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METHOD Open Access

FusorSV: an algorithm for optimally
combining data from multiple structural
variation detection methods
Timothy Becker1,2†, Wan-Ping Lee1†, Joseph Leone1, Qihui Zhu1, Chengsheng Zhang1, Silvia Liu1, Jack Sargent1,
Kritika Shanker1, Adam Mil-homens1, Eliza Cerveira1, Mallory Ryan1, Jane Cha1, Fabio C. P. Navarro3,4,
Timur Galeev3,4, Mark Gerstein3,4,5, Ryan E. Mills6,7, Dong-Guk Shin2, Charles Lee1,8* and Ankit Malhotra1*

Abstract

Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data
remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and
merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27
deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not
reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls
yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE.

Keywords: Structural variation, Copy number variation, Next generation sequencing, Genome rearrangements

Background
Structural variations (SVs)—such as deletions, duplications,
insertions, inversions, copy number variations, and translo-
cations—are among the most significant determinants of
human genetic diversity. Consortium efforts such as the
1000 Genomes Project (1000GP) have recently estimated
that a typical genome contains 2100–2500 SVs (> 50 bp),
affecting ~ 20 million bp, or ~ 5 times that of SNPs [1]. In
contrast to single nucleotide polymorphisms (SNPs), SVs
affect large contiguous regions of the genome and they can
markedly affect phenotype in many ways, including modifi-
cation of open reading frames, production of alternatively
spliced messenger RNAs, alterations of transcription factor
binding sites, structural gains or losses within regulatory re-
gions, and changes in chromatin structure [2]. In addition,
it has also been hypothesized that SVs could explain the
problem of “missing heritability” from more than a decade
of genome-wide association studies (GWAS) into complex
human diseases and traits [3, 4]. So far, these studies have
relied primarily on commercial SNP genotyping

microarrays for identification of causative variants and
therefore SVs have been missed from the association tests.
Despite the large scope and potential for critical im-

pact on human biology, SVs remain poorly characterized
and understood in human disease primarily due to the
lack of comprehensive and robust methods for SV detec-
tion. Over the past decade there have been many algo-
rithms developed for detecting SVs using Illumina
paired-end short reads (Additional file 1: Figure S1).
Careful analyses of these methods have shown the lim-
ited overlap amongst the SV calls from these algorithm-
s—primarily because the different algorithms use
different strategies (read-depth [RD], paired-end reads
[PE], or split reads [SR]) that have different strengths
and weaknesses for different types of SVs. To the best of
our knowledge, no algorithm comes close to identifying
all types of SVs and across all size ranges in human ge-
nomes. To overcome this issue, more recently, certain
genome consortia studies have combined multiple SV-
calling algorithms into a single pipeline to generate a
unified SV callset comprising primarily overlapping calls
[1, 5]. Methods [6, 7] combining SV calls from multiple
algorithms have been previously developed that use ei-
ther consensus-based or other strategies to obtain a
higher quality unified SV callset than what can be
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obtained from any single algorithm in isolation. How-
ever, the optimized way to combine SV calls from mul-
tiple algorithms still remains unclear. Simply taking a
union of SVs will usually result in a high false-positive
rate while taking the overlapping SVs will result in a
high false-negative rate. The phenomenon highlights the
need to develop an SV detection pipeline which can in-
telligently combine callsets from multiple algorithms to
comprehensively identify SVs in human genomes. An-
other challenge that currently prevents widespread
adoption of the whole genome sequencing (WGS)-based
SV detection for disease studies and at the clinic is the
lack of robust end-to-end pipelines that will process raw
sequencing datasets and comprehensively predict SVs
using multiple detection methods. As a solution we
present Structural Variation Engine (SVE), a computa-
tional infrastructure that currently includes an ensemble
of eight popular SV calling methods and a novel algor-
ithm—FusorSV to merge the SV calls from the ensemble.
FusorSV employs a data-mining approach to characterize
the performance of a group of SV callers against a given
truth set. The aim is to select all possible combinations
of callers that satisfy a performance threshold.

Results
SV detection: SVE
One critical requirement for a successful application of
any method at the clinic is robustness and ease of use. To
this end, simplified tool installation and proper versioning
become minimum requirements for bioinformatics re-
search and need to be addressed in an accelerated and ef-
ficient way. To mitigate the problems of tool
management, we present SVE as a powerful platform that
consists of alignment, quality control and the ensemble of
eight state-of-the-art SV-calling algorithms (BreakDancer
[8], BreakSeq2 [9], cnMOPS [10], CNVnator [11], DELLY
[12], GenomeSTRiP [13, 14]1, Hydra [15], and LUMPY
[7]). SVE can be used for any levels of data inputs, such as
FASTQs, aligned BAMs, or variant call format (VCFs),
and generates a unified VCF as its output (Additional file
1: Figure S2). We then applied SVE to the 27 deep-
coverage samples of the 1000GP (Fig. 1) [1, 16, 17]. The
pipeline starts with BAMs, through eight SV-calling algo-
rithms (including GenomeSTRiP [13, 14] which is not per-
formed via SVE due to the license issues, Additional file
2), and FusorSV for a unified VCF for deletions, duplica-
tions, and inversions. The running time of each SV-calling
algorithm is shown in Additional file 1: Figure S3.

