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Abstract 

Mass interfacial processes have been considered as one of crucial factors supporting 

fundamental researches. Importance of such interfacial processes has encouraged development 

of methodologies that can sense mass changes at the surfaces of deposited powders and thin 

films. Due to the low cost and conceptual simplicity of these processes, significant 

advancements have been achieved by piezoelectric methods for in situ determination of minute 

mass changes on the surfaces of materials under various conditions. These methods portend the 

extensive development of researches and commercial applications related to sensor 

technology, electroplating, and corrosion. Introduction of nanomaterials for designing sensors 

and monitoring systems becomes essential to create advanced detection systems for sensing of 

toxic materials for environmental remediation. Integration of materials with predesignated 

nanostructures into sensor devices, such as surface acoustic wave (SAW), quartz crystal 
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microbalance (QCM) and quartz crystal microbalance with dissipation (QCM-D) monitoring 

has led to an immense progress in the sensing applications of toxic target analytes at the 

nano-gram range. Of the various classes of mechanical sensors, this review introduces an 

overview of recent advancement in the fabrication of piezoelectric devices, such as QCM and 

QCM-D sensing devices for the interfacial mass sensing of targeted chemical vapors and ions 

through combination with nanoporous materials including mesoporous materials (e.g., silica, 

metal oxide and metal), carbon-based nanomaterials (e.g., graphene and carbon nanotube), 

metal-organic frameworks (MOFs), MOF-derived nanoporous carbons, Prussian blue and its 

analogues (PB and PBA), zeolites and related materials. Challenges and future prospect are 

also summarized by the advanced QCM technique associated with properties of nanostructured 

materials. 

 

1. Introduction 

1.1. Piezoelectric effect 

In 1880, Jacques and Pierre Curie discovered that the magnitude of resulting electrical potentials 

across various crystals such as quartz, tourmaline, and Rochelle salt (NaKC4H4O6·4H2O) was 

proportional to the stresses that are mechanically induced at the surface of the crystals,[1] being 

called the “piezoelectric effect” (derived from the Greek word piezein, which means “press”). In 

particular, generated charge across the quartz crystal through the mechanical stress resulted from 

the dipole formation that was generated by the displacement of atoms in an acentric crystalline 

material. Shortly after the discovery, the Curies proved experimentally the so called “converse 

piezoelectric effect” when they found the relationship between voltage across these crystals and 
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mechanical strain (motor generator). Combined with the piezoelectric effect, the later insight was 

eventually utilized for the development of electromechanical devices and underwater sound 

transducers (sonar), including phonograph pickups microphones and speakers.[2]  

 

Figure 1. Schematic representation of (A) QCM and (B) the interaction between the target molecules and 

an active layer coating on QCM electrode.  

 

The very stable oscillator circuits are constructed depending on the converse piezoelectric effect, 

thereby applying an alternating electric field in the quartz crystal that results in a corresponding 

alternating strain field. A corresponding vibrational or oscillatory motion is generated in the quartz 

crystal as a result of the strain field, causing the formation of acoustic waves. Of particular interest, 

the quartz oscillator strongly prefers to vibrate at a characteristic resonance frequency, and 

impedance analyses generally reveal sharp conductance peaks at this frequency, indicating a 

(B)

(A)

Nanoporous material
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high-quality factor (Q), which is the ratio between energy stored and energy dissipated per cycle (Q 

values can exceed 100,000). Because of the minimal energy dissipation of quartz crystals, in addition 

to their low cost, low defect concentration, ruggedness, chemical inertness, and ready fabrication, 

they are nearly ideal oscillators and then  widely utilized in frequency control and filter circuits.[2] 

The piezoelectric effect occurs normally in crystals without a center of symmetry. Clearly, the 

applied pressure across the crystal induces a deformation in the crystal lattice in such a way that a 

corresponding dipole moment arises in the molecules of the crystal.[3] After slicing a single crystal 

quartz wafer, quartz discs are sandwiched as the piezoelectric quartz crystal (PQC) between a pair of 

electrodes which are generally composed of gold or silver deposited by thermal evaporation process 

(Figure 1A). The PQC device can detect the difference in an alternating electric field between the 

electrodes. In this regard, a physical orientation of the quartz crystal lattice is distorted due to an 

applied voltage, resulting in the mechanical oscillation by a standing shear wave across the quartz 

crystal disc at a characteristic vibrational frequency (i.e., the natural resonant frequency of the 

quartz crystal).[3] Direction of the oscillation strongly depends on the crystal lattice orientation in an 

electric field. Thus, oscillation in the thickness shear mode (TSM) creates a displacement parallel to 

the quartz disc surfaces and the area of the quartz disc located between metal electrodes is only 

piezoelectrically active. The maximum amplitude of oscillation is then achieved when the electrode 

pads overlap and diminishes rapidly from that point.[3] 

 

1.2. Quartz crystal microbalance 

In the Quartz crystal microbalance (QCM), parameters associated with phases adjacent to the crystal 

greatly affect the frequency change of the quartz crystal, along with the physical properties of the 

crystal itself, such as size, cut, density and shear modulus.[4] For analytical sensing devices, the 
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proportional relation between the QCM crystal resonant frequency and its overall mass is of 

particular importance because this relationship is frequently utilized in most of piezoelectric 

analytical applications.[5] A decrease in the QCM resonant frequency is obtained due to a deposition 

of mass over its surface and the mass sensitivity of QCM is largely dependent on the crystal 

thickness, which determines its resonant frequency. As illustrated in Figure 1A, QCM consists of a 

quartz disk coated with metal electrodes on both sides. When a voltage is applied to the quartz 

crystal plate, it can oscillate at a specific frequency and the relation between frequency change (ΔF) 

of the oscillating crystal and the mass change (∆m) on the quartz surface was described by Sauerbrey 

empirical derivation (Eq. 1).[6] The dynamic change of ΔF (Hz) in the area of the electrode (A / cm-2) in 

terms of the mass increment, Δm (g cm-2) loaded onto the crystal surface under a certain resonant 

frequency F0 is shown in Eq. 1, where N, F0, , , and A are the harmonic overtone, the fundamental 

resonance frequency, the crystal density (2.649 g cm-3), the elastic modulus of the quartz crystal 

(2.947×1011 g cm-1 s-2), and the surface area (5 mmΦ, 0.196 cm2), respectively.  

   
    

 

√  

  

 
                                                

QCM sensor technology has been widely utilized for measuring small changes of mass deposited on 

its electrodes in nano-gram (ng) range. During the past few decades, the relationship between 

frequency shift and mass change, which was initially described by Sauerbrey, has been extensively 

applied for chemical sensing.[7-8] The frequency shift, which is proportional to a mass adsorbed 

and/or sorbed on sensitive layers coated over the QCM electrode, is constantly monitored to 

identify and quantify the target analyte. Accordingly, the interaction between target molecules and 

sensitive coating layers (known as “guest-host interaction”) plays an important role in the sensing 

mechanism. Such a guest-host interaction is considered as an adsorption process involving 

enrichment of guest species at the interface of a certain adsorbent (Figure 1B). Since 1964, A QCM 
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device had been implemented by King into a gas chromatography system for the detection of 

hydrocarbons.[9] So far, QCM sensor device has been successfully applied as a sensitive tool to sense 

mass interfacial,
[10]

 thin film viscoelasticity,
[11-12]

 polymer film properties,
[13-16]

 bulk liquid viscosity 

and density.
[17-18]

 In addition, combination of the QCM technique with electrochemical methods was 

realized for in situ measurements of mass changes which took place during adsorption, underpotential 

deposition, and dissolution of surface films.
[19-20]

 Accordingly, ΔF was investigated in terms of rigid 

mass changes, based on the Sauerbrey equation. However, in liquids, the response of QCM electrode 

is influenced by various factors such as morphology of surface films, interfacial liquid properties, and 

on the solid/liquid coupling at the interface, thus ΔF is not well-consistent with that estimated by 

Saurbrey equations (Eq. 1).
[21-23]

  

The Sauerbrey equation is usually disturbed by the changes in liquid properties and the 

longitudinal wave effect when QCM is operated in the liquid phase.[24-28] The first attempt to use an 

acoustic device as a liquid phase sensor was reported by Konash and Bastiaans in 1980.[29] Two years 

later, the pioneering studies to define the parameters govern the change in the QCM frequency in 

liquid phase systems have been reported by Nomura and Okuhara.[30] Further investigations 

demonstrated the validity of the Sauerbrey’s equation, especially if the solutions are not highly viscous 

and only one electrode is contacted with solution, being in a good experimental agreement with the 

prediction by Buckenstein et al.[17] and Kanazawa et al.[31] From a hydrodynamic view point, liquids 

differ from each other by their specific density (ρ) and dynamic viscosity (η). Kanazawa and Gordon 

proposed the relationship between mass and frequency change taking account into the viscoelastic 

effects on the electrode surface (Eqs. 2 and 3),[32] where, ΔF is the frequency change before and after 

reaction (Hz), ΔR is the resonant resistance change (Ω), ρq is the quartz density (2.65 g cm-3), μq is the 

quartz shear stress (2.95×1011 g cm-1 sec-2), n is the overtone order, ρL is the binder density (g cm-3), 

ηL is the binder viscosity (cP), and ωs is the nominal frequency (Hz).  
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 √
    

     
                                                                     

             √
       

    
                                           

Changing in viscosity of liquid always occurs changes in frequency and signal attenuation of the 

liquid-phase QCM sensor, use of an appropriate algorithm is necessary to separate out the effects. 

