Im-
portantly, we have solely concentrated on the monocyte/
macrophage component of inflammation and ignored the
critical contribution of neutrophils to the response [7–9].
We have narrowly restricted our nodes and response out-
comes within this pathway to a defined set of effectors,
omitting numerous others that have been implicated in
this response. The most conspicuous example of this is
TLR4 itself: while we are modeling the TLR4-mediated
response to injury, TLR4 is not a node in the model as it
simply relays external signals to the cell interior. These as-
sumptions and omissions can be modified and elaborated
upon as the model evolves.

Biological mechanisms and translation into logical rules
Description of the model
Table 1 contains a description of all the network nodes in
the model, together with the possible states they can

assume. The arrows in the diagram in Fig. 2 represent the
dependencies between network nodes, that is, all of the
regulatory inputs that each node receives from other
nodes. Table 2 lists the logical rules that we have devel-
oped to translate our biological observations into qualita-
tive effects on the different nodes. These rules are applied
synchronously to all nodes at each step. (Note that the
steady state values of the model are independent of the
order in which the rules are applied.) When applied to the
various input node values, these rules will determine the
state of the node at the next time step. They are grouped
according to the scale at which they operate, with the tis-
sue scale rules listed first. The effect of these rules on the
state of a particular node can be captured through a “tran-
sition table”. Table 3 is an example of the transition table
for the node TRIF, which depends on DAMPs and CD13.
All possible input configurations for DAMPs (0, 1, 2) and
CD13 (0, 1) are specified in columns 1 and 2. By applying
the rules, we can assign state values to TRIF (column 3)
that would logically result from these input combinations.

Results
Initiation of the tissue scale: Injury, cell death and TLR4
activation
We have focused the model on macrophage recruitment
and included two mechanisms by which products of the

Fig. 2 Wiring diagram of the model. Injury (orange triangle) has two possible states, 0- absent, and 1- present. The response to injury occurs at
two simultaneous scales, the internal cell scale (gray oval) and the extracellular tissue scale. The tissue scale initiates with production of DAMPs
(purple circle) with three states, low, medium, high, and the intracellular activation of resident macrophages via the MyD88-dependent (MyD88/
IRAK/NF-κB/CCL2) and -independent (CD13/TRIF/IRF3/IFN-β) pathways, resulting in recruitment of additional immune cells from the circulation
(M1) and/or production of toxic ROS. The M1 node (black circle) can take on 3 states: 0, absence of macrophage activation, including resting resident
macrophages; 1 standard inflammatory response- initial activation of resident macrophages and later, of recruited macrophages; and 2 exaggerated
recruitment of pro-inflammatory macrophages in exacerbated injury. As the process continues, M1 macrophages become pro-healing M2
macrophages (purple circle) and dampen the pro-inflammatory response
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intracellular pathways attract these effector cells to the
site of injury. Initially, in response to tissue injury, dead
and dying cells release endogenous intracellular proteins,
thus providing molecular ‘danger’ signals or DAMPs
(Table 2, rules #2–6, [19, 21]). The extracellular DAMPs
activate tissue-resident macrophages [50] and trigger the
intracellular signaling cascades of the inflammatory re-
sponse that serve to initially recruit circulating macro-
phages to the site of injury to repair damaged tissue,
remove dead cells and heal the wound. Paradoxically,
failure to activate this response results in further damage
due to inflammatory hyper-activation by the toxic accu-
mulation of apoptotic cell debris, whereas excessive acti-
vation can also lead to dysregulated inflammation and
further tissue damage. Therefore, tight control of the re-
sponse to injury is imperative for a balanced and effect-
ive immune response.

Intracellular signaling pathways from the plasma
membrane and endosome
Once activated, the TLR4 response to DAMPs is some-
what unique in that it activates two distinct intracellular
signaling pathways from different locations. These can
be distinguished by their requirement for the intracellu-
lar adaptor protein MyD88. MyD88-dependent signaling
originates from the plasma membrane, inducing the
classic pro-inflammatory cascade [51–53]. Alternatively,
MyD88-independent, TRIF-mediated signals originate
from intracellular endosomal vesicles, activation of
transcription and production of proteins that generally
promote the adaptive immune response [51]. The im-
portance of controlling these signaling pathways is illus-
trated by the induction of severe pathologies resulting
from overstimulation of the pathway or the production

of deleterious reactive oxygen species (ROS) by excessive
levels of MyD88-independent signaling. ROS release into
the tissue damages cells, increasing tissue DAMPs and
amplifying the immune response. Finally, systemic de-
pletion of macrophages severely impairs wound healing
[54, 55], suggesting that independent but overlapping
regulatory nodes exist [56].