Ensemble-level SV discovery: FusorSV
FusorSV provides a unique data-mining method that in-
telligently takes SV calls from different algorithms and
combines them in a manner that minimizes false posi-
tives and maximizes discovery. FusorSV learns how well

different SV-calling algorithms perform compared to a
truth set (partitioned by the SV types and sizes which
we denote as “discriminating features”) and then applies
that information to the decision process. Using per-
algorithm performance information and similarity be-
tween algorithms, the smallest set of SV callers can be
selected using the concept of mutual exclusion, which
makes our method both more accurate and comprehen-
sive than other approaches merging SV calls based on
consensus or other heuristic. We show that just a con-
sensus from two or more algorithms for a specific SV
call does not indicate higher certainty for that event,
given that the algorithms used to derive the concordance
often share the same underlying assumptions (Add-
itional file 1: Figure S4).
We use the term “projection” to mark the association of

a particular SV call from a particular SV caller to base
pairs in the genomic coordinate space (Fig. 2). When calls
from two different callers overlap, this information will be
marked in the projection in the form of the caller identi-
fier. This creates contiguous segments in coordinate space
and it is in these segments that we score the chance of a
SV call being correct. These scores can be used effectively
to become a filter point for new unseen data. The seg-
ments that clear the filter are merged together or dis-
carded if they do not clear the filter. We proceed with two
main phases: Training and Discovery (Fig. 2).

FusorSV: Training phase (building the model)
FusorSV is a method merging callsets from multiple al-
gorithms by a FusorSV-trained model. For training a
model, FusorSV needs a callset from each SV-calling al-
gorithm as well as a truth set of SV calls from one or
more sample. Previous studies [7, 18] have shown that
SV algorithms can have significant biases in calling spe-
cific SV types (i.e. deletions, duplications, and/or inver-
sions) and/or certain SV sizes [7, 18]. Therefore, we use
SV type and SV size as the two discriminating features for
our training phase. We used a variable number of bins per
SV type in the size range of 50 bp–100 Mbp. We then cal-
culated the performance of each of the eight algorithms
(including GenomeSTRiP) compared to the truth set, in
addition to calculating pairwise performance across all al-
gorithms. We excluded calls < 50 bp or translocations be-
cause these SVs were not frequent enough in the truth set
to provide enough data to make an informed decision for
these cases. SV calls were only considered when the filter
value was either unspecified or set to “PASS.” A uniform
SV mask mainly comprising regions in the human gen-
ome that are known to be difficult to access by current
technology and had no intersection with the calls in the
truth set was constructed and applied to all algorithms
prior to measuring each algorithm’s performance.
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For each sample and algorithm, the resulting SV calls
were segregated into the bins defined by the conjunction
of the two discriminating features (e.g. deletions in the
size range 1–5 kb in length would be one bin) (Fig. 2).
Once the SV calls from all eight SV-calling algorithms
were assigned a bin, we evaluated the performance of all
possible combinations of the algorithms by comparing
the resulting merged calls in each bin to the truth lying
in that same bin. The partitioning scheme is fully
discrete implying each call is accounted for in exactly
one partition without ties. This step is followed by itera-
tive projection, dynamic filtering, and merging to fit the
model which has the effect of generating FusorSV output
calls that are consistent with the input data and true
callset SV features. We used a base-pair Jaccard index
[19] (see “Methods”) to evaluate the similarity of a pair
of algorithms and the performance of an algorithm
against the truth set. When deciding which combination
of algorithms is best, two algorithms that are mutually

similar are diminished in weight, while more mutually
exclusive algorithms are more heavily weighted. This
manipulation has the effect of promoting combinations
of algorithms that work more comprehensively. This also
supports the previous finding that combining two differ-
ent kinds of evidence, such as a SR and a read pair (RP)
increases accuracy [7] and can improve SV detection.
The training concludes when the score for every possible
combination of algorithms is calculated and the per-
formance value (the similarity between the callset from
an algorithm and the truth set) that should be used for
decision in each partition is determined. This is what we
denote as our FusorSV fusion model.

FusorSV: Discovery phase (application of the model)
One can use the provided FusorSV fusion model built
during the training phase for any new sample for a com-
prehensive SV detection. The first step in the discovery
phase involves generating SV calls from the same SV

Fig. 1 1000GP 27 sample study. 27 samples were selected from the 2504 samples used in the 1000GP due to the availability of high-quality, 50X
sequencing coverage comprising polymerase chain reaction-free, 250 bp Illumina PE reads (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/supporting/high_coverage_alignments/20141118_high_coverage.alignment.index). SV types represented in the VCF files were deletions,
duplications, and inversions while translocations and other complex SVs were excluded. Mean mapping quality > 30 is considered good. %refer-
ence refers to what percentage of the reads mapped to the reference genome
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callers used to train the model but on a new sample. SV
callsets from the new sample are then treated with the
same partitioning scheme and the similarities of pairs of

algorithms’ callsets are calculated, however, with no
truth set included. As a quality control step, we use a
Mantel test [20], to determine whether the input callset

Fig. 2 FusorSV Framework (see “Methods”). (1) VCF files are first converted to an internal callset representation and then are (2) partitioned using
discriminating features. (3) For every partition, a pooled pairwise distance matrix is computed from all observations and then is incorporated into
the additive group expectation for every possible combination of callers with Eq. 1 in “Methods.” Partitioned callsets for each sample are
projected back into a coordinate single space, where the weight of each disjoint segment is given its previously estimated expectation value by
lookup. (4) A partition is fit to the data by returning the value for the proposal expectation cutoff that is the closest to the truth. (5) Given new
data during discovery, filtered partitions are merged back together from smallest to largest size, discarding the lesser of overlapping calls by their
expectation value and then finally clustered to yield a genotyped VCF output (6)

Becker et al. Genome Biology  (2018) 19:38 Page 4 of 14



is similar to the training model or divergent. Partitioned
callsets are projected onto the reference coordinate
space forming segments just as in the training phase,
while the group expectations are derived from the train-
ing model and subsequently filtered using the cutoff
value that had maximized performance in training. Seg-
ments that are above the cutoff value are joined and the
expectation values are averaged proportionally, while
segments that are below the cutoff are discarded. When
two segments overlap, the segment with the lower ex-
pectation is discarded. All remaining segments are
sorted by coordinate and the final callset is generated
with the expectation value from the model as well as the
information of the participating callers.