To overcome this experimental concern, Kang et al. reported another an associated high-frequency 

resonance (HFR; the total resonance originating from the network including leading wire inductance, 

static QCM capacitance, solution capacitance, and solution inductance) model for QCM, with an 

intensity two orders of magnitude higher than that of the fundamental peak in the liquid phase.[33] 

The HFR intensity did not dampen in nonelectrolyte liquid despite of its viscosity. By excluding the 

additional frequency shifts resulting from the shift of the HFR peak and the changes in viscosity and 

density of the liquid phase, the frequency response of QCM is neglectful. The stability of QCM in 

TSM was totally improved after correcting the influences comes from HFR. Some abnormalities in 

the frequency response of QCM in high order overtone was still understandable in a case using the 

HFR resonant model. However, this finding will be helpful for obtaining more reliable information 

from the QCM responses important for exploring potential applications such as chemical and 

biological sensors. A designed QCM setup was reported for the use in viscous liquids at high 

temperatures above 300 °C.
[34]

 The QCM crystal deposited with iron and gold responded to two 

common lubricant base oils, polyalphaolefin and halocarbon, being consistent with theoretical 

predictions that incorporate electrode nanoscale surface roughness into their analysis. 

The influence of surface roughness on a QCM response in contact with liquids having a wide range 

of viscosity and density was also studied, based on the perturbation theory to describe effects of the 
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slight roughness and Brinkman’s equation for strongly rough surfaces (pores, cavities and 

bumps).
[35-37]

 Consequently, it was found that ΔF was proportional not only to the effect of the inertial 

motion of a liquid mass rigidly coupled to the surface but also to the additional viscous energy 

dissipation in the interfacial layer induced by roughness. And then, a relation between QCM response 

and interface geometry was utilized for analyzing effects of roughness and rough electrode surfaces. 

An adsorbed layer surface roughness on the QCM-D response was also investigated with an emphasis 

on determining the amount of trapped water.
[38]

 Very recently, QCM-D was used for a real-time 

gravimetric and hydrodynamic spectroscopic characterization of porous solid deposits (interfaces) 

formed dynamically on the QCM electrode in contact with a liquid.
[39]

 A hydrodynamic correction to 

the Sauerbrey equation was derived depending crucially on the porous structure parameters of the 

solid. In both cases of the intrinsically porous solid layer on the crystal surface with a flat external 

surface, called a homogeneous porous layer (slight roughness) and the complicated one which 

contains micron-sized spherical bumps or aggregates (known as non-homogeneous solid porous 

layers, strong roughness), the related total frequency and resonance width changes for the response in 

liquid are expressed by the hydrodynamic admittance models for the in situ sensing of rough/porous 

solid layers.
[39]

 When the fundamental frequency (F0) is being used, variations in penetration depth (δ) 

are possible by using liquids with different viscosity-to-density ratios. Therefore, by varying the 

penetration depth, the entire variety of lateral pore sizes in the porous solid can be easily screened to 

distinguish between the trapped and moveable liquid in the narrow and wide pores, respectively. 

However, for electrolytically-deposited porous solid layers using EQCM-D, the hydrodynamic 

correction to the mass effect can be roughly estimated by the combination of the Faraday law and the 

Sauerbrey’s equation, whereas the mass of the deposited porous solid layer is translated into the 

related frequency change).
[39]

  

The design and application of coating QCM electrodes for discriminating and/or responding to 

particular targets is very crucial because the useful sensing tool requires high sensitivity and 
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selectivity. In the sense of applications, the fabrication of nanoarchitectonics materials is an 

important step towards the development of efficient advanced detection sensors. Change in the 

QCM frequency corresponds to the mass of adsorbed analyte in ng cm-2. For instance, the 

conventional AT-cut 9 MHz QCM sensor can ideally sense a mass change with a higher sensing 

capability at the ng-level of much lower concentration of target guests after careful modification of 

the electrode surface with advanced nanoporous materials. Such materials with regular pore 

geometries, such as mesoporous materials, MOFs, and patterned films, have received much 

attention as effective media for sensing, sorption, and storage of materials due to their structural 

features like high surface area and pore volume per unit mass. From the viewpoint, researches on 

adsorption of guest molecules into nanospaces have become one of the important issues of 

nanoscience. Herein, we review the focus on adsorption inside advanced nanospaces by applying the 

QCM sensing device for various chemical and biological sensing applications. 

 

2. Advanced nanoporous material-based QCM sensors 

Adsorption and/or diffusion of some inorganic and organic gases and chemical vapors, such as 

nitrogen (N2), toluene (C6H5CH3) and water (H2O), were studied by utilizing the QCM sensing device 

through modification onto its metal electrode with a variety of porous materials.[40] Materials 

nanoarchitectonics for bioanalytical sensing applications, such as mesoporous materials, 2D 

materials, fullerene, and supported lipid bilayers coated QCM and QCM-D sensor were also 

employed for the detection of toxic gases, cell membrane interactions, anticancer drug evaluation, 

label-free biomolecular assays, complement activation-related multiprotein membrane attack 

complexes, and label-free biomolecular assays, which are partially supported by data analysis, such as 

principal component analysis.
[41,42] The QCM technique can also be employed for evaluating 
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adsorption properties of some porous materials in the liquid and gas phase. Even when powder 

materials are directly deposited over the electrode, adsorption properties due to their porous 

structures are also investigated by using the same device. To improve sensitivity, reproducibility, and 

response/recovery speed of the QCM sensor device, the use of nanoporous molecular sieves and 

well-designed nanostructured sensing materials having high surface area and large pore volume is 

quite interesting. After the modification of the electrode with such nanoporous materials, sensing 

properties mainly depend on the physical and the chemical properties of the nanoporous materials. 

From the viewpoint, diverse nanoporous materials including mesoporous silica-based materials, 

carbon-based nanomaterials, hybrid inorganics, porous coordination polymers (PCPs), and zeolites 

are highlighted for the QCM-based sensing utilizations.  

 

2.1. Mesoporous materials 

2.1.1. Silica-based mesoporous materials 

Numerous attentions have been paid to the detection of hazardous chemical agents such as 

formaldehyde that causes probable human carcinogen, allergen, and intense irritant for eyes and 

mucous membranes. One of the most challenging and vital issues is, thus, setting selective 

techniques for the accurate evaluation of environmentally hazardous chemicals including volatile 

organic compounds (VOCs) and toxic metal ions.[43] Especially, researchers are interested in the 

fabrication of highly efficient sensors for enhancing the environmental and safety control of 

pollutants. For a high adsorption capacity, selection of adsorbents, which are composed of 

well-ordered and fully interconnected pores with excellent textural parameters, are crucial to get 

high adsorption capacity.[44] Mesoporous silica is considered as one of the most promising hosts for 

wide application fields in nanoscience, especially those fields that are related with the ability to 
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affect the guest dynamics in the host matrix.[45] Here, we categorize the sensing properties of 

QCM-based mesoporous silica materials for in situ detection of environmentally hazardous 

pollutants.  

Volatile organic compounds. Silica-based mesoporous hybrids attaching organic functions are 

regarded as ideal candidates in the chemical sensing field. Continuous porous networks also help to 

realize smooth molecular diffusion and hence an enhanced sensitivity[46] The good chemical and 

thermal stability[47] enable stable sensing properties. Abundant silanol (Si-OH) groups over the 

silicate frameworks make them great hosts for incorporating various organic groups. Therefore, 

tailor-made active materials can be designed to achieve specific molecular detection. For example, it 

was reported that amine-functionalized SBA-15 type mesoporous silica was successfully designed by 

using a post-grafting method.[48] The SBA-15 type composite with unique short vertical channels led 

to a uniform functionalization of amine (-NH2) groups Several researchers have also studied the 

sensing properties of NH2-SBA-15 coated QCM sensors toward hazardous vapors.[49] The advantages 

of this sensor arose from its low cost, the large adsorption capabilities, the fast adsorption rate, and 

the good chemo-selectivity to formaldehyde molecules with a ppb-level detection limit, as compared 

to conventional SBA-15 type pure silica, due to a specific interaction between analytes and organic 

functional groups. 

The sol-gel process combined with an argon plasma calcination technique was employed for the 

fabrication of mesoporous silica films that were subsequently deposited on the flat gold electrode 

surface of the QCM sensor.[50] The technique of plasma calcination involves the turning of silica sol 

into its gel at low temperature instead of the conventional process of thermal calcination. The 

resultant films were used for gas sensing applications by entrapping sensitive materials in the porous 

network. Employing the anti-Markovnikov reaction, β-cyclodextrin (β-CD) was included in the silica 
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film via alkenylation of the hydroxyl groups and thiolation of the film itself for enhancing the 

detection of benzene (C6H6) and ethanol (C2H5OH) vapors. The β-CD/silica hybrid film-coated QCM 

sensor was subjected to 5-500 μL of C6H6 and C2H5OH into 8 L sealed gas chamber and exhibited its 

higher frequency response. The enhanced QCM response arose from the large surface area of the 

mesoporous silica films that results in accommodating more receptor (β-CD) molecules and more 

target analytes as well.[51] Five months later, the same authors[52] extended the use of for the 

fabrication A four-channel QCM array (QCA) was fabricated by the standard photo-lithography in 

combination with the plasma calcination technique. The QCA sensor was examined for the detection 

of C6H6 and alcohol vapors. Employing the covalent linkages and/or physisorption, sensitive 

materials such as β-CD and triphenylphosphine were introduced into the mesopores surrounding 

silica frameworks and then utilized for distinguishing between alcohol and C6H6 vapors in the ppm 

range.  