MyD88-dependent signal transduction from the plasma
membrane
DAMPs recruit MyD88 to the plasma membrane to result
in the phosphorylation of IRAK (Interleukin-1 receptor-
associated kinase 1) to pIRAK, which then disassociates
from MyD88 to perform a series of additional interactions
leading to activation and nuclear localization of the NF-κB
(nuclear factor kappa enhancer of B cells) transcription
factor complex. In the nucleus, NF-κB induces the pro-
duction of various inflammatory cytokines, such as CCL2,
TNF-α, IL-12 and IL-1β. We have chosen to focus on
CCL2, but the other cytokines and their regulators can be
added in the future. These factors are secreted from the
cell to attract other inflammatory cells via their cognate
receptors, ultimately impacting the tissue model by
recruiting more monocytes (that become macrophages),
which can either facilitate healing in a balanced state or
escalate tissue damage when dysregulated. The amplitude
of these components is determined largely by the intensity
of DAMPs. We have assigned three levels of activation to
MyD88, IRAK, NF-κB and CCL2 (0, 1, 2) Table 2,
Rules #20–24.

MyD88-independent signal transduction from endosomes
Alternatively, ligand binding to TLR4 also induces trans-
location of TLR4/ligand from the plasma membrane into

Table 1 List of species, model states and biological characteristics

Model states

Species # States Class Type 0 1 2

Injury 2 external stimulus effector absent present ....

DAMPS 3 protein effector no injury intermediate high

Ml 3 cell promotes inflammation low intermediate high

M2 2 cell promotes healing low high ....

CD13 2 protein regulator inactive active ....

TRIF 3 protein adaptor inactive active hyperactive

IRF3 3 protein transcription factor inactive active hyperactive

IFNβ 3 protein cytokine low intermediate high

ROS 2 chemical effector low high ....

MyD88 3 protein adaptor inactive active hyperactive

pIRAK 3 protein kinase inactive active hyperactive

NF-kB 3 protein transcription factor inactive active hyperactive

CCL2 3 protein inflammatory cytokine low intermediate high
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endosomal vesicles [57]. Positive and negative regulators
of this process exist and represent additional nodes for
future inclusion [58, 59]. This pathway involves the TRIF
(TIR domain-containing adaptor protein-inducing IFN-
β) adaptors to activate the interferon regulatory factors,
IRFs (Interferon Regulatory Factors), a family of tran-
scription factors that are important in antiviral defense,
cell growth and immune regulation. One of these, IRF3,
stimulates production of the type I interferons, IFN-α
and -β (designated as IFN-β). IFN binding to IFNAR

(the IFN-α and -β receptor, not included as a node) in-
duces signal transduction to initiate production of iNOS,
the enzyme responsible for the formation of bactericidal
reactive oxygen species (ROS). While the secreted extra-
cellular ROS are critical to microbial defense, these can
be toxic when present at high levels and lead to further
tissue injury, cell death, increased release of DAMPs and
recruitment of monocytes/macrophages in the tissue
via the TLR4/MyD88/CCL2 pathway [60–63]. The
hyperactivated state of this MyD88-independent

Table 2 Tissue Scale Rules

Rule Literature support Relevant references

CCL2 and ROS < − from intracellular model

1 Injury (2)* = 0 if M2 = 1 and previous injury = 1 M2 macrophages will resolve tissue damage due to injury. [1, 82–84]

2 DAMPs (3) = 0 if Injury = 0 AND ROS = 0 regardless of M2 DAMPs are generally not accessible without tissue damage. [85, 86]

3 DAMPs =0 if (Injury = 1 XOR** ROS = 1) and M2 = 1 M2 macrophages can completely resolve damage due to
either injury or ROS.

[85–92]

4 DAMPs =1 if (Injury = 1 XOR** ROS = 1) and M2 =
0 unless previous DAMPs = 2

Lack of M2 macrophages leads to increased tissue damage in
response to injury or ROS unless overwhelming damage.

[85–92]

5 DAMPs =1 if (Injury = 1 AND ROS = 1) and M2 = 1 Extensive damage resulting from both injury and ROS in the
presence of M2 is not completely resolved.

[85–92]

6 DAMPs =2 if (Injury = 1 AND ROS = 1) and M2 = 0 Excess injury triggers an overwhelming immune response
that destroys the tissue in the absence of M2 macrophages.