Performance evaluation
To demonstrate the effectiveness of our approach, we
performed 1000 rounds of experiments. For each round,
18 samples were randomly chosen from the 27 deep-
coverage samples in the 1000GP for the model building.
The model was then applied to the remaining nine sam-
ples for the performance evaluation. The experiment has
been repeated 1000 rounds by different combinations of
18 training and nine testing samples. The truth set used
for the training phase was obtained from the 1000GP SV
Phase 3 [1, 16] results [21] (see Additional file 3). We
also compared our method to MetaSV [6], which is an-
other ensemble method that uses calls from BreakDan-
cer, BreakSeq2, CNVnator, and Pindel [22].

Figure 3 shows the precision (percentage of SVs that
overlapped with the truth set over the total number of
detected SVs) and recall (percentage of SVs that over-
lapped with the callset over the total number of SVs in
truth set) that are average numbers of 1000 rounds (see
“Methods”). We observed that FusorSV performed re-
markably well by measuring precisions and recalls
against the 1000GP Phase 3 SV callset [1, 16]. The
complete list of precisions and recalls is provided in
Additional file 4: Table S1.

Application of 27 deep-coverage samples in the 1000GP
We also built a fusion model by applying FusorSV/SVE
to the entire set of 27 samples. The model can be used
for any new sequenced sample. For deletion calls, Break-
Dancer, LUMPY, and DELLY have 57%, 53%, and 66%
precision values similar to that for FusorSV (60%), but
all have lower (38%, 18%, and 42%) recall than FusorSV
(63%) that negatively impact the F-measure scores (a
measure that combines precision and recall, see
“Methods”) of BreakDancer, LUMPY, and DELLY. The
detail information is shown in Fig. 4 and Additional file
4: Table S2. MetaSV had the highest recall (79%) but
was restrictive in calling with precision (29%) and an F-
measure (42%). FusorSV had high precision and recall,
leading to the best F-measure (61%) and a better Jaccard
similarity (40%) with the 1000GP Phase 3 SV callset [1,
16, 21]. For Jaccard similarity, FusorSV outperformed all
individual algorithms (40%) with MetaSV as the next

Fig. 3 Performance evaluation of FusorSV. The results of 1000 rounds of cross-validation where 18 samples were used to train a fusion model and
the remaining nine samples were tested. Being closer to the upper right corner means better performance, with the solid dot depicting the aver-
age for all samples. FusorSV improves performance by utilizing multiple algorithms while making more total calls than integrative consensus
methods like MetaSV
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Fig. 4 (See legend on next page.)

Becker et al. Genome Biology  (2018) 19:38 Page 6 of 14



best method (32%), followed by BreakDancer, BreakSeq2,
LUMPY, DELLY, and Hydra (all near 20%).
For duplication calls, GenomeSTRiP performed at 26%

precision and 14% recall, while CNVnator performed at
22% precision and 3% recall. The MetaSV duplication
calls were excluded due to the low quality VCF flag (only
single caller support). FusorSV had higher recall, F-
measure, and Jaccard similarity with the 1000GP Phase
3 SV callset [1, 16, 21], but lower precision (15%) than
GenomeSTRiP (26%). This minimal improvement over a
single duplication caller supports previous literature with
regard to the difficulty of accurate and reliable duplica-
tion calling using the Illumina short read sequencing
data and a small set of samples [13]. Many duplication
calls coming from the PE callers, such as Hydra and
LUMPY, seem to have large overlapping transient arti-
facts, which in general drove down their performance
numbers. When repeat regions were excluded, no sig-
nificant increase in performance was observed.
For inversion calls, DELLY, BreakDancer, Hydra, and

LUMPY have high precision values at 79%, 76%, 55%,
and 54%, respectively, but they sacrificed recall values
(4%, 4%, 9%, and 17%) leading to low F-measure (8%,
8%, 16%, and 25%) and Jaccard similarities (0%, 0%, 1%,
and 1%) with the 1000GP Phase 3 SV callset [1, 16].
FusorSV (precision = 40%, recall = 58%, F-measure =
44%, and Jaccard similarity = 28%) outperformed the
other individual algorithms due to the mutually exclu-
sive information obtained from the combination of
DELLY and LUMPY (Additional file 1: Figure S4B).
Many more inversion calls were made from algorithms
like BreakDancer, compared to the number of inversion
calls made in the 1000GP, which guided FusorSV to an
optimized F-measure and Jaccard similarity. In sum-
mary, FusorSV outperforms all other individual SV-
calling algorithms including the MetaSV ensemble ap-
proach across all SV types.
To obtain more data for the training phase of FusorSV,

we generated 30 simulated human genomes at 50X
coverage with simple and disjoint homozygous SVs using
Varsim [23]; however, when we compared the simulation
data to the real human data, we observed huge disparity
in similarity values (Additional file 1: Figure S4A and B),
suggesting that the current Varsim simulation frame-
work does not generate realistic human SVs patterns. In
contrast, when we looked at other human samples (low

coverage 1000GP data), the similarity values were con-
sistent with our 27-sample study (Additional file 1: Fig-
ure S4C).