A soluble guanylyl cyclase (sGC), as a nitric oxide (NO) specific hemoprotein, was entrapped into a 

network of mesoporous silica. A 10 MHz AT-cut QCM coated with the network was applied for the 

detection of NO in the gaseous state.[53] Polyethylene glycol with a low molecular weight served as 

an organic template for a sol-gel derivative porous silica film. The strong affinity of NO molecules 

with the ferrous heme(s) of sGC enabled a high detection sensitivity of about 15 ppb/Hz. The 

frequency response of the QCM sensor was not influenced by the chamber temperature or the 

pressure. Minimal interferences were found with other species such as carbon monoxide (CO) and 

nitrogen dioxide (NO2) and therefore utilized for the selective detection of NO molecules. When the 

QCM electrode was covered with a mesoporous silica film functionalized with covalently attached 

propyl groups , the water content in the propyl-functionalized mesoporous silica film was analyzed 

at different relative humidity.[54] A fully reproducible and reversible water absorption process was 

observed for the composite film showing an increase the relative humidity from 30% to 80%, while 
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the existence of a much larger amount of water was confirmed by using the corresponding pure 

silica film.  

Toxic metal ions. Pollution containing heavy metals, especially Hg2+, is a serious environmental 

problem[55-57] and the detection of its traces in wastewater is thus of substantial demand.[58-59] 

Compared with conventional detection methods,[60-62] such as colorimetric assay, cold-vapor atomic 

absorption spectrometry (AAS), and inductively coupled plasma spectroscopy (ICP), etc., QCM-based 

sensors are more desirable because they are portable enough for on-site monitoring of heavy metal 

ions in the real environment. Inspired by the functionalization of SBA-15 type mesoporous silica with 

terminal thiol group (-SH) for chelation with Hg2+ in water,[63-64] such a SH-functionalized SBA-15 

(SH-SBA-15) was coated over QCM transducers for designing an Hg2+ sensor.[65] Specific surface area 

and pore size were the key factors for the Hg2+ detecting capability in water. The selectivity of 

SH-SBA-15 coated QCM sensors toward Hg2+ was very high even in the presence of other cations, 

such as Na+, K+, Mg2+, Fe3+, Cu2+, Zn2+, and Cd2+ ions. 

 

Humidity and water vapor. The on-line monitoring and in situ detection of humidity and water 

vapor is very important in the research field of sensors. By using 

polystyrene-block-polybutadiene-block-polystyrene (PS-PB-PS) triblock copolymers, which contained 

hydrophilic sulfonic (-SO3H) groups attached to the polystyrene (PS) block, mesoporous silica films 

was successfully fabricated with the formation of spherical mesopores.[66] Thickness of the silicate 

frameworks related to the pore-to-pore distance mainly depended on the amount of the copolymer 

without a significant change of the pristine diameter of the spherical mesopores. A hierarchical 

porous system showing the high sensing capability of water was very helpful for designing a unique 

QCM sensor for the on-line monitoring even in the humidity level. Upon exposure of the designed 
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QCM sensor to water vapor, the frequency of the quartz crystal electrode was decreased with the 

adsorption of water molecules. A very fast diffusion of water molecules was observed in an early 

stage of the sensing using the highly porous silica coated electrode. Adsorption kinetics of water 

molecules was investigated further by real-time pursuing the frequency change after introducing 

water vapor into the QCM chamber and determining the diffusion coefficient (D) by applying the 

Fickian model as a simple linear adsorption model.[67] The uptake process was found to obey the 

Fickian diffusion model with a very fast uptake rate and thus shortening the diffusion pathway 

length and increasing the diffusion coefficient. The experimental data was analyzed using Fick’s 

second equation;[68] the relation of ΔFt/ΔF∞ vs. t1/2/L was plotted and the D value was obtained from 

the first linear portion of the diffusion line according to the following equation 4, where, ΔFt refers to 

the frequency change at time t, while ΔF∞ refers to the frequency change at the end of the diffusion 

process.  

   

   
  √

 

 

    

 
                                                                

Both of ΔFt and ΔF∞ can be respectively given as the following equations 5 and 6, where, Ft refers to 

the frequency at time t, F∞ expresses the equilibrium state frequency, and f refers to the parent 

frequency of the oscillator.  

                                                                                                  

                                                                                      

The adsorption kinetics of water vapor were investigated by applying pseudo-first-order mass 

transfer between the vapor phase and mesoporous silica layers assuming that the surface 

concentration of water vapor is constant and the diffusion through the mesoporous silica layers is 
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governed by the concentration gradient through the sample. Therefore, the rates vapor uptake can 

then be compared by determining the pseudo-first-order rate constant (k) in the following equation 

7,[69] where, ΔFt and ΔF∞ are the frequencies of vapor uptake at time t and at equilibrium, 

respectively. Moreover, the initial water vapor uptake by the mesoporous silica was confirmed to be 

very fast and the existence of large difference in the diffusion uptake at the initial stage can be 

interpreted by the retention of water molecular inside the small mesospace.[66] 

   

   
                                                                   

 

 

Figure 2. (A) Schematic description of the formation of SBA-15 with different morphologies. (B) frequency 

response curves of S1, S2, S3 in low (RH = 11.3%) and high (RH = 97.6%) relative humidity and typical 

time-dependence of the S1, S2, S3 measured by the humidity cycle. Adapted with permission.[70] 

Copyright 2011, The Royal Society of Chemistry.  
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A facile synthetic strategy of monodispersed SBA-15 type silica was developed with the 

macroscale design to hexagonal prism, hexagonal lamelliform, and snow-like morphologies (Figure 

2A) via a hydrothermal route in an acidic medium by changing the stirring rate in a hydrolysis 

process of tetraethylorthsilicate (TEOS) using a triblock copolymer, Pluronic P123, poly(ethylene 

oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO20PO70EO20).
[70] However, 

self-assembled hexagonal plate-like uniform particles were obtained hydrothermally in an acidic 

medium employing another triblock copolymer, Pluronic F127, as the structure directing agent with 

an addition of KCl and 1,2,4-trivinylcyclohexane.[71] When such SBA-15 type silicas were deposited on 

the QCM electrode, highly stable and sensitive humidity sensors were successfully fabricated with a 

wide response of the relative humidity (RH) ranging of 1-100% (Figure 2B). Usage of three QCM 

sensors coated with the same thickness of hexagonal lamelliform (S1), hexagonal prisms (S2), and 

snow-likes (S3) SBA-15 type silicas gave us the response to low (11.3%) and high (97.6%) RH (Figure 

2C). Upon increasing the BET surface area (the hexagonal lamelliform SBA-15; 733 m2 g–1), the 

frequency was shifted under the same humidity conditions and the highest sensitivity, 66.4 Hz/%RH 

was obtained as well. Due to the large surface area with the availability of multiple Si-OH groups 

over the pore surfaces, the large amount of water molecules can be adsorbed over the surfaces of 

SBA-15 and then large mass changes are observed, being related to the high sensitivity to humidity. 

Thus, the hexagonal lamelliform SBA-15 (S1) having the highest BET surface area and short vertical 

channels exhibited better humidity response than those observed for other SBA-15 type silicas (S2 

and S3) with lower BET surface areas and short vertical channels.[70]  

By using surfactant-containing mesoporous films of silica modified with short alkyl chains, a 

diffusion behavior of terrylene diimide dye molecules inside the mesoporous network was visualized 

by utilizing single-molecule fluorescence microscopy.[54] During this innovative research, diffusion of 

the dye molecules  was investigated by using methyl-, ethyl-, and propyl-functionalized (10 mol% 
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density) films at different RH (30%, 50%, and 80%). The mean diffusion coefficient was increased 

from 1100 to 3870 nm2 s-1 by increasing the humidity from 30% to 80%. Upon increasing the water 

content from 30% to 80 % RH, the mean diffusion coefficient of the dye molecules was also 

increased under the comparable conditions by a factor of 2.8. From the QCM measurements, the 

amount of water absorbed in the as-synthesized composite films was confirmed from 30% to 80% 

RH in a fully reversible and reproducible manner.  

 

Drug delivery systems. A QCM technique was applied for investigating the loading capability of 

ketoprofen (KP) and 5-flurouracil (5-FU) drugs over an amine-functionalized KIT-6 type mesoporous 

silica (NH2-KIT-6). Among several advantages of NH2-KIT-6, high mechanical and chemical stability in 

addition to high surface area were attractive and then provided the opportunity for designing 

excellent drug delivery system (DDS). Thin layer of sodium polystyrene sulfonate/polydiallyl dimethyl 

ammonium chloride was assembled over the QCM electrode after drop-coating (deposition) of 

NH2-KIT-6 (36.0 µg cm-2) and then the amine-functionalized electrode was exposed to KP and 5-FU in 

a buffer solution eat around pH 4. Frequency of the electrode was decreased with the increase of 

the magnitude of ΔF, which revealed the successful loading of KP and 5-FU drugs. The maximum 

percentages of their loadings were 1.00 mg g-1 and 0.88 mg g-1, respectively. The loading of KP higher 

than that of 5-FU was attributed to the acidity of KP due to the presence of carboxylic and carbonyl 

groups that can be interacted with the surface NH2 groups of NH2-KIT-6.  