[85–92]

7 M1 (3) = 0 if (CCL2 = 0) Pro-inflammatory cytokines (exemplified by CCL2) are
required to recruit M1 monocytes/macrophages.

[1, 5, 67, 82–84, 93]

8 M1 = 1 if CCL2 = 1 Macrophage recruitment is initiated in response to cytokines. [1, 5, 67, 82–84, 93]

9 M1 = 2 CCL2 = 2 increased cytokine levels result in more M1 macrophages. [1, 5, 67, 82–84, 93]

10 M2 (2) = 1 if M1 = 1 M1 macrophages differentiate into M2. [1, 5, 67, 82–84, 93]

11 M2 = 0 otherwise M1s must exist to differentiate into M2s; and overwhelming
M1 infiltration overcomes M2.

[1, 5, 67, 82–84, 93]

Intracellular scale rules

DAMPs and M2 < − from tissue model

12 CD13 (2)* = 1 if DAMPs = 1 or 2 CD13 is phosphorylated upon ligand binding to TLR4 [49, 71, 94]

13 CD13 = 0 otherwise CD13 is not activated without inflammation [49]

14 TRIF (3) = 0 if DAMPs = 0 regardless of CD13 There is no response without tissue damage. [25, 49, 95]

15 TRIF = 1 if (DAMPs = 1) and (CD13 = 1) Ligation and endocytosis of TLR4 triggers TRIF activation. [25, 49, 95]

16 TRIF = 2 if (DAMPs = 1) and (CD13 = 0) TRIF is hyper-activated in the absence of CD13 [25, 49, 95]

17 TRIF = 2 if DAMPs = 2 regardless of CD13 Excess injury triggers an overwhelming immune response. [25, 49, 95]

18 IRF3 (3) = TRIF (3) TRIF activates IRF3 [25, 49, 95]

19 IFN-β (3) = IRF3 Active IRF3 transcriptionally activates IFN-β [19, 49, 73, 96, 97]

18 ROS (2) = 1 IFNβ = 2 - > to intracellular model High levels of IFN-β induce ROS [49, 87, 88, 90–92]

19 ROS = 0 otherwise Low levels of IFN-β do not induce ROS. [49, 87, 88, 90–92]

20 MyD88 = DAMPs (3) DAMPs bind TLR4 and activate MyD88 from the cell surface. [98–100]

21 pIRAK = MyD88 (3) Activated MyD88 enables IRAK phosphorylation/activation. [98–100]

22 NF-kB = 0 if M2 = 1 and (pIRAK = 0 or 1) M2 macrophages dampen NF-kB activity and halt inflammation
unless overwhelming response.

[98–100]

23 NF-kB = pIRAK (3) otherwise pIRAK activates NF-kB. [67, 93]

24 CCL2 = NF-kB (3) NF-kB transcriptionally regulates CCL2 [98–100]

*# of states for the node; **XOR - either or
CCL2 and ROS - > to tissue scale
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pathway (IFN-β = 2) triggers ROS, while normal re-
sponse to injury produces IFN-β but no ROS. We
have assigned three levels of activation to TRIF, IRF3,
IFN-β (0, 1, 2) and two to ROS (0,1), Table 2. Rules
#14–19. Finally, this pathway also triggers a distinct,
delayed alternate pathway to NF-κB activation [53]
which we have not included in this acute model.

Tissue injury resolution or further damage
Cytokines produced intracellularly are secreted into the
tissue where they activate endothelial cells lining adja-
cent blood vessels to attract additional circulating mono-
cytes into the site of injury to enhance the response [64].
We assume in the model that these cytokines are ini-
tially produced by tissue-resident macrophages and sub-
sequently by recruited, infiltrating M1 macrophages
(Table 2, rules #7–9). Once in the tissue, monocytes dif-
ferentiate into M1 macrophages that ingest and degrade
the DAMPs and digest the extracellular matrix to allow
fibrosis, development of granulation tissue and the even-
tual scar [65, 66]. Reduced DAMPs levels prompt a sec-
ond, pro-resolution phase where M1 macrophages switch
to an M2 phenotype (rules # 10, 11, refs [5, 11, 16, 67,
68]). M2 macrophages contain fewer inflammatory mole-
cules and proteases and elicit factors that promote angio-
genesis and collagen deposition as well as reduce
inflammation by downregulating intracellular NF-κB ac-
tivity and CCL2 production (Table 2, rules #1, 22 and 24,
ref. [67]). A systemic lack of monocytes/macrophages
leads to persistence of DAMPs, increased overall cytotoxic
TLR4 signaling, lack of M2 macrophages and further
damage [69]. Similarly, a lack of M2 macrophages also
leads to persistent DAMPs, excess inflammatory cyto-
kines, damaging oxidative stress and ROS production [70].
(Table 2, rules #3–6).