In vitro validation results
The final FusorSV callset included 843 SV calls (610 de-
letions, 202 duplications, and 31 inversions) that were
novel and not part of the 1000GP phase 3 release [21]
for these 27 samples. We selected a subset from these
novel SV calls to perform in vitro validation experiments
(Fig. 5). Deletions were validated by polymerase chain
reaction (PCR) and droplet digital PCR (ddPCR) [24, 25],
using comprehensively studied samples NA12878 and
NA10851 as controls (primers can be found in Additional
file 4: Table S3). A deletion was considered validated when
the test sample amplified a smaller fragment product
compared to the control sample in the PCR experiment or
the test sample has < 2 copies and the control samples
have two copies in ddPCR experiments. In total, we vali-
dated 86.1% (31/36) of the randomly selected novel dele-
tions (Table 1 and Additional file 4: Table S3).
To verify inferred duplications, ddPCR technology was

used to assess the copy number for the test samples and
controls. A duplication was considered validated in a test
sample if it had significant amplification compared to
both reference controls, NA10851 and NA12878. In this
manner, 90% (27/30) randomly selected novel duplica-
tions were validated by our customized ddPCR assays
(Table 1 and Additional file 4: Table S3).
We applied PCR and Sanger sequencing to verify in-

versions. In PCR, an inversion was considered as vali-
dated if the test sample amplified the inversion allele by
primers A/C and B/D and the control sample did not
amplify the inversion allele by primers A/C and B/D
(Additional file 1: Figure S5). In Sanger sequencing, the
sequences of the target region from the test sample were
compared to reference sequences to determine whether
an inversion candidate was validated or not. For one of
the test samples, we had some low coverage whole gen-
ome PacBio sequencing data available over the target re-
gion. Interrogation of the read alignments across the
predicted inversion confirmed the inversion. By the
combination of these methods, 77.8% (7/9) of the inver-
sion candidates were validated in this study (Table 1 and
Additional file 4: Table S3).

(See figure on previous page.)
Fig. 4 FusorSV result of 27 deep-coverage samples. a The Jaccard Similarity against the truth set provides the evidence that FusorSV gets more
overlaps with the truth set than any single SV-calling algorithm. b Precision-recall of all SV-calling algorithms against the truth set. Being closer to
the upper right corner means better performance, with the solid dot depicting the values of a sample. FusorSV improves performance by utilizing
multiple algorithms while making fewer total calls than integrative consensus methods like MetaSV. c Plot depicts number of 1000GP events per
sample not called by the specific caller (dm) versus the number of called events not present in the 1000GP (dn). Being closer to the bottom left
indicates higher performance. Vertical line denotes average number of calls per sample in 1000GP
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Overall, the experimental validation results further
confirmed the increased accuracy of the FusorSV
method. It is worth noting that all SVs selected for in
vitro validation are novel SVs that were not previously
reported in the 1000GP callset [21]. Our results indi-
cated a high validation rate for deletion and duplication
SVs. However, as observed in previous studies, it re-
mains technically challenging to validate inversions by
PCR/Sanger sequencing methods due to the higher com-
plexity at the breakpoints. Indeed, the most recent
1000GP manuscript [1] suggested that only 20% of in-
versions were actually simple inversions with two clearly
defined breakpoints. A majority of inversions were, in
fact, inverted duplications or more complex events.

FusorSV implementation and future updates
SVE including FusorSV is implemented as an extensible
and open source algorithm for incorporating the best
published SV-calling algorithms such as LUMPY,
DELLY, and GenomeSTRiP. As the field evolves and

new technologies and higher performing algorithms
emerge, SVE can be updated to include the latest and
most current algorithms. To add a new algorithm, the
provided algorithm map file can be updated and subse-
quent training is performed on a new set of VCF files to
recalculate the revised expectation values for each bin.
New technologies can be incorporated at the model
level, since each model characterizes the limitations of
the algorithms with respect to that genomic technology.
Model mixture techniques described in the “Methods”
section provide a straightforward way to incorporate
several models that are each fit to a technology and pro-
vide the ability to include many studies together such as
Genome in a Bottle Consortium, Simons Genome Diver-
sity Project, and the 1000 Genomes project.