In the similar way, KIT-6 and SBA-15 were functionalized with sulfonated group (SO3H-KIT-6 and 

-SBA-15) and used for investigating the loading of procaine hydrochloride (PrHCl) drug.[72] As a local 

anesthetic drug, PrHCl was loaded in ordered mesoporous silica to design a controlled DDS system 

that can be employed for relieving the pain of the general intramuscular injection in general of 
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penicillin and the dental anesthesia in particular. The SO3H-KIT-6 and -SBA-15 modified (32.0 µg 

cm-2) QCM electrodes were treated with a PrHCl solution, showing the loading efficiency of 1.28 mg 

g-1 and 0.87 mg g-1, respectively. The high loading of PrHCl molecules onto SO3H-KIT-6 was arising 

from the large pore diameter induced by its 3D cubic mesostructure related to a fast diffusion of 

PrHCl molecules combined with the high surface area. In addition, the PrHCl uptake greatly 

increased by grafting -NH2 and -SO3H groups through covalent bonds to surface Si-OH groups.  

 

Enzymes immobilization. Immobilization of enzymes into mesopores are very interesting for 

exploring potential applications to biocatalysis and biosensing. However, actual understanding of the 

immobilization process has not been completed so adequately. In this context, QCM with dissipation 

monitoring (QCM-D) was a facile and robust measuring technique for real-time studying the 

immobilization of enzymes.[73-75] A novel QCM-D method was demonstrated for understanding the 

immobilization of enzymes into mesoporous silica particles,[73] which complemented other 

conventional enzyme monitoring entrapment approaches that were able to detect the 

concentration depletion only in the surrounding bulk phase. In this regard, silica coated electrode 

was modified with -HN2 groups, followed by adsorption of small particles of spherical mesoporous 

silica. For two different enzymes, lipase from Rhizopus oryzae and feruloyl esterase from Fusarium 

oxysporum, adsorption behavior was monitored in real-time by using QCM-D monitoring. The 

QCM-D measurements showed the porosity of mesoporous silica particles was useful for the 

immobilization of the enzymes. A viscoelastic effect of the immobilized enzymes was also visualized 

by plotting the frequency shift of the QCM frequency versus the corresponding dissipation. A 

lysozyme specific aptamer can also be fixed onto an amine-functionalized MCM-41 (NH2-MCM-41) 
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particles by a glutaraldehyde coupling, which was applied for the QCM-based determination of 

lysozyme from chicken egg white.[75]  

 

2.1.2. Non-silica-based mesoporous materials 

The detection of chemical vapors was enhanced by the coating of Au electrode with high-surface 

area mesoporous materials for gravimetric QCM sensing, referred to as the “meso-QCM system” and 

this was previously reported by our group (Figure 3A).[76] Coating of the QCM electrode with 

high-surface-area mesoporous materials led to the successful evaluation of C2H5OH and CH3CHO 

vapors with the detection limit less than 1 ppm. The quantitative analysis of mixed chemical vapors 

was also demonstrated by using the sensing properties arising from the difference between silica 

and aluminophosphate (AlPO). Therefore, one of the challenges is the pioneering design of the 

framework composition in addition to the structural features such as the mesoporous structure 

(mesopore size, dimension/connectivity, etc.) so as to improve the sensitivity and the selectivity of 

sorption properties beside looking for new and/or advantageous functions that improve the sensing 

of the meso-QCM system. Due to the selective interaction of the framework surfaces with VOCs like 

CH3CHO, the AlPO-based meso-QCM system can be considered as an encouraging sensor for the 

quantitative determination in the ppb range. As illustrated in Figure 3B, a wide variety of VOCs are 

quite sensitive to the surface properties of mesoporous materials including carbon-based 

amorphous and graphitic ones.[77] In the case using electrodes coated with carbon-based materials, 

C6H6 molecules hardly adsorbed over amorphous carbon frameworks and more attached with 

graphitized surfaces due to their strong π-π interaction. C6H5CH3 molecules were also captured over 

the graphitized frameworks, though little c-C6H12 without π electrons was detected even by using the 

graphitized mesoporous carbon. On the other hand, a soluble and shape-persistent organic cage 
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compounds was deposited by using an electrospray method, showing the extraordinary affinities to 

the vapors of aromatic solvents.[78]  

 

 

Figure 3. (A) Meso-QCM sensing system enhanced by coating the parent Au electrode with Pluronic P123 

assisted mesoporous silica and AlPO materials, compared with an unmodified QCM system. (B) Selective 

interactions of chemical vapors for the trace-level detection by the meso-QCM systems combined with 

surfactant-assisted mesoporous silica- and AlPO-based materials as well as carbon-based mesoporous 

materials. Adapted with permission.[76] Copyright 2014, The Royal Society of Chemistry.  
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Several metal nanostructures, such as CdSe, SnO2, TiO2, ZnO, WO3, and ZnS, are good candidates 

for the fabrication of semiconductor-based sensors.[79-83] Sensing performance of such materials is 

mainly controlled by their properties including morphology, porosity and conductivity. Some active 

metals, such as Au, Pd and Pt, are also included into these semiconductors-based sensors.[84-89] 

Catalytic performance for different applications, such as catalytic reduction of carbon dioxide 

(CO2),
[90] sensing of different VOCs,[91] production of hydrogen (H2),

[92] and oxidation of H2 to water 

(H2O),[93] was enhanced by the strong interaction between Pt and TiO2 that was also useful in 

reactions in fuel cells.[94] In the regard of the considerable surface area and available large pore 

volumes, mesoporous/nanoporous TiO2 are promising for capture of the metal nanoparticles.[95,96] 

After in situ liquid-phase analytical method was developed for studying the adsorption kinetics of 

dyes to a mesoporous TiO2 coated QCM sensor,[95] a polymeric micelles assembly technique was 

applied for construction of Pt-decorated mesoporous TiO2 showing the sensitivity toward several 

organic molecules (Figure 4A).[96] The crystalline mesoporous TiO2 decorated with uniformly 

dispersed Pt nanoparticles was synthesized by the polymeric micelle self-assembly of an asymmetric 

poly(styrene-b-2-vinylpyridine-b-styrene), PS-b-PVP-b-PEO, triblock copolymer in an acidic solution 

of tetrahydrofuran (THF), being challenging in a nanoparticle synthesis as shown in Figure 4A. This 

method was quite facile because it enabled a one-pot synthesis of the crystalline mesoporous TiO2 

with Pt nanoparticles through strong hydrophobic interaction of Pt(II) 2,4-pentanedionate with the PS 

core and electrostatic interaction of titanium tetraisopropoxide with the PVP shell. The superior 

affinity of the designed QCM sensor coated with Pt-decorated mesoporous TiO2 was very promising 

for highly selective detection of acetaldehyde vapors, which was 7 times greater than that in case of 

ethanol.  
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Figure 4. (A) Schematic illustration of the synthetic process of Pt-decorated mesoporous TiO2 by 

polymeric micelle assembly. (B) Typical mass-normalized time-dependent frequency shift (ΔF) curve of 

QCM coated with pure mesoporous TiO2 (red line) and Pt-decorated mesoporous TiO2-based films (blue 

line) caused by exposure to different injected concentrations of vaporized acetaldehyde. (C) Summary of 

QCM frequency shifts of mesoporous TiO2-based films (red line) and Pt-decorated mesoporous 

TiO2-based films (blue line) caused by exposure to various vaporized gases at 100 ppm. Adapted with 

permission.[96] Copyright 2014, American Chemical Society.  
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Adsorption of CH3CHO, considered as a possible carcinogenic agent to humans by the 

International Agency for Research on Cancer of the World Health Organization (WHO|IARC) as it is 

classified as a highly reactive and odorous organic compound,[97] was remarkably risen upon 

increasing its injected concentration that coincides with the sensing behavior of n-type 

semiconductor sensors.[98] The frequency shift of the Pt-decorated mesoporous TiO2-based QCM 

sensors was increased exponentially and linearly with the concentration of injected CH3CHO from 

100 to 500 ppm (Figure 4B and 4C). The QCM sensor exhibited a 2.5 times higher response to 

CH3CHO vapors than the QCM sensor based on a corresponding (Pt-free) mesoporous TiO2, which 

may be assigned to a sensing enhancement by the presence of metallic Pt due to its chemical 

sensitization mechanism. In addition to their role in providing abundant adsorption sites , the Pt 

nanoparticles assist the spillover of oxygen species onto their surfaces, where the oxygen species are 

ionosorbed by trapping electrons from TiO2 via the dipole-dipole interaction with the oxygen 

surface.[98-100] The Pt-decorated mesoporous TiO2-based QCM sensor was also sensitive to CH3CHO 

from other possible interference gases such as acetone (CH3COCH3), ammonia (NH3), C6H6, 

chloromethane (CCl4), C2H5OH, n-C6H12, and H2O at room temperature. The sensitivity of the QCM 

sensor to CH3CHO was seven times greater than that to C2H5OH and the QCM sensor showed a poor 

sensitivity to CCl4, C6H6, and n-C6H14 vapors, which was also supported by theoretical 

calculations.[101-102] In addition, CH3CHO molecules were adsorbed over the Pt-decorated 

mesoporous TiO2-based film rapidly within a few minutes after purging of N2 gas inside the testing 

cell at room temperature. The good reversibility of the advanced QCM sensor would be very helpful 

for the practical use in gas sensing devices.  