CD13 in TLR4 signaling
We have demonstrated that a lack of CD13 increases
TLR4 MyD88-independent signaling by virtue of its
endocytic regulatory properties [49]. We have also
shown that CD13 is phosphorylated upon ligand bind-
ing, which is required for its effects on receptor uptake

[49, 71]. This rise in ligand-receptor internalization
enhances activation of the MyD88-independent
endosomal-signaling arm of the TLR4 response, leading
to aberrantly high levels of type I interferons and ultim-
ately production of injurious reactive oxygen species
(ROS), thus exacerbating injury due to inflammation.
We have incorporated results from this study into the
model, where CD13 = 0 when unphosphorylated/in-
active, or CD13 = 1 when phosphorylated/activated
(Table 2, Rules #12–17).

Model simulation
Below we describe the results of a model analysis and
validation by comparing its behavior under certain pertur-
bations with known, previously published in vivo results
from knockout animal studies (references listed in Table 6).
Interrogation of the model is through simulation. The
model is first initialized with all possible state values for
each of the nodes, (e.g. Injury = 0, 1, DAMPs = 0, 1, 2,
etc.). We then apply the rules in Table 2 to each of the
model nodes to obtain the new state value for each node
according to our rules. Further iteration provides a
chronological time course of states, which can either ter-
minate in a steady state or a periodic repeated pattern or
‘limit cycle’. For our model, all time courses terminate in a
steady state. However, since the model integrates two dif-
ferent spatial scales and consequently, two different tem-
poral scales, we needed to modify the scheme by which
the nodes are updated. Since we assume the intracellular
scale will be significantly faster than the tissue scale, we
have designed the update scheme as follows: for a given
initialization for all nodes, we first combine the nodes
from the intracellular model, the two input nodes DAMPs
and M2 and the two output nodes ROS and CCL2 and to-
gether consider them as a separate model. We then iterate
this sub-model until it reaches a steady state. The steady
state values that are obtained for the two output nodes are
assigned as initialization values for the tissue level nodes
to enter into the rule simulation. The new values of the
tissue-level nodes reached at the end of the simulation,
merged with the steady state values of the cell model, then
comprise the state of the entire model at the next time
step. This scheme is illustrated with an example in Fig. 3.

Model analysis
The initial model analysis below was obtained by ex-
haustively simulating the model by computing the tran-
sition for each possible configuration of node values,
using the software package PlantSimLab (http://app.
plantsimlab.org). In this way we can determine all pos-
sible steady states of the model, which can be inter-
preted as all the possible outcomes of the response to
injury when all possible configurations of the underlying
network are considered. We then determine how often

Table 3 TRIF depends on DAMPs and CD13

Possible input configurations State values

DAMPs CD13 TRIF

0 0 0

0 1 0

1 0 2

1 1 1

2 0 2

2 1 1
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(% of total) each input leads to a particular steady state/
outcome, also known as the ‘basin of attraction’, thus
providing a measure of how likely the different out-
comes are. For clarity, we have listed the outcomes for
the intracellular and tissue components of the model
separately (Tables 4, 5, 6 and 7).
In (Table 4) we initiate the intracellular model from all

possible initial state values for our input nodes, DAMPs
and M2 (Table 4, columns a and b). Simulations result
in six possible steady states with identical basin of at-
traction sizes. Steady states #1 and 2 of Table 4 portray
the intracellular response when there is either no injury
or injury has been resolved. Steady states #3 and 4 de-
scribe the chronic response to initial injury and, finally,
steady states #5 and 6 describe the states where high
levels of cytokines and ROS lead to overwhelming in-
flammation and cell death. Tables 5 and 6 are transition
tables detailing how values are generated by the intracel-
lular model for the input nodes CCL2 and ROS. We
used these values then to initiate the tissue model

