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IFM and Its Dual Form for Eigen Value Analysis of
Plate Bending Problems

G. S. Doiphode,V. A. Patel and S. C. Patodi

Abstract—Integrated Force Method (IFM) is now well accepted
method for the analysis of framed and continuum structure
problems under static and dynamic loading. The methodology
proposed in the present paper attempts to calculate the frequency
using the force based eigen value analysis, while the present
literature emphasizes on displacement based eigen value analysis.
The suggested formulation is based on the Cauchy’s equilibrium
operator, Saint Venant’s compatibility operator and Hooke’s
material matrix operator. Element equilibrium and flexibility
matrices are derived by discretizing the expression of potential
and complimentary strain energies respectively. The displacement
field is decided using Hermits interpolation function, while the
stress field is approximated using the traditional polynomial of
approximate order. Formulation developed earlier for static anal-
ysis using rectangular element having nine force degree of free-
dom and twelve displacement degree of freedom (RECT 9F 12D)
is extended. Lumped mass and consistent mass matrices are
also derived. A modified formulation of IFM which is named
as Dual Integrated Force Method (DIFM) is also explored. Plate
bending problems with two different boundary conditions are
attempted. Various discretization patterns are used to check the
convergence of frequency values towards the analytical solution.
Results obtained for natural frequencies, force mode shapes for
each frequency value and corresponding nodal displacements are
presented. Results obtained for natural frequency are compared
with the exact solution; a good agreement is found.

Index Terms—Eigen value, Equilibrium matrix, Flexibility
matrix, IFM and DIFM.

I. INTRODUCTION

MANY practical problems of dynamic analysis can not
be solved effectively by using classical methods. Ap-

proximate numerical methods using digital computer give fast
and acceptable solutions. Therefore, Finite Element Method
(FEM) has become quite popular in structural dynamics field
for tackling the problems involving complex material proper-
ties, loading and boundary conditions. Using engineering judg-
ment on the view of safety, serviceability and economy with all
required safety factors, a link between real physical problem
and idealized mathematical model is developed in FEM, which
gives feasible solution including all the assumptions imposed
on the real practical problem. Integrated Force Method (IFM)
has been successfully applied to thin square plate subjected
to static loading under different boundary conditions [1]. It
has also been successfully applied to small scale structures
subjected to lumped mass systems at important nodes, which
gives natural frequencies [2]. In the present paper, a force
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based integrated force method and a displacement based
dual integrated force method are developed for the dynamic
analysis of rectangular plates subjected to lumped or consistent
masses as per the discretization pattern. Matrices necessary for
the solution of the problem such as Global Equilibrium Matrix
[S], Global Flexibility Matrix [G], Global Lumped Mass
Matrix [ML] and Global Consistent Mass Matrix [MC] are
derived using basic theory. Results obtained using proposed
formulations are compared with the available exact solution
based on the classical theory of plates [3, 4].

II. GOVERNING EQUATIONS OF IFM

The IFM equations, for a continuum discretized in finite
number of elements with ’n’ and ’m’ force and displacement
degrees of freedom respectively, are obtained by coupling
the ’m‘ number of equilibrium equations and r = n - m
compatibility conditions. The m equilibrium equations are
written as

[B]{F} = {P} (1)

and the’ r’ compatibility conditions are written as

[C][G]{F} = {δR} (2)

A displacement based approach uses the following equation
of equilibrium for calculating the natural frequency of vibra-
tion of structure.

These conditions are combined to obtain the IFM governing
equations for static analysis as follows [1]:[

[B]
[C][G]

]
{F} = {P}

{δr}
(3)

or [S]{F} = {P}
A displacement based approach uses the following equation

of equilibrium for calculating the natural frequency of vibra-
tion of structure.

[M ]{ω2}{X} − i{ω}[C]{X} = [K]{X} = {P} (4)

Where [M], [K] and [C] are the mass, stiffness and damping
coefficient matrices respectively. The basic frequency equation
can be obtained by eliminating X and P between equations (1)
and (4) as follows:

[
[B]

[C][G]

]
{F} = {ω2}[M ][J ][G]{F} − i{ω}[C?]{F} (5)

where [C?] = [C][G][F ]
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Above equation is the eigen value equation of integrated
force method, where F is the force mode shape and ? is
the circular frequency of the structure. Using Eqn. (3) the
displacement mode shape x can be calculated.

III. GOVERNING EQUATIONS OF DIFM

IThe modified form of Integrated Force Method i.e., Dual
IFM (DIFM) is formulated by mapping the forces into
displacements. The basic equations of the dual formulation
of the IFM are given below.