A mesoporous WO3 thin film, that was fabricated by an ionic surfactant (sodium dodecyl sulfate, 

SDS) assisted electro-deposition method, showed a rapid QCM sensing ability to detect the 

contribution of the charged or uncharged species during the electrochemical processes.[103] In situ 
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synthesis approach for the reduction of Au nanoparticles onto a magnetic mesoporous CoFe2O4 

nanostructure (Au-MMNs) and the Au-MMNs based QCM sensor showed a good conjugation 

capability toward biomolecules.[104] A Pearson’s hard and soft acid and base (HSABs) theory was 

employed for the successful synthesis of urchin-like hollow sphere Zn2SnO4/SnO2 by a two-step 

hydrothermal synthesis process.[105] The Au electrode of QCM was coated with a dispersion of the 

Zn2SnO4/SnO2 hollow spheres in N,N,-dimethylformamide (DMF) followed by spin-coating of 

polyvinylidene fluoride (PVDF) over the surface of the well-dried Zn2SnO4/SnO2 coated QCM 

electrode. The frequency of the QCM sensor cell was changed immediately after adsorption of 60 

ppm dimethyl methylphosphonate (DMMP) due to the interaction between oxygen atoms of DMMP 

and hydrogen atoms of PVDF. Crystalline ZnO and CeO2/ZnO nanofibrous mats can be manufactured 

by an electrospinning of metal salt(s) and poly(vinyl alcohol) in aqueous solution and subsequently 

deposited over the Au electrode of QCM.[106] After calcination for 5 h at 500 °C in air, the sensing 

characteristics of both ZnO and CeO2/ZnO based QCM sensor were investigated toward some VOCs 

such as dichloromethane (CH2Cl2), C2H5OH, C6H6, and propanol (n-C3H7OH). A ZnO nanowires coated 

QCM sensor was chemically modified by alkyl-thiol molecules with various carbon chain lengths 

(C0-C12, Figure 5A).[107] The SEM images showed the morphology of the ZnO nanowires with the 

average length was approximately 2 µm (Figure 5B) and the peak intensity of C1S was directly 

proportional to the carbon chain length of the alkyl-thiols (Figure 5C). Eventually, the experimental 

results revealed the significant potential application of the prepared QCM sensor for analyzing the 

impact dynamics of water droplets.  
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Figure 5. (A) Schematic illustration of the preparation procedure for ZnO nanowires with various surface 

energies on a quartz crystal through the hydrothermal synthesis and surface modification. (B) top-view 

SEM image of ZnO nanowires (inset: side-view SEM image). and (C) C1s XPS spectra from ZnO 

nanowire-grown surfaces treated with various alkyl-thiols. Inset shows S2p XPS spectra. Adapted with 

permission.
[107]

 Copyright 2018, ElsevierB.V.  

 

2.1.3. Mesoporous carbon materials 

A cobalt-containing mesoporous carbon based material (Co-MPC) was directly synthesized 

from resol in the presence of cobalt acetate through a soft-template technique using Pluronic 

F127 and the Co species catalyzed a graphitization of the frameworks.
[108]

 The Co-MPC 

coated QCM sensor showed a better sensing affinity towards C6H6 and C6H5CH3 than C6H12 

and other vapors. Carbon-based materials have been widely utilized as commercially 
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available, low-cost adsorbents so far, being potential for improving the sensing property of 

the QCM devices with their structural designs in nanometer scale. A layer-by-layer (LbL) 

assembly method for fabricating a mesoporous carbon, CMK-3, over the Au electrode of 

QCM with a polyelectrolyte as the binder was successfully applied for improving the sensing 

property of some nonionic molecules including tannic acid, catechin and caffeine (Figure 

6A).
[109]

 According to the effective π-π and/or hydrophobic interaction with the guest 

molecules, the CMK-3 LbL film coated QCM sensor exhibited a high sensitivity and 

selectivity. Another LbL assembly method was reported for the synthesis of dual-pore carbon 

capsules as an advanced QCM sensor useful for adsorption of aromatic compounds in vapor 

phase at ng-scale.
[110]

 The carbon capsules with uniform pore width (4.3 nm) and high BET 

surface area (918 m
2
 g

-1
) were prepared by utilizing the zeolite crystals as a hard template 

(Figure 6B). The carbon capsule LbL films coated QCM sensor showed a more effective 

adsorption of C6H6 vapor almost 5 times higher than that of c-C6H12, being related to 

importance in the π-π interaction for the adsorption of aromatic volatiles.  
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Figure 6. (A) The LbL assembly of the mesoporous carbon CMK-3 and the cooperative adsorption of 

guest molecules into a mesopore. Adapted with permission.
[109]

 Copyright 2008, Wiley-VCH Verlag 

GmbH & Co. KGaA. (B) The schematic illustration of the construction of the carbon capsules and the 

LbL process of the carbon capsule film. Adapted with permission.
[110]

 Copyright 2009, American 

Chemical Society.  

 

The affinity of the carbon capsules was carefully investigated for some guest molecules 

having a wide variety of functional groups, such as H2O, acetic acid (CH3COOH), NH3·H2O, 

butylamine (C4H9NH2), pyridine (C5H5N), and aniline (C6H5NH2).
[110]

 A simple 

photo-induced method was much interesting for the synthesis of carboxyl (-COOH) 

decorated ordered carbon films having meso- and macropores in the presence of uniform PS 

beads with various diameters as hard templates.
[111]

 The ordered carbon-based materials with 

-COOH groups were prepared by a facile ozone treatment without any environmentally 

hazardous oxidizing agents. Because of the selective adsorption ability for volatiles, a porous 

carbon film coated QCM sensor was fabricated for the detection of various guest molecules 

such as C6H5CH3, C6H5NH2, n-C6H14, NH3, and CH3COOH. Interestingly, after 
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photo-functionalizing the porous carbon with -COOH, the porous carbon films showed a high 

adsorption ability to C6H5NH2 due to the acid-base interaction with the -NH2 groups from 

C6H5NH2, in addition to the hydrophobic π-π interaction between C6H5NH2 molecules and π 

bonds at the surface of the carbon-based materials.  

A hierarchically porous carbon nitride (CN) coated QCM resonator showed a different 

adsorption performances towards various volatiles such as C6H5CH3, c-C6H12, ethyl acetate 

(CH3COOC2H5), n-C3H7OH, CH3COCH3, CH3COOH, and C6H5NH2.
[112]

 The hierarchically 

porous CN film was synthesized using both triblock copolymer (e.g., Pluronic P123) and 

uniform PS spheres as the dual templates. In particular, the CN films exhibited the highest 

affinity towards CH3COOH with the adsorptive equilibrium amount nearly six times larger 

than that of C6H5NH2, being attributed to the presence of some basic nitrogen groups like 

NH2, NH, and N sites in the CN frameworks. As a “Photo Switch Sensor”, the selectivity of 

the CN film can be easily reversed under the UV light irradiation. The CN films showed the 

aforementioned high affinity towards CH3COOH without UV irradiation and a reversible 

selectivity towards C6H5NH2 under flashing with UV light in oxygen, since the UV 

irradiation can generate -COOH groups in the CN frameworks.
[111]

 In addition, a carbon 

nanocage (CNC) embedded nanofibrous film modified QCM sensor (Figure 7A) was very 

helpful for a selective adsorption of aromatic amines than NH3, H2O, C6H6, and other 

compounds (Figure 7B).
[113]

 The QCM sensor was fabricated by coating a cast film of 

poly(methyl methacrylate) (PMMA) solution containing CNC (CNC/PMMA) over the 

electrode of QCM. The CNC embedded nanofibrous film featured with long durability, high 

throughput, and low cost can be employed for the analysis of aromatic amines from the 

breath gas samples prior to contraction of cancer as well as such amines in the workplaces.  
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Figure 7. (A) Schematic illustration of the Carbon nanocage-embedded nanofibrous film-based QCM 

sensor and the selective sensing aniline vapor from the breath gas of lung cancer. (B) The selective 

adsorption selectivity of the QCM sensor for aromatic amines, water, benzene, ammonia and other 

chemical species. Adapted with permission.
[113]

 Copyright 2013, American Chemical Society.  

 

A QCM sensor modified with a nitrogen-doped mesoporous carbon (N-CMK-3) showed 

various adsorption abilities towards diverse analytes, including C6H5CH3, C6H5NH2, NH3, 

C2H5OH, CH3COOH, and so on.
[114]

 The N-CMK-3 type materials were synthesized through 

a nanocasting of a gelatin biomolecule as the precursor into the mesopores of SBA-15 as the 

hard template and showed the strongest basicity helpful for a good adsorption selectivity to 

CH3COOH among other species. A series of mesoporous materials with high C/N ratio were 

also prepared successfully by a nano-hard-templating method.
[115]

 Since this material was 

constructed at a temperature lower than 450 °C, the considerable amount of nitrogen atoms 
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can be preserved very well in the carbon-based frameworks. Thus, QCM sensors modified 

with the high C/N materials were utilized for adsorption of both basic and acidic volatiles. 