(Table 7). This simulation of the intracellular-level
model results in a dominant steady state, #1 (92.6%) that
describes the tissue with low levels of DAMPs and mac-
rophages as would result with either no injury or injury
followed by resolution (Table 7). In comparison, steady
state #2 is a state with a small basin of attraction (5.6%),
that is, a steady state observed rarely, that represents an
overwhelming inflammatory response triggered by injury
with high levels of cytokine production, ROS and cell
death, as demonstrated by maximal levels of all pro-
inflammatory components and ROS. Finally, since the
simulation software initializes from all possible values,
it can produce biologically improbable steady states as
in steady state #3 where ROS is present with no in-
jury (Table 7). This is reflected by the fact that the
basin of attraction for this steady state only contains
less than 2% of all possible model initializations. Es-
sentially, the DAMPs and M2 values from the intra-
cellular model (Table 4) are also, indirectly, the initial
‘input’ values for the tissue-level model (Table 7)

Fig. 3 Two-scale update scheme for the model. Top, the intracellular variables and their output variables are updated until they reach a steady
state, then these values are used to compute the next state of the tissue-level variables (t = 1)

Table 4 Intracellular scale steady states

Initial inputs

a b c d e f g h i j k l

DAMPs(3) M2(2) ROS(2) CCL2(3) TRIF(3) CD13(2) IRF3(3) INFb(3) MyD88(3) pIRAK(3) NF-kB(3) basin of attraction

Steady State 1 0 0 0 0 0 0 0 0 0 0 0 16.66%

Steady State 2 0 1 0 0 0 0 0 0 0 0 0 16.66%

Steady State 3 1 0 0 1 1 1 1 1 1 1 1 16.66%

Steady State 4 1 1 0 0 1 1 1 1 1 1 0 16.66%

Steady State 5 2 0 1 2 2 1 2 2 2 2 2 16.66%

Steady State 6 2 1 1 2 2 1 2 2 2 2 2 16.66%
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since they ultimately determine the ROS and CCL2
steady state values that drive the intracellular-level
model. A flow chart depicting the inputs and out-
comes of the model is shown in Fig. 4.

Model validation
To verify that the model captures some key features
of the injury response, we considered published
studies of injury models in wild type animals and
those engineered to lack one of five different nodes
in our model and interpreted the phenotypes in light
of our model behavior [1, 49, 51, 54, 55, 72–78].
Similar to simulations of the wild type models, we
initially computed the steady state values for each
intracellular component from all possible initializa-
tions with the specific node knocked out (essentially
set to 0), represented by the numbers in each row
(Table 8). These intracellular steady state values were
then assigned as input values to initialize the tissue
model and then we determined the values at which
the output converged (the steady state) as described
below.

Analysis of intracellular and tissue states

Wild type, TRIF knockout, and CD13 knockout The
states in each of these simulations converge to steady
states in the intracellular model which correspond to
states in the tissue model that proceed to resolution
(Steady state 1, Table 7), in agreement with the tissue
states.

MyD88, IRAK, and CCL2 knockouts The intracellular
states lack input values for M2 and so we simulated both
possible input values, 0 and 1, (Table 8). When M2 = 0,

the given state is a steady state itself and when input into
the tissue model, it converges to steady state #3 (Table 7),
where injury fails to resolve as resulted from the absence
of M2. If we initialize the tissue model with all six possible
combinations of the missing values it converges to two
steady states (Table 8). In two of the six cases (33%), when
we assign (M1, M2) = (0, 0) and (2, 0), injury is not re-
solved since DAMPs converge to = 1 (steady state #3 in
the simulation). For the other four (66%, Table 8) of the
possible values of M1 and M2, (0, 1), (1, 1), (0, 0) and (2,
1), the states converge to the largest steady state (steady
state #1, Table 7) where injury is resolved, suggesting that
the injury will eventually resolve unless M2 macrophages
are absent, or 0.

TRIF knockout The values for M1 and M2 are again
missing but all possible combinations of values give
states that are in the largest steady state (steady state #1,
Table 7), where injury is resolved. Taken together, the
model we have constructed essentially resolves the injury
despite perturbation with the exception of the absence
of M2 macrophages. Since M2 cells are the progeny of
M1 macrophages [5, 11, 16, 67, 68], the scenario where
M1 is assigned as 0 and M2 as 1 is biologically impos-
sible. Therefore, it can be assumed that the absence of
M1 macrophages will also be considered to result in fail-
ure to resolve injury.