The nodal displacement - external load relation is written as

[D]{X} = {P} (6)

where
[D] = [B][G]−1[B]T

is a symmetric matrix of size m x m, which is assembled at
element level. The nodal displacement - internal force relation
is written as

{F} = [G]−1[B]T [X] (7)

Displacement based approach yields the basic equation of
equilibrium for calculating the natural frequency of vibration
of structure as

[M ]{ω2}Xi{ω}[C]{X} = [K]{X} = {P} (8)

Equating Eqns. (6) and (8), one can write the modified form
as follows.

[D]mxmXmx1 = {ω2}{X}mx1 − i{ω}1xm[C]mxm{X}mx1

(9)
Dynamic analysis is carried out by taking into consideration

the inertial effects by using either lumped or consistent mass
matrix. In lumped mass approach, the distributed mass is
assigned to nodal points which contribute towards the transla-
tional degree of freedom along diagonal terms of mass matrix
only whereas in consistent mass approach, the complete mass
is distributed corresponding to each degree of freedom at each
node of the considered element.

IV. DEVELOPMENT OF VARIOUS MATRICES

A. Element Equilibrium Matrix [Be]

The elemental equilibrium matrix written in terms of forces
at grid points represents the vectorial summation of ’n’ internal
forces F and ’m’ external loads P. The nodal EE in matrix
notation can be stored as rectangular matrix [Be] of size m x
n. The variational functional is evaluated as a portion of IFM
functional which yields the basic elemental equilibrium matrix
[Be] in explicit form as follows:

[Up =

∫
D

{
Mx

∂2w
∂x2 +My

∂2w
∂y2 +Mxy

∂2w
∂x∂y

}
dxdy (10)

= {M}T {ε}ds (11)

Fig. 1. A rectangular plate element

where,
{M} = (Mx,My,Mxy)

are the in-plane internal moments and

{ε}T =
(

∂2w
∂x2 ,

∂2w
∂y2 ,

∂2w
∂x∂y

)
represents the curvatures corresponding to each internal mo-
ment.

Consider four-noded, 12 ddof (X1 to X12) rectangular
element of thickness t with dimensions as 2a x 2b along the
x and y axes as shown in Fig. 1.

The force field is chosen in terms of four independent forces
as;

{F} = (F1, F2, ...F9) (12)

Relations between internal moments and independent forces
are written as.

Mx = F1 + F2x + F3y + F4xy (13)

My = F5 + F6x + F7y + F8xy (14)

Mxy = F9 (15)

Arranging Eqns. (13), (14) and (15) in matrix form

(16)

or
{M} = [y]{Fe} where,

{Fe} = [F1, F2, F3, ...F9]
9 (17)

The variation of above forces is considered bilinear along
both directions. The displacement fields satisfy the continu-
ity condition and the selected forces satisfy the mandatory
requirement.

The Hermits Interpolation function for lateral displacement
for rectangular element is as follows:

w(x, y) = N1(x, y)X1+N1(x
′, y)X2+N1(x, y

′)X3+N4(x, y
′)X12

(18)
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Fig. 2. Nodal displacements.

Where,

w(x, y) = N1(x)N1(y), N1[x
′, y] = N ′1(x)N1(y)

N1(x, y
′) = N1(x)N

′
1(y)

and so on.Here,
N1(x) =

x3−3a2x+2a3

4a3 N2(x) =
−x3+3a2x+2a3

4a3

N2(y) =
y3+3b2y+2b3

4b3 N ′1(x) =
x3−ax2−a2x+a3

4a2

N1(y) =
y3−by2−b2y+b3

4b2 N ′2(y) =
y3+by2−b2y−b3

4b2

are associated with nodal displacements X1, X2,...X12 as
shown in Fig. 2.

By arranging all force and displacement functions properly,
one can discretize the Eq. (10) to obtain elemental equilibrium
matrix as follows.

Ue = {X}T [Be]{F} (19)

Where
[Be] =

∫
s

[Z]T [Y ]ds (20)

Here,
[Z] = [L][N ] (21)

where [L] is the differential operator matrix, [N] is the
displacement interpolation function matrix and [Y] is the
matrix of force interpolation function. Substituting Eq. (17)
and Eq. (18) in Eq. (20) and integrating yields the following
non zero components of non-symmetrical equilibrium matrix
Be of size 12 x 9.
Be