Discussion
A novel paradigm for merging SV calls
In this study, we have described FusorSV, an extensible
computational framework that is able to incorporate an

Fig. 5 In vitro validation techniques. a Example of PCR validation on deletion (Del_218). Lane 1 is the DNA marker; Lane 2 is the test sample; Lane 3 is the
reference control; Lane 4 is the no template control (NTC). The test sample has a deletion in the target position which makes its amplification PCR size
smaller than reference control. b Example of ddPCR validation on duplication (Dup_1158). NA19239 is the test sample. NA10851 and NA12878 are
reference controls. NTC is the no template control. Duplicates were run to avoid random experimental error in all ddPCR experiments. NA19239 has an
amplification compared to the control. This candidate has been validated. c Example of Sanger sequencing validation on Inversion (Inv_190). d Sanger
sequencing chromatogram to identify inversion. The arrows indicate the breakpoints from where the sequences between test sample and control become
different with each other. The yellow arrows indicated the predicted left and right breakpoints using FusorSV algorithm and the blue arrows indicated the
sequenced breakpoints by Sanger sequencing. Reference: reference genomic sequences (GRCh37/hg19 Assembly) extracted from UCHC Genome Browser;
Inversion_Ref: predicted inversion sequences by FusorSV; Inversion_inverted: inverted inversion sequences; Test_NA12878: nucleotide sequences from
Sanger sequencing on test sample NA12878. Control_NA10851: nucleotide sequences from Sanger sequencing on control sample NA10851

Table 1 Summary of in vitro validation of novel SV calls

Validated Not validated Min size (bp) Max size (bp) Validation rate (%) Methods

DEL 31 5 401 13,572 86.1 PCR/ddPCR

DUP 27 3 1897 30,370 90.0 ddPCR

INV 7 2 141 1568 77.8 PCR/Sanger sequencing/PacBio

DEL deletions, DUP duplications, INV inversions

Becker et al. Genome Biology  (2018) 19:38 Page 8 of 14



arbitrary number of algorithms under a fusion model.
FusorSV uses discriminating features to promote subsets
of algorithms that are complementary to each other. For
example, DELLY and LUMPY appear similar in method-
ology and produce similar DEL calls but diverge signifi-
cantly for INV calls. Hence, FusorSV empirically
determines the similarity/dissimilarity of each combin-
ation of SV calling algorithms for each SV type and
would select to combine DELLY and LUMPY inversion
calls and ignore the combination of their deletion calls.
This can be seen in a much more rigorous manner in
Additional file 1: Figure S4B, where several algorithm
pairs show high scores and produced extremely similar
callsets across the 27-sample study. We provide Add-
itional file 5: Table S5, which provides the E-Values for
every combination of SV callers across all the bins. The
top panel of Additional file 1: Figure S6 shows how the
various combinations of the eight algorithms are selected
to contribute to the final FusorSV output callset. Based
on the described training method, we score the expect-
ation value of each possible combination of the input
callers, and then use a cutoff to determine which combi-
nations score high enough to contribute information to
the output. The lower panel of Additional file 1: Figure
S6 shows the top ten combinations of SV callers for de-
letions, duplications, as well as inversions. The panel
also shows which SV size bins do these combinations
contribute to (performance plots for all samples are
shown in Additional file 1: Figure S7). Integration of in-
dividual algorithm performance, along with the pairwise
similarity/dissimilarity of algorithms across SV types, al-
lows FusorSV to select subsets of algorithms for each SV
type that are more comprehensive and balanced (max-
imum discovery with minimal subset false positives) in
nature.
To fully leverage the benefits of FusorSV, a sufficient

number of diverse algorithms interrogating genomes
with coverage > 20X is recommended [7]. In our study,
MetaSV was too restrictive in making DEL calls when
the VCF filter was employed, which led to a lower recall
and fewer total calls being made than most other algo-
rithms (Figs. 3 and 4). The MetaSV result could be im-
proved by using more algorithms in the ensemble, which
could then increase the consensus in the variant region
but it may also decrease the precision for MetaSV. By
using prior knowledge such as the 1000GP Phase 3 SV
callset [1, 16], we engaged in an information-based deci-
sion process that performed well even with a large and
redundant number of SV callsets as input.

Extensible nature of FusorSV
A central goal behind the design of SVE/FusorSV was to
build a computational framework that not only com-
bines the current state of the art SV callers in an

ensemble, but also to be extensible so that the frame-
work evolves with the field. New technologies and plat-
form such as Pacific Biosciences Single Molecule, Real-
Time (SMRT) sequencing (PacBio) as well as 10X Gen-
omics could be added in the future. However, it is im-
portant to provide a truth set of SV calls derived from
new technology for retraining the FusorSV fusion model.
Otherwise application of a fusion model derived from
one technology might unduly penalize discovery using
another technology. However, this feature ensures that
FusorSV will perform at least as well as the best existing
algorithms/technologies and are included in the
framework.

Duplications, inversions, and other complex SV types
A limitation of any supervised-learning method is having
training data representative of information in the test
data. However, in our case, SV callsets from cnMOPS,
CNVnator, and GenomeSTRiP only reproduce (precision
score of < 1%, 22%, and 26%, respectively) of the DUP
calls from the 1000GP Phase 3 SV callset [1, 16]. There-
fore, FusorSV was limited in its ability to call duplica-
tions. Since translocation and more complex SV types
were not provided in the 1000GP Phase 3 SV callset [1,
16], we did not include these SV types in the 27-sample
study. A possible solution to this would be to add a truth
set that includes translocations and complex SVs and re-
train the model or simulate these types only and use
model mixture.
The inherent complexity of inversion events makes it

not only difficult to identify them using short read se-
quencing data but also makes validation efforts problem-
atic, which remains a topic for future improvements in
FusorSV and for the community. Once we have better al-
gorithms for calling inversions from Illumina short-read
sequencing data, these new algorithms can be added to
SVE and FusorSV model, thereby improving our ability
to call inversions. Another approach that can be used to
detect inversions more accurately is to employ comple-
mentary technologies that provide long-range informa-
tion such as PacBio, 10X genomics, and BioNano
Genomics. These can be added as new technologies dur-
ing the training step in the FusorSV framework and once
again highlights the most unique and impactful feature
of the FusorSV framework, extensibility.