Reconciliation with published studies
While we consider the results of the simulation to be con-
sistent with the known experimental results, we are aware
that states in Table 8 do not necessarily match the pub-
lished results of the in vivo experiments, but rather repre-
sent the steady states to which these biological systems
would be expected to eventually converge. For example,
experiments evaluating the response at 3-5d post injury
during the inflammatory phase in the absence of the
MyD88-dependent pathway generally report reduced in-
flammation [29, 30]. By contrast, interruption of the
MyD88-independent pathway injury produces a pro-
inflammatory, high damage state despite the absence of
ROS, suggesting that the MyD88-dependent pathway
contributes to inflammation-induced damage to a greater
extent than the MyD88-independent pathway [73]. How-
ever, these experimental measurements are not taken at
the point of equilibrium, but at defined time points (days
post-injury) where the system is actively working toward
resolving the injury. Therefore this is not a shortcoming
of the model, but confirms that the model captures the
most crucial features of the biological system.

Discussion and Conclusions
We have constructed a basic logical model of inflamma-
tory signaling and monocyte trafficking in response to

Table 5 Transition table generating values for ROS in the
tissue-level model based on columns a (DAMPs) and c (ROS)
of Table 4

Input configuration for DAMPs Outcome/state value for ROS

0 0

1 0

2 1

Table 6 Transition table for CCL2 in the tissue-level model
based on columns a (DAMPs), b (M2), and d (CCL2) of Table 4

Input configurations Outcome value

DAMPs M2 CCL2

0 0 or 1 0

1 0 1

1 1 0

2 0 or 1 2
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acute, sterile tissue injury that faithfully recapitulates
components of published in vivo knockout experiments.
Reconciling computational models with experimental
data is difficult for a number of reasons. Biologists per-
turb systems with the goal of determining the intermedi-
ate steps that the system undergoes to achieve the
steady state, in this case healing. Therefore data are col-
lected on defined nodes at various time intervals follow-
ing initiation of the experiment and rarely at a steady
state. On the other hand, computational models test
nearly every possible combination of input values and
converge on a steady state that can be considered as the
long-term outcome of tissue injury. In the case of the
fully functioning system in wild type animals, the

damage is eventually resolved, and the intermediate
steps proceed to the steady state of healing. In the case
of loss of one of the nodes of the system, the model is
perturbed, but eventually converges to resolution.
To this point, we have not modeled fibrosis and scar-

ring which are often exacerbated when inflammation is
dysregulated and can severely impact functional recovery
of the tissue following ischemic injury. Including these
processes in the model would likely capture the impair-
ment of tissue function that persists following the reso-
lution of inflammation in a compromised host.
We developed the current model as a basis for con-

structing a larger, more complex network model that
can be used to predict the inflammatory response to

Table 7 Tissue scale steady states

1 2 3 4 5 6

DAMPs(3) M1(3) M2(2) Injury(2) ROS(2) CCL2(3) Basin of attraction

Steady State 1 0 0 0 0 0 0 92.59%

Steady State 2 2 2 0 1 1 2 5.55%

Steady State 3 2 2 0 0 1 2 1.85%

Fig. 4 Flow chart of model. The intracellular model is initiated with the intracellular inputs, M2 and DAMPs, at all possible values according to
their assigned number of states and simulated until steady states are reached. These steady state values of CCL2 and ROS comprise the inputs to
the tissue level model, which simulation results in 3 steady state outcomes representing resolution, overwhelming inflammation or a low
percentage of improbable states as described in the text
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different stimuli, additional receptors, cytokines, control
points and cell types. For example, neutrophils are a crit-
ical component of the inflammatory response and neu-
tropenia results in recurrent infections and impaired
healing [8]. In addition, while we have included CD13 as
a negative regulator of the MyD88-independent re-
sponse, additional control nodes such as ATF3 (induces
a negative feedback loop [58]) or the positive regulator
CD14 (required for MyD88-independent signaling)
could be added [59]. Alternatively, a component of gram
negative bacterial cell walls triggers the same responses
that we have modeled in response to injury. However,
recurrent bacterial infections produce antibodies that
bind to the bacteria, thereby creating a dual stimulus for
the cell (via TLR4 and FcRs) to elicit a combined im-
mune response considerably different from that initiated
by either receptor alone and more efficient at triggering
both innate and adaptive immunity [79, 80]. Mathemat-
ical modeling of such altered responses could lead to the
identification of novel convergence nodes as therapeutic
targets for inflammatory and autoimmune diseases.
A significant limitation of the current model is that it

does not account for the fact that conditions in the tis-
sue are not homogeneous so that the inputs to the intra-
cellular component of the model vary across the tissue.
In further work, we plan to construct a spatially hetero-
geneous, agent-based model for the tissue scale, where
each monocyte or other immune cell ‘agent’ is equipped
with its own intracellular network that can respond
properly to local tissue conditions [81].
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