31 = b, Be
61 = −Be − 31, Be

91 = −Be
31

Be
121 = Be

31, B
e
12 = −Be

31, B
e
22 = 0.33b2

Be
32 = −ab,Be

42 = Be
12, B

e
52 = −Be

22,
Be

62 = Be
32, B

e
72 = −Be

12, B
e
82 = Be

22

Be
92 = −Be

62, B
e
102 = −Be

22, B
e
112 = −Be

22

Be
122 = −Be

32, B
e
33 = −0.4b2, Be

63 = Be
33

Be
93 = Be

33, B
e
123 = Be

33, B
e
14 = Be

33

Be
24 = −0.66b3, Be

34 = 0.4ab2, B
e
44 = Be

14,
Be

54 = Be
24, B

e
64 = −Be

34, B
e
74 = Be

13

Be
84 = 0.2b3, B

e
94 = Be

34, B
e
104 = −Be

13

Be
114 = −Be

24, B
e
114 = Be

94, B
e
25 = −a,

Be
55 = a,Be

85 = a,Be
115 = −a,

Be
26 = 0.4a2, B

e
26 = −0.4a2, Be

86 = 0.4a2,
Be

116 = −0.4a2, Be
17 = a,Be

27 = ab,

Be
37 = −0.3a2, Be

47 = −a,Be
57 = ab,Be

67 = 0.3a2,
Be

77 = −a,Be
87 = ab,Be

97 = −0.3a2,
Be

107 = a,Be
71 = ab,Be

127 = 0.3a2,
Be

18 = −0.4a2, Be
28 = −0.4a2b, Be

38 = 0.6a3
Be

48 = Be
18, B

e
58 = Be

28, B
e
68 = Be

38,
Be

78 = Be
18, B

e
88 = Be

28, B
e
98 = −Be

18

Be
108 = −Be

18, B
e
118 = −Be

28, B
e
128 = Be

38

Be
128 = Be

38, B
e
19 = −2, Be

49 = 2,
Be

79 = −2, Be
19 = −2, Be

49 = 2, Be
79 = −2, Be

109 = 2. (22)

B.Element Flexibility Matrix [Ge]

The elemental flexibility matrix is obtained by discretizing
the complementary strain energy.

[Ge] =
∫
[Y ]T [D][Y ]dxdy

where, [Y] is the force interpolation function matrix and [D]
is the material property matrix. Substituting values in Eq. (11)
and integrating yields the symmetrical flexibility matrix [Ge]
as follows with a common multiplication term as 48ab/Et3.

Where , E and t are the Poisson’s ratio, modulus of elasticity
of material and thickness of plate respectively.

C.Global Compatibility Matrix [C]

The compatibility matrix is obtained from the deformation
displacement relation (β = [B]TX). In DDR all the deforma-
tions are expressed in terms of all possible nodal displacements
and the ’r’ compatibility conditions are developed in terms of
internal forces i.e., F1, ...F2n, where ’2n’ is the total number of
internal forces in a given problem. The concatenating or global
compatibility matrix [C] can be evaluated by multiplying the
compatibility matrix [C] by global flexibility matrix [G].

V. EXPERIMENTAL RESULTS AND DISCUSSION

The novel region based image fusion algorithm described
in previous section has been implemented using Matlab 7.
The proposed algorithm are applied and evaluated using
large number of dataset images which contain broad range
of multifocus and multimodality images of various categories
like multifocus with only object, object plus text, only
text images and multi modality IR (Infrared) and MMW
(Millimeter Wave) images to verify the robustness of an
algorithm and simulation results are shown in Fig. 5 to 10.
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D.Global Mass Matrix [ML]
The global lumped mass matrix for corner quadrant dis-

cretized in 2 x 2 mesh is a diagonal matrix which is obtained
by substituting nodal masses in the transverse displacement
directions.

With ρ being the material density, the global consistent mass
matrix is obtained for each element using,

[M1
c ] = [M2

c ] = [M3
c ] = [M4

c ] =

ρ
∫ +a

a
I
∫ +b

b
[N ]T [N ]tdxdy(26)

where, [N] is the displacement interpolation matrix of size
3 x 12 in which non zero components are as follows:
N11 = N1(x)N1(y), N14 = N2(x)N2(y), N17 =

N2(x)N2(y),
N1,10 = N4(x)N4(y), N22 = N ′1(x)N1(y), N25 = N ′2(x)N2(y),
N28 = N ′3(x)N3(y), N2,11 = N ′4(x)N4(y), N22 = N1(x)N

′
1(y)

N36 = N2(x)N
′
2(y), N39 = N3(x)N

′
3(y), N3,12 = N4(x)N

′
4(y)

After substituting all interpolation components in Eq. (26),
consistent mass matrix is calculated for individual element.
The global consistent mass matrix is obtained as per the global
boundary conditions available in the unrestrained direction in
assembled matrix (n x n). This matrix is modified by adding
’r’ rows of zeroes at bottom, which is used for frequency
calculations.