Conclusions
The recent advancements in short-read sequencing tech-
nologies (Illumina XTen/NovaSeq – Illumina Inc.) have
significantly decreased the costs of WGS and enabled
many large-scale consortium projects, such as the Trans-
Omics for Precision Medicine Program (TOPMED;
https://www.nhlbi.nih.gov/science/trans-omics-precision-
medicine-topmed-program) and Genome Sequencing
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Program (GSP; https://www.genome.gov/10001691/nhgri-
genome-sequencing-program-gsp/) as well as clinical cen-
ters to include WGS-based SV analysis in their fields. This
study highlights how an ensemble of algorithms with a
data mining approach to callset merging provides higher
quality SV calls than what is possible with a single algo-
rithm. We believe that FusorSV will provide a flexible
workflow and SV calling framework as well as serve as the
gold standard for SV calling for the research community.
The SVE and FusovSV are available at https://github.com/
TheJacksonLaboratory/SVE.

Methods
Calls, callsets, and observations
A call is defined as a tuple that uniquely identifies a
change in the reference using reference and test genome
coordinates on a flattened reference with the following
elements:
sstart - inclusive starting flattened coordinate position

of the source
send - inclusive ending flattened position of the source
svtype - simple canonical structural variation type that

is one of the following:
INS - a sequence inserted in the sample that is not

present in the reference
DEL - a sequence in the reference that is deleted in

the sample
DUP - a sequence in the reference that is duplicated in

the sample
INV - a sequence in the reference that appears in re-

verse order in the sample
TRA - a sequence in the reference that appears in a

different location in the sample
dstart - inclusive flattened starting position of the

destination
dend - inclusive flattened ending position of the

destination
aseq - alternate sequence for INS types
A callset ci is then defined as the set of calls from

caller i.
For n callers we then denote observation y as:

Sy ¼ fcy1; cy2;⋯cyng:
Pooled observations are used to maximize the amount

of information used for performance measurement. The
use of flattened coordinates provides a simplified ana-
lysis, while using both source and destination coordi-
nates allows translocations to be represented.

Performance measurement
Event-based scoring mechanisms such as F-measure
focus on breakpoints and may fail to capture amounts of
matching base pairs between two events. For example,
an F1 score could be very low for a 1-Mbp deletion if it

was called as three events in one callset and one event
in another callset. Alternatively, the Jaccard base-pair
similarity metric (J) computes the number of intersect-
ing bases between two callsets. For any two callsets ci
and cj we define four performance metrics:
Precision or the number of the calls in callset ci that

were overlapped by at least one of the calls in truth set cj:

prec ¼j ci overlap with c j j � j ci j

Recall or the number of calls in the truth set cj that
were overlapped by at least one of the calls in callset ci:

rec ¼j c j overlap with ci j � j c j j

F-measure (F1 score) of precision and recall provides a
weighted averaging of both precision and recall, which is
a measure of event accuracy:

F1 ¼ 2� prec� rec
precþ rec

Jaccard base-pair similarity or the magnitude of the
number of intersecting base pairs in callset ci and callset
cj divided by the union size: J = |ci ∩ cj| ÷ |ci ∪ cj|.
A distance is written for each as: δ(ci, cj) = 1 − q(ci, cj),

q ∈ {prec, rec, F1, J}.

Additive group expectation
To assemble the most complementary and highest per-
forming ensemble, we use the maximum possible obser-
vations to correct shared caller information within a
subset of callers referred to as a group. Two high-
performing but dissimilar callers are given an increased
value, while high-performing but similar callers are given
a decreased value. We estimated the expected value of
each group in the powerset by iterative multiplication of
elements in the group shown in Eq. 1, using the total or-
dering of each callset’s performance. This achieves the
dual goal of promoting high performance and group dis-
similarity (see Fig. 2 and “Methods”).
Let x be the number of input observations with n call-

sets each.
Let true callsets for each of the x observations be:

ct ¼ fc1t ; c2t⋯; cxt g;
Let the weight for each observation be: w = {w1,w2, ⋅ ,

wx},
Let the pairwise distance matrix be:

Dðci; c j;wÞ ¼
Px

y¼1
wyδðcyi ;cyjÞPx

y¼1
wy

;∀i; j∈f1; 2;⋯; n; tg;
then for every subset in the powerset of callers, we es-

timate the expectation as:
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∀G⊆ℙ 1; 2;⋯; nf gð Þ :
G0 ¼ the lexicographical ordering of Gby the distances :

D ci; ct;wð Þ; 1−D ci; c j;w
� �� �

; ∀i; j∈G; i≠ j

E G0ð Þ ¼
Y
i∈G

0
1−D ci; ct;wð Þ½ � max

j∈G
0 n if g

D cj; ci;w
� �� � !