Interestingly, the high C/N material with larger pore width exhibited a better adsorption 

ability to acidic species, e.g., formic acid (HCOOH) due to from the presence of a plenty of 

weak basic sites in the frameworks.  

 

2.2. Carbon-based nanomaterials 

2.2.1. Carbon nanotubes (CNTs) 

CNTs have been developed for the modification of the QCM electrode and the minor changes in 

conductivity were amplified to the vibrational frequency signal in the modified QCM sensors.[116] The 

fabricated QCM electrode possessed an excellent robustness and stability, which successfully 

employed for sensing of various targets such as VOCs, aldehydes and amines. Functionalization of 

CNTs is also promising to impart QCM sensors with good functional surface features which cannot be 

fulfilled using pristine CNTs. Therefore, the functionalized CNTs can be acted as a platform to 

construct advanced QCM sensors for the adsorption of some vapors such as C6H6 and xylene 

(C6H4(CH3)2).
[117] Furthermore, many interactions between functionalized CNTs modified substrate 

and analytes would lead to different behaviors and responses. For instance, a single-wall CNT coated 

QCM sensor can act as a sensitive real-time platform for the analysis of Cymbidium mosaic 

potexvirus (CymMV) in the infected orchid leaves.[118] A fast, economical, and ultra-sensitive 

detection with a comparable sensitivity was realized as the enzyme-linked immunosorbent assay 

(ELISA) by using the CNT-based QCM method.  
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2.2.2. Graphene materials 

Graphene is as a new generation of porous materials due to its diverse remarkable characteristics 

such as high surface area, rich stacking π-electrons, and homogeneous thickness.[119-123] A LbL 

assembly technique was applied for the construction of a layered graphene/ionic liquid (G-IL) 

composite over the QCM substrate for sensing diverse vapors.[124] The G-IL-based QCM sensor, inside 

the well-defined π-electron-rich nanospace, exhibited a higher adsorption captivity for toxic 

aromatic hydrocarbons than those for their aliphatic analogues. The higher selectivity (>10 times) of 

C6H6 vapor was achieved than c-C6H12 even in the case to detect organic molecules having similar 

molecular sizes and vapor pressures. The G-IL composite film also showed the potential 

environmental application by the capture of CO2. A graphene oxide (GO) modified QCM humidity 

sensor, which exhibited a good adsorption reversibility with a rapid response and recovery time (less 

than 20 s and 3 s, respectively), was successfully fabricated, due to the high hydrophilic nature and 

large surface area of GO.[125]  
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Figure 8. (A) Schematic illustration of the RGO-PEO composite film deposition by the spray method. (B) 

Illustration of the humidity mechanism of the pure PEO film (a) and the RGO-PEO composite film (b) 

based QCM sensors. Adapted with permission.
[126]

 Copyright 2018, Elsevier B.V.  

 

Pure graphene surfaces do not allow adsorption of H2O molecules because of the weak 

interaction, which limits the further application of graphene in the humidity sensors. Because a 

poly(ethylene oxide)-reduced GO (PEO-rGO) composite with high crystallinity provided a great 

possibility for the sensitive detection of humidity,[126] the PEO-rGO composite film modified QCM 

sensor was fabricated by a spray method (Figure 8A). Compared with a pure PEO film based QCM 

sensor, the PEO-rGO composite one showed rapid response/recovery (11s/7s at 90% RH) at 84% RH 

and high sensitivity, which might be contributed to the surface roughness of the PEO-rGO composite 

film with a large surface-to-volume ratio and abundant adsorption/desorption sites with long term 

stability (Figure 8B). A facile QCM biosensor was designed through a GO-biotin-based sandwich 

immunoassay method (Figure 9) based on the irreversible adsorption of GO to a standard Au-coated 

QCM chip.[127] This highly effective method just needs a few simple flow-based steps, avoiding the 

conventional time-consuming chemical pre-functionalization strategy. The GO-modified QCM sensor 

showed the advantages of on-line, rapid, and highly sensitive in the analysis of an antigen target.  
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Figure 9. (A) The reaction scheme to form biotinylated graphene oxide (GO-Bt) and graphene oxide·avidin 

(GO-Bt·Av) complex. (B) Schematic diagram of the flow-based fabrication of QCM-based immunosensor 

and the three tested strategies for antigen quantification. Adapted with permission.[127] Copyright 2016, 

American Chemical Society.  



 

 

 

This article is protected by copyright. All rights reserved. 

Progress Review_38 

2.3. Porous coordination polymers (PCPs)-based materials 

2.3.1. Metal-organic frameworks (MOFs) 

In the past decades, MOFs have been extensively served as the precursors for the construction of a 

considerable nanoporous materials, ranging from carbon- to metal-based nanomaterials (carbide, 

oxide, chalcogenide, phosphide, etc.). The transformations from MOFs into carbon- or metal-based 

nanoporous materials are stimulated by the porous architectures of MOFs and their attractive 

components which include diverse metal ions/clusters and abundant organic linkers.[128] The 

significant porosity of MOFs and MOFs-derived nanomaterials have allowed inclusion of large 

molecules into the nanospaces and enhancement of sensing applications by using the high surface 

areas.[129-132] Construction of surface-mounted MOFs (SURMOFs) has aroused a growing interest and 

a considerable of techniques have been developed for the MOF coatings onto the QCM substrate. 

For the preparation of thinner MOF films, the liquid-phase epitaxy (LPE) method has been utilized by 

immersing the substrate in the reaction mixture of the MOFs suitable for creating corresponding 

films with the adjustable thickness from nm- to mm-levels.[133] In this technique, diverse SURMOFs 

can be fabricated directly over self-assembled monolayers (SAM) of organic molecules.[134-135] The 

SURMOFs-coated QCM devices have been demonstrated as an advanced chemical sensor for the 

studying and characterizing of the mass transfer processes of the MOFs.[136]  

MOFs with different structures have been also applied as the gas sensor for hydrogen (H2), 

oxygen (O2), CO2, methanol (CH3OH), C2H5OH, propane (C3H8), NO, and H2O in the 

atmosphere mixture.
[137]

 For instance, a zeolitic-imidazolate framework-8 (ZIF-8) was 

modified onto the QCM device for the detection of methane (CH4) and CO2.
[138]

 The ZIF-8 

layer coated QCM sensor achieved a relatively higher sensitivity of CO2 rather than CH4 

since its higher molecular weight. Besides, this highly stabile QCM device can be also served 
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as a reversible and repeatable gas sensor. A MOF-199 (HKUST-1, Cu3(btc)2, btc; 

1,3,5-benzenetricarboxylate) thin layer was integrated over a microcantilever sensor surface 

for the detection of H2O, CH3OH, and C2H5OH vapors.
[139]

 The strain changes were induced 

on the cantilever through adsorption and desorption of the vapors at the interface between the 

cantilever surface and the MOF film, which was detected by the piezoresistive sensor. Since 

HKUST-1 possessed hydrate and dehydrate forms with two exchangeable coordination sites, 

which can be easily occupied by the H2O molecules. The dehydrated HKUST-1-coated 

sensor exhibited a higher selectivity towards CO2 and alcohols rather than O2 and N2, 

indicating that HKUST-1 was potentially useful for a breath analysis. The piezoelectric 

microcantilever coated with HKUST-1 was active for the detection of humidity and 

hydrocarbon gases.
[140]

 The HKUST-1 coated sensors showed different degrees of adsorption 

and desorption discrimination of various VOCs, e.g., CH3OH, isopropanol (i-C3H7OH), H2O 

and CH3COCH3 upon their response time. A similar HKUST-1 coated QCM sensor was also 

synthesized for the relative humidity sensing and showed a higher humidity sensitivity due to 

its high adsorption energy.
[141]

  

Through developing a controlled pressure and temperature QCM-based system, adsorption 

properties towards CO2, CH4 and N2 was investigated by using Cu-MOF (Cu-hfipbb) and ZIF-90.[142] 

The adsorption order was CO2 > CH4 > N2 in both MOFs. The adsorption kinetics of Cu-hfipbb was 

consistent with a single-site Langmuir model, corresponding to its porous architecture composed of 

one-dimensional (1-D) nanochannels but without remarkable cage-like structure. However, in the 

case of ZIF-90, there are considerable large porous cages in three-dimensional (3-D) structures, 

resulting in the large deviations from Langmuir adsorption. The detection of VOCs was studied by 

employing the MOFs thin films coated microcantilever sensors.[143] As shown in Figure 10, two 
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-COOH terminated MOFs layers were self-assembled onto the Au electrode of QCM to fabricate 

sensor platforms. Due to the molecular sieving effects in the regulated nanospace of the MOFs, the 

Cu3(BTC)2 layer-coated QCM sensor showed different adsorption abilities towards various VOCs, in 

particular, C6H5CH3 at a concentration of 1 ppm. The adsorption sensitivity of Zn4O(BDC)3 coated 

QCM sensor was lower than that of the Cu3(BTC)2 sensor to C6H5CH3 since the presence of larger 

pore and aperture sizes in Zn4O(BDC)3 which result in a low size-selective effect for VOCs.  