VI. V.PLATE BENDING EXAMPLES
Simply supported and fixed square plates of size 4000 x

4000 mm as shown in Fig. 3 are analyzed considering plate
thickness ’t’ as 100 mm. The plate is made of steel having
modulus of elasticity E as 2.069 x 105 N/mm2 and Poisson’s
ratio ? as 0.3. Dynamic analysis is carried by using a two- way
symmetry. Lower left corner is discretizing into 1x1, 2x2, 3x3
and 4x4 grids by considering lumped and consistent masses
at respective nodes.

Steps required for the solution, using IFM and DIFM, are
illustrated here with the help of an example of a simply
supported plate which is discretized into 2 x 2 mesh.

Step 1: A four-noded rectangular element (2a x 2b) with
12 ddof and 9 fdof is used for discretizing the problem
into four elements. The elemental [Be] matrix is obtained
by substituting a = 500 mm, b = 500 mm in Eq. (22) and
assembled to have a matrix of size 16 x 36.

Step 2: The compatibility matrix for the four elements is
obtained from the displacement deformation relations (DDR)
i.e. ? = [B]TX. In the DDR, 36 deformations which correspond
to 36 force variables are expressed in terms of sixteen displace-
ments (X1, X2...X16). The problem requires 20 compatibility
conditions [C] that are obtained by eliminating the sixteen
displacements from the 20 DDR’s.

Fig. 3. Plate Bending Option

Step 3: The Flexibility matrix for the problem is obtained
by diagonal concatenation of the four elemental flexibility
matrices as;

[G] =


Ge1

Ge2

Ge3

Ge4

 (28)

where sub matrices are calculated using equation (23).
Step 4: The required compatibility matrix of size (20 x 36)

is calculated by multiplying the global compatibility matrix
[C] of size (20 x 36) by the global flexibility matrix [G] of
size (36 x 36).

Step 5: The set of governing equations is as follows.[
[S]− ω2

[
[ML|J|G]

0

]]
{F} = 0(29)

where, [ML] is the lumped mass matrix, [J] consists of
’m’ rows of [S−1]T matrix and [G] is the global flexibility
matrix. Solving above set of equations, using Eigen solver of
MatLab, the solution for natural frequency vector ωLx1, which
has L (ddof per node x number of nodes loaded with lumped
masses) entries is obtained. Also, by replacing lumped mass
matrix [ML] by consistent mass matrix [Mc] and using the
same equation (29), eigen vector ω is calculated

The same problem when solved by the dual integrated
force method requires modification in different matrices. The
final equation for frequency analysis using dual integrated
force method is as follows:

bbDifmdglobal
c − ω2[ML]c{X} = 0

with
[Difmdglobal

] = [Difmd(e)1 : Difmd(e)2 : Difmd(e)3 :
Difmd(e)4 ](30)

where [ML] is global lumped mass matrix, [Be1] [Be2]
[Be3] and [Be4] are the basic elemental equilibrium matrices
and [Ge1] , [[Ge2] , [Ge3] and [Ge4] are the equilibrium and
flexibility matrices of the four elements. Using eigen solver of
MatLab, one can get the solution for natural frequency, force
mode and displacement mode shapes for both the problems.

Step 6: Substituting value of ’ω’ in Eq. (29), the values
of internal forces can be worked out using direct elimination
procedure with F1 = 1.
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Step7: Substituting values of all internal moments in equa-
tion X = m rows of [S−1]T [G]F , the nodal displacements can
be calculated.

Results obtained for frequencies for simply supported and
fixed plate are shown in Table I whereas force mode and
displacement mode shapes obtained by considering lumped
mass criteria are shown in Tables II. Results of convergence
study carried out for simply supported and fixed plates are
depicted in Figs. 4 and 5 respectively.

VII. CONCLUSION

1) Forces are primary unknowns of IFM. Its dual form
(DIFM) is developed by mapping forces in to displace-
ments at the element level. The equations of IFM and
DIFM are mathematically equivalent hence the natural
frequencies, forces and displacements obtained by either
of the methods are identical.

Fig. 4. Graph for simply supported plate.

Fig. 5. Graph for fixed plate.

2) The values of natural frequencies for simply supported
plate using lumped mass matrix with various discretiza-
tion patterns are found lower bound to analytical solu-
tion, while using consistent mass matrix with the same
discretization patterns gives upper bound solution. How-