ð1Þ

Updating additive group expectation
When new observations are available, the prior expect-
ation can be updated by extending the input observa-
tions and weights from the x in the prior by the v in the
new:

S1 ¼ c11;⋯; c1n
� �

;⋯; Sxþv ¼ cxþv
1 ;⋯cxþv

n

� �
and w

¼ w1;⋯;wx;wxþ1;⋯;wxþvf g

(a) When validation is possible, the prior true dataset is
updated by subtracting the calls that failed validation from
the prior true and creating new post-validation observations
that are constructed by clipping callsets to the validation
flanking regions. In this case, we need to redefine the dis-
tance matrix and include all true observations and weights:

ct ¼ c1t ; c
2
t ;⋯; cxt ; c

xþ1
t ;⋯; cxþv

t

� �
;

D0 ci; c jw
� � ¼

Pxþv
y¼1wyδ cyi ; c

y
j

� �
Pxþv

y¼1wu
; ∀i; j∈ 1; 2;⋯; n; tf g

Equation 1 is then used with D′(ci,cj, w) on the up-
dated input to yield a new expectation with the prior
and newly incorporated data together into the estimate
as:

∀G⊆ℙ 1; 2;⋯; nf gð Þ :
G0 ¼ the lexicographical ordering of Gby the distances :

D0 ci; ct ;wð Þ; 1−D0 ci; c j;w
� �� �

; ∀i; j∈G; i≠ j

E G0ð Þ ¼ ∐
i∈G

0
1−D0 ci; ct;wð Þ½ � max

j∈G
0
if g

D0 c j; ci;w
� �� � !

ð2Þ

(b) When true callsets are not available for new obser-
vations, the prior truth is used from Eq. 1, while the new
observations are mixed into the prior to correct the
shared information in each group which yields:

ct ¼ c1t ; c
2
t ;⋯; cxt ; c

x
t

� �
;

D ci; c j;w
� � ¼

Px
y¼1wyδ cyi ; c

y
j

� �
Px

y¼1wy
;∀i; j∈ 1; 2;⋯; n; tf g;

D ci; c j;w
� � ¼

Pxþv
y¼1wyδ cyi ; c

y
j

� �
Pxþv

y¼1wy
;∀i; j∈ 1; 2;⋯; nf g;

∀G⊆ℙ 1; 2;⋯; nf gð Þ :
G0 ¼ the lexicographical ordering of Gby the distances :

D ci; ct;wð Þ; 1−D ci; c j;w
� �� �

; ∀i; j∈G; i≠ j

E G0ð Þ ¼ ∐
i∈G0

1−D ci; ct;wð Þ½ � max
j∈G0n if g

D c j; ci;w
� �� �� 	

ð3Þ

Optimal call filtering
Using the expectation estimates for each group as a meas-
ure of call quality, we project calls for each observation
that has a true callset into a single space assigning the ex-
pectation value computed in Eq. 1 to the weight in each
segment. Determining the value among all the available
expectations that maximizes performance across all obser-
vations then fits the model. We locate this value exactly
by exhaustive search when the number of callsets n is
small and approximately using expectation maximization
(EM) when n grows large. This search is computed con-
structively where a proposal callset cp is generated by re-
moving and fusing together projected segments below the
current search value p (see Fig. 2 and “Methods”):

α ¼ argmin
p∈ E Gð Þf g;∀G⊆ℙ 1;⋯;nf gð Þ

D cp; ct ;w
� �� � ð4Þ

Breakpoint smoothing and priority merging in discovery
Using the training observations:

S1 ¼ fc11; c12;⋯; c1ng; S2 ¼ fc21; c22;⋯; c2ng;⋯; Sx ¼ fcx1;
cx2;⋯cxng and true callsets:
ct ¼ fc1t ; c2t ;⋯; cxt g with weighting w = {w1,w2, ⋅ ,wx}.
We construct the empirical left and right breakpoint differ-

ential distributions for every caller ci ∈ {c1, c2, ⋯, cn} denoted
as zL,i and zR,i for every call in ci that overlaps a call in ct,
Let the standard deviation estimate for each distribu-

tion be: σ̂L;i and σ̂R;i
Let each sample in discovery be denoted as Sy ∈ {Sx +

1, Sx + 2, ⋯, Sx + v} with every resulting fused discovery
call that passes the filter as: fy, 1 ∈ {j, fy, 1, fy, 2, ⋯, fy, z}
and contributing left and right breakpoints of the con-
tributing call for caller i in fy, j as cyL;i; j; c

y
R;i; j;

then we smooth the reported breakpoints using the
sample standard deviation proportions for each caller as
the weighting mechanism:

f̂
y; j
L ¼ f y; jL

þ
X
a∈ f y; jL

ð½1−σ̂L;a=
X
b∈ f y; jL

σ̂L;b� cyL;a; jÞ ; f̂
y; j
R ¼ f y; jR

þ
X
a∈ f y; jR

ð½1−σ̂R;a=
X
b∈ f y; jR

σ̂R;b� cyR;a; jÞ

ð5Þ
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When each f̂
y; j

is completed, they are merged back
into a single callset using a priority merge step that
keeps higher expectation calls.

Model selection and diagnostics
Knowledge-based models are dependent on having simi-
lar conditions so diagnostics should be completed to en-
sure a high quality result. Depth of coverage, read
length, and sequencing platform are important variables
that affect the number and quality of calls characterized
during Training. Several models can be constructed be-
fore Discovery (using low and high coverage and simula-
tion datasets) and before the application of Eq. 3, a
model selection step orders the available models by
proximity to the new data. A final diagnostic using a di-
vergence test (Mantel, 1967) provides guidance to
proceed with Discovery if the selected or smoothed
model is similar to the newly generated data.

FusorSV validation methods
Samples
The test samples used for in vitro validation experiments
in this study were NA19239, NA19238, NA12878,
HG00419, NA18525, NA196525, and NA19017.
NA10851 was selected as reference control for all exper-
iments. NA12878 was used as second control if it was
not used as a test genome. All samples were obtained
from the Coriell Institute for Medical Research.