 

 

Figure 10. (a) SEM image and photograph of Cu3(BTC)2 thin film grown from COOH-terminated SAM on 

gold electrode of QCM, (b) SEM image and photograph of Zn4O(BDC)3 thin film grown from 

COOH-terminated SAM on gold electrode of QCM. (c) and (d) SEM image and photograph of Cu3(BTC)2 

thin film grown from COOH-terminated SAM on gold electrode of microcantilever resonator and 

frequency response of Cu3(BTC)2 film on the microcantilever resonator upon exposure to 100 ppm 

toluene, n-octane, acetone, and ethanol vapors. Adapted with permission.
[143]

 Copyright 2014, Springer 

Nature Publishing AG.  
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Another fascinating method for the construction of MOFs thin films coated QCM sensors was the 

Langmuir-Blodgett (LB) approach, which permitted the deposition processes happened at the 

air-liquid interface of monolayers. These monolayers, composed of nanoparticles, polymers or 

organic molecules, can be directly deposited onto various substrates, e.g., quartz, glass, and silicon, 

without any functionalization.[144-145] A three-dimensional (2-D) binary Janus PCP was fabricated by 

depositing PCPs over the QCM substrate by employing the LB method.[130] The heterogeneous PCPs 

were utilized as the QCM coatings for the sensing of VOCs. A mixed LB film, combined 

NH2-MIL-88B(Fe) with a polyimide was designed to gain a homogeneous ultrathin MOF-polymer film, 

which motivated the further synthesis of ultrathin MOF-based films.[146] The MIL-101(Cr) layers were 

deposited over different substrates (quartz, glass and silicone) by using a LB method.[147] 

MIL-101(Cr), with the size of approximately 50 nm, was synthesized and characterized by using 

UV-vis, SEM and XRD. Behenic acid (BA), a generally known surfactant, was utilized for stabilizing the 

Langmuir layers with the reduction of the stress forces and prevention of aggregations from MIL-101 

nanoparticles at the air-water interface. The MIL-101 coated QCM sensor was applied for obtaining 

adsorption isotherms of CO2 on the LB film at 100 kPa as the accurate adsorption value, being similar 

to those gained by the conventional adsorption technique which usually need of much more amount 

of MOFs.  

An activated 3-D calcium spirobifluorene (Ca-SBF)-based MOF with regular nanopores and 

medium surface area was employed for the fabrication of QCM sensor toward VOCs including 

C6H5CH3, C2H5OH, CH3COCH3 and C6H6.
[148] Due to a well-matching of the pore aperture of 

Ca-SBF-based MOF with the diameter of C6H5CH3, a selective response to C6H5CH3 vapor was 

obtained. A ultrathin drop-cast, LB and Langmuir-Schaefer (LS) films of microporous aluminum (Al) 
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tricarboxylate MOF (MIL-96(Al)) was fabricated for CO2 adsorption study by the QCM technique 

using very small MOF quantities.[149] Adsorption behavior of CO2 was controlled by the MIL-96(Al) 

film fabrication method in addition to its storage conditions and the solvent used in suspension 

preparation and its desorption was done at the room temperature by the flow of an inert gas. The 

MIL-96(Al) LB film exhibited a good stability after 15 cycles of CO2 adsorption/desorption. Another 

method was described for detecting C5H5N vapor,[150] using the QCM sensor coated with a nanoscale 

MOF (N-MOF), Al(OH)(1,4-NDC). Adsorption capacity of N-MOF-coated QCM sensor was improved 

by using CH2Cl2 instead of DMF to homogeneously disperse N-MOF onto the Au electrode. The 

N-MOF-coated sensor showed a high selectivity, good reproducibility, and long-term stability for 

sensing of C5H5N. The adsorption mechanism of the QCM sensor towards C5H5N was studied by a van 

der Waals-modified density functional theory (DFT) calculation.  

 

2.3.2. Prussian blue and its analogues 

Prussian Blue (PB) and PB analogues (PBAs) represent a well-known class of coordination polymers 

(CPs), built form metal cations Mn+ nodes bridged with cyanide ligands (M2+-CN-M3+).[151] In the sense 

of applications, PB and PBAs are potential for a wide variety of applications such as electrocatalysis, 

electrochromism, and magnetism and excellent adsorbents for trace analysis of small molecules and 

ions, particularly for their high nanoporosity, high surface area, high performances, and 

environmental safety.[152-160] Due to their excellent removal ability for Cs cation (Cs+), PB has been 

commercialized medicinally for patients who suffer from internal contamination of radioactive Cs+ 

from gastrointestinal tract of animals because of its strong affinity for Cs+.[161]  

A facile method to synthesize water-insoluble PB nanoparticles was demonstrated with the 

formation of diverse particle sizes ranging from a few dozen nanometres to submicrometres called 
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as small-sized, medium-sized, and large-sized PB particles.[162] The PB having diverse particle sizes 

was designed as an advanced QCM sensor for studying the adsorption uptake of Cs+. A fast and 

sensitive sensor was realized in a case using the medium-sized PB particles, which exhibited Cs+ 

uptake of more than 2 times higher than that for the large-sized ones as a result of the high surface 

area. The Cs+ adsorption mechanism was investigated by the uptake of Cs+ into the nanocavities of 

PB, rather than ion-exchange mechanism due to the absence of K+. The PB particle size was 

significant for optimizing the Cs+ adsorption rate. A different synthetic route was developed for 

preparing a high surface area single crystalline PB particles with interior hollow cavities (up to 330 

m2 g-1) via a controlled self-etching of PB cubes. [161] The structure characteristics in turn were very 

unique in the environmental clean-up of radionuclide 137Cs when thin layers of PB were integrated 

with a QCM sensor with the aid of Nafion binder. The hollow nanocavities afforded a huge 

adsorption uptake for Cs+ from its aqueous solution.  

For further enhanced Cs+ adsorption capability, new single crystalline hollow PBA nanocubes, 

composed of pairs of Co-Fe, Ni-Fe, and Mn-Fe were explored by a simple chemical etching process 

by using polyvinylpyrrolidone (PVP) as a protecting agents as the ideal candidate for the removal of 

Cs+.[163] According to the high surface area caused by the hollow nanocavities and highly crystalline 

microporous structures, the PBA, Ni-Fe hollow nanocubes exhibited a good adsorption uptake of Cs+ 

compared with its corresponding analogue which can be confirmed by the QCM technique. In 

addition, the high-surface-area PB nanoparticles was successfully dispersed in a 

poly(N-isopropylacrylamide) (PNIPA) hydrogel, which would be consequently useful for the 

remediation of radioactive Cs.[164] The adsorption uptake of Cs+ was studied by using QCM sensors 

coated with the PB nanoparticles where the loading amount of the PB nanoparticles were estimated 

as 11.90 μg cm-2.  By the increase in the effective surface area of the PB nanoparticles, the higher 
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affinity of the PB nanoparticles toward Cs+ was useful for a large Cs+ uptake of 191.4 mg g-1, being 

almost 6 times higher than that in a case using commercial PB particles (38.8 mg g-1).  

 

2.3.3. MOF-derived nanoporous carbons 

Sacrificial utilizations of MOFs for obtaining functional nanoporous materials with enhanced 

properties are the state-of-the-art technique that integrates MOF-derived nanomaterials on 

conductive substrate and electrode having flexibilities, including carbon cloths and fibers/textiles, 

QCM, etc., which may provide an excellent opportunity for creating commercial flexible 

supercapacitors, batteries and industrially attractive in situ detection systems. For example, MOFs 

have been utilized as precursors for the synthesis of nanoporous carbon (NPC) based materials by 

carbonizing MOFs with a secondary carbon precursor into their cavities.[165-167] For a high specificity 

of the interaction with target substances, the chemical design of nanostructures and functionalities 

is quite crucial for fabricating QCM sensors showing high selectivity. ZIF-8 derived NPCs prepared by 

direct carbonization of the ZIF-8 crystals without additional carbon precursors were a promising 

adsorbent for effective removal toxic Cu2+ from a potable water.[168] The NPC particles showed an 

impressive adsorption capacity of Cu2+ compared with other carbonaceous adsorbents. Combing the 

unique properties, such as high surface area, high nanoporosity, and highly graphitic (sp2) carbon 

frameworks, along with the co-existence of surface hydroxyl (-OH) and carboxylic (-COOH)groups, 

the ZIF-8 derived NPCs were useful for a fast ion diffusion of Cu2+ with the high adsorption capability 

, possibly due to the mechanisms of ≡C-OH + Cu2+ = ≡C-OCu+ + H+ and -COOH + Cu2+ = -COOCu+ + 

H+.[168] Thus, the adsorption efficiency of ZIF-8 derived NPCs for Cu2+ was linearly increased by 

decreasing the H+ concentration in the medium.  
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A facile and scalable method was also proposed for exclusively synthesizing varieties of 

MOFs-derived NPCs confined metal nanoparticles with a wide range of compositions. In this context,  

magnetic Co NPs were successfully confined in MOFs-derived NPC particles (named as Co/NPC 

particles) by a one-step carbonization of ZIF-67 crystals.[169] The highly crystalline and well-dispersed 

fine Co NPs (up to nearly 50 mass%) confined in NPC matrices were very helpful for graphitization of 

derivative carbon based frameworks with retention of a porosity, realizing an excellent adsorption 

performance of toxic methylene blue (MB) dye molecules. From the QCM study, the 

Co/NPC-modified electrode showed an impressive adsorption capacity for the MB molecules (509 

mg g-1) calculated by using the Sauerbrey’s equation (Eq. 1), being in good agreement with that 

measured by UV-Vis. The enhanced MB adsorption (almost 10 times higher than that observed for 

an activated carbon) was attributed to the high nanoporosity with an open pore texture. High 

graphitization degree of sp2-carbon species also provided more adsorption sites effective for 

interaction with MB molecules through π-π bonds. In a sense of the practical application, the 

Co/NPC particles showed a good reversibility of almost 86 mass%.  