Primer and probe design

Deletions To design PCR primers for deletion valid-
ation, the following pipeline was applied. First, the gen-
omic sequence of a 500-bp region next to each SV
breakpoint was extracted from the UCSC Genome
Browser on GRCh37/hg19 Assembly. Second, Primer3
Plus [26] was used to compute a set of primer pairs
flanking the breakpoint for these regions. 200 bp from
each side of breakpoint was excluded from the primer
design to avoid the potential uncertainty of breakpoints.
Third, the quality score of the primers was checked
using Netprimer (PREMIER Biosoft International, Palo
Alto, CA, USA) software. The primer would not be used
if the quality score was < 80. Fourth, all primer pairs
were tested for their uniqueness across the human gen-
ome using In Silico PCR from the UCSC Genome
Browser. BLAT [27] search was also performed at the
same time to make sure all primer candidates have only
one hit in the human genome. Finally, the NCBI 1000
Genomes Browser was used to check whether there were
any SNPs in the primer or probe binding region. When
this process did not result in a valid primer pair, the size
of the regions for which primers were designed was

increased from 500 bp to 750 bp and the search for valid
primers was repeated.

Duplications For each selected duplication candidate,
1000 bp of genomic sequence in the middle of the dupli-
cation region were selected to design customized ddPCR
assays. The ddPCR primers were designed following
same procedure as PCR primers except for a few differ-
ences. The ddPCR product size was limited to 60–100
bp to ensure high efficiency. For probe design, any probe
with the nucleotide G at its 5′ end was excluded because
this may quench the fluorescence signal after hydrolysis.
In addition, the Tm value of the probe was set 3–10 °C
higher than that of the corresponding primers. If this
does not result in a valid primer/probe set, another 1000
bp next to the previously selected genomic region were
selected and the process repeated.

Inversions A set of four primers was designed for each
selected inversion candidate. Forward primer A and re-
verse primer D were designed to be “outside primers,”
flanking the predicted inversion breakpoints, and reverse
primer B and forward primer C were designed to be “in-
side primers” for the predicted inversion (Additional file
1: Figure S5). PCRs were performed for primer combina-
tions A/B, C/D, A/C, and B/D. The reference allele was
amplified using primer combinations A/B and C/D,
whereas the inversion allele was amplified using primer
combinations A/C and B/D.

PCR PCR amplifications were performed in 25-μL reac-
tions using the BioRad DNA Engine Peltier Thermal Cy-
cler and BioRad c1000 Touch Thermal Cycler. Each
PCR reaction contained 10 ng of template DNA; 1X
PCR buffer (50 mM KCl; 10 mM Tris-HCl, pH 8.3); 0.2
mM dNTPs; 250 nM of each primer; 1.5 mM MgCl2;
and 1 U Platinum Taq DNA polymerase. PCR reactions
were performed under the following conditions: initial
denaturation at 94 °C for 2 min, followed by 35 cycles of
denaturation at 94 °C for 30 s, annealing at 52–58 °C
(depending on the Tm value of primers), and extension
at 72 °C for 30–120 s (depending on the predicted PCR
amplicon size), and a final extension at 72 °C for 10 min.
Aliquots of 5 μL of PCR products were electrophoresed
in 2% agarose gels (1× TAE) containing 0.1 μg/mL SYBR
Gold (Molecular Probes Inc.) for 45–120 min at 100–
120 V. DNA fragments were visualized with UV and im-
ages were saved using a G:BOX Chemi systems (Syngene
USA) instrument.

Droplet digital PCR (ddPCR)
The ddPCR reactions were performed following the Bio-
Rad QX200™ system manufacturer protocol. Briefly, 10
ng DNA template was mixed with a 2× ddPCR
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Mastermix, HindIII enzyme, 20× primer, and both FAM
and HEX-labeled probes) to a final volume of 20 μL.
Each reaction mixture was then loaded into the sample
well of an eight-channel droplet generator cartridge. A
volume of 60 μL of droplet generation oil was loaded
into the oil well for each channel and covered with a
gasket. The cartridge was placed into the Bio-Rad
QX200™ Droplet Generator. After the droplets were gen-
erated in the droplet well, they were transferred into a
96-well PCR plate and then heat-sealed with a foil seal.
PCR amplification was performed using a C1000 Touch
thermal cycler and, once completed, the 96-well PCR
plate was loaded on the QX200™ Droplet Reader. All ex-
periments had two normal controls (NA12878 and
NA10851) or one normal control NA10851, if NA12878
was the test sample, and a no-template control (NTC)
with water. All samples and controls were run in dupli-
cate and data from any well with < 8000 droplets were
treated as failed QC and excluded for downstream ana-
lysis. The ddPCR data were analyzed with QuantaSoft™
software.

Sanger sequencing
The sequencing PCR was performed in a 50-uL reaction
and the PCR product was run in a 1% Agarose gel with
TAE to separate the DNA fragments. The target band
was cut from the gel and purified using the Gel Extrac-
tion and PCR Clean-Up Kit (Clontech Laboratories).
The DNA concentrations were measured using the
NanoDrop™ 2000 instrument. The DNA concentration
for Sanger sequencing was adjusted to be in the range of
10–20 ng/μL. Samples were then sent off to Eton Bio-
science (Charlestown, MA, USA) to be sequenced. The
MEGA program [28] was used for the analysis of the
Sanger sequencing data.

Endnotes
1Compatible with SVE but not included.
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