An alternative simple one-step pathway for synthesizing NPC with an extreme high surface area 

(5500 m2 g-1) and large pore volume (4.4 cm3 g-1) that were derived by a direct carbonization of an 

Al-based PCP (Al-PCP, (Al(OH)(1,4-NDC)∙2H2O) [170] (Figure 11). The highly graphitic material having 

outstanding porosity was drop-coated over the electrode of QCM after assembling polyion 

polydiallyldimethylammonium (PDDA) chloride and sodium polystyrene sulfonate (PDDA/PSS) binder 

layers. A large uptake with very high sensing affinity for C6H6 vapors was clearly observed with an 

excellent repeatability, which was attributed to the extreme high surface area and nanoporosity. In 

addition, the sensor also showed the higher selectivity for aromatic hydrocarbons (e.g., C6H6 and 

C6H5CH3) than those for aliphatic ones (n-C6H14 and c-C6H12) as a result of π-π interactions between 

aromatic rings and graphitic sp2 carbon frameworks.[109, 124] In addition, the designed QCM sensor 
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coated with ZIF-8 derived NPC particles in the presence of Nafion binder also showed an improved 

sensor response for C6H5CH3 vapors.[171] Particle sizes of ZIF-8 derived NPCs was controllable in the 

range from nm to μm scale with the retention of the original shape of parent ZIF-8 crystals. Although 

the surface area of large- and small-sized ZIF-8 derived NPC particles was useful for large adsorption 

uptakes of C6H5CH3 molecules, the small-sized NPCs might be helped for the uptake of more C6H5CH3 

molecules into the ZIF-8 derived NPCs over the entire QCM electrode.  

 

Figure 11. (A) Bright- and dark-field TEM images of Al-PCP calcined at 800 °C (a) before and (b) after 

washing with HF. The inset is the corresponding ED pattern. (a-3) and (b-3) High resolution TEM images of 

Al-PCP calcined at 800 °C before and after washing by HF, respectively. The graphitic sheets are indicated 

by arrow. (B-a) QCM frequency shifts upon benzene adsorption into (red-line) PCP-800 film and 

(blue-line) active carbon film. The changes of the QCM frequency shifts are examined through alternate 

exposure (open arrows) and removal (filled arrows) of the benzene molecules. (b) Summary of QCM 

frequency shifts of PCP-800 film caused by exposure to various vaporized gases. These QCM frequency 

shifts are recorded 500 s after the PCP-800 films are exposed to vapors. Adapted with permission.[172] Copyright 

2012, American Chemical Society.  



 

 

 

This article is protected by copyright. All rights reserved. 

Progress Review_47 

2.4. Zeolites and related materials 

Zeolites and related materials were extensively studied to remove environmental waste effluents at 

the low-level of concentration ranges.[173] Adsorption of toxic metal cations into zeolite cavities 

occurs with ion-exchange reactions because negative charges of zeolite (aluminosilicate) frameworks 

have to be balanced by chemically exchangeable cations in solutions. In addition to reasonable 

prices of zeolites, their molecular sieving effects, excellent ion-exchange and selectivity, zeolite 

coated QCM sensors were extensively studied towards the development of gas sensing and toxic ion 

uptake.[167] Zeolites such as LTA, BEA, MFI, FAU, CHA were utilized for the sensing of humidity and 

VOCs like C2H5OH, n-C3H7OH, isooctane (i-C8H18), C5H5N, and perfluorotributylamine (N(C4F9)3.
[174-176] 

Considering the pore size, the BEA type zeolite exhibited a higher affinity to relatively large organic 

molecules such as pentane (n-C5H12), n-C6H14 and c-C6H12), although no selectivity was observed 

among them, while the LTA one showed a selective response to H2O vapors. Zeolite (e.g., zeolite A, 

silicalite-1 and sodalite) coated QCM electrodes was also developed for sensing NO, SO2 and 

humidity.[177-178] The sodalite (SOD) coated QCM device was promising to discriminate humidity even 

in the presence of other gases because of poor responses towards NO and SO2 gases. Acoustic QCM 

sensors modified with zeolites, include silver-exchanged MFI type one,[179] principle component 

analysis of multiple-QCM sensors coated with LTA, MFI, and SOD were reported for a selective 

response to CH3COCH3 in diabetic’s breath in ppm range and detection of NO/SO2 mixture, 

respectively.[178]  

Colloidal zeolites with MFI and LTA type framework architectures were synthesized and used as 

building blocks for the assembly of porous films on an isocyanate-SAM functionalized Au electrode 

of a QCM oscillator.[180] The molecularly selective sensing behavior of the zeolite-coated QCM 

devices were demonstrated by evaluating the adsorption isotherms of n- and i-butane (C4H10). Ji and 
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co-workers[181] prepared ZSM-5 and Cu-ZSM-5 containing various percentages of Cu2+ were prepared 

and fabricated as sensitive QCM films by a self-assembly method. In particular, Cu-ZSM-5 

demonstrated a good selectivity and high sensitivity to DMMP vapor. Zeolite A nanoparticles 

prepared by a simple post-milling recrystallization was reported for uptake of Cs+.[182] The 

nanometer-sized zeolite A accommodated much Cs+ uptake (422 mg g-1) in comparison with 

micrometer-sized one (168 mg g-1) due to its high surface area, which would be promising for 

radioactive Cs recovery from polluted effluents. The ion-exchange ratio of Na+ in the sodalite cage to 

Cs+ was estimated to be 45%, which may be attributed to the small opening of the sodalite cage to 

prevent smooth diffusion of Cs+. The Cs adsorption kinetics was further studied using a real-time 

monitoring of ∆F of QCM. From theoretical calculations (Eq. 8), the estimated rate of uptake (k) of 

Cs+ form the gradient of the kinetic plot of ln(∆Ft/∆F∞) versus time (t) clearly showed that adsorption 

of Cs+ into the nanometer-sized zeolite A was 1.4 times faster than that into micrometer-sized one.  

3. Future prospects 

Recent development of the QCM sensing technique has been powered by conceptual simplicity, low 

cost, ease of modification, ruggedness, chemical inertness of electrode, reliability, sensitivity, 

availability of piezoelectric transducers, and economic efficiency of its technical products. The 

frequency measurement outputs are very precise and dealing with the associated electronics is fairly 

simple and the QCM sensor can respond to a wide range of stimuli such as temperature variations 

and pH shifts as well as injected chemicals and biomaterials. To design advanced detection systems 

having high sensitivity, introduction of advanced nanostructured materials to the QCM system is 

very useful for various applications in science and technology disciplines. To develop highly efficient 

adsorbents, materials nanoarchitectonics may be one of the answers in the future for their intrinsic 

properties such as high surface area, large pore volume, tunable pore size, and high stability. 
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Interconnected pore wall surfaces can be in turn modified or functionalized with active function 

groups. Such unique properties meet the future sensor requirements, not only providing huge 

spaces for accommodating large guest species but also enabling the selective guest binding and 

enrichment through active functionalities.  

The QCM-based non-gravimetric technique has provided valuable studies for the qualitative and 

quantitative investigations of molecular recognitions using advanced nanostructured materials. 

Although miniaturized QCM microanalytical technique is promising for future studying the guest 

adsorption and diffusion processes, further progress is needed for the development of appropriate 

approaches for reliable and routine sample preparation onto the QCM electrode. The present results 

and forthcoming studies are expected to be analytically useful in validating and parametrizing 

molecular models for studying adsorption process occurred in nanoporous materials. The versatility 

in the synthesis of functional nanoporous materials also holds the great potential for creating 

molecular recognition sensors to enable selective detection/adsorption of a wide range of toxic 

chemicals. Encouraged by the compatibility of nanoporous materials with the piezoelectric QCM 

sensor, a mixture of analytes can be detected using an array of the QCM electrode functionalized 

with different nanoporous materials in order to take advantage of their respective chemical 

selectivity. The pore tunability of advanced nanoporous materials is also considered as a key 

advantage for designing chemical sensor arrays with a pattern recognition library for electronic nose 

systems.  

We believe that works on the fabrication of electronic nose systems for the on-line and real-time 

monitoring of VOCs in ambient environments are underway in future. On-line and real-time 

monitoring of trace-level VOCs is quite important to allow the situational awareness 

for controlling exposure to health and safety risks associated with the surrounding hazard 

substances. Another important aspect, the detection of the VOCs generating from our bodies using 
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the QCM sensor technique will open a new avenue for non-invasive and fast health monitoring such 

as those for cancers, kidney diseases and neurodegenerative diseases that can help physicians in 

medical diagnosis. Surface modification of the metal electrode, for example by using self-assembled 

monolayer coupling agents may also be available for improving selective adhesion of nanoporous 

materials deposition. Yet, we have only scratched the surface of possibilities, due to the vast number 

of candidates like various nanoporous materials. Future researches will explore the phase space of 

available materials with differing pore sizes, morphology, and chemical functionality.  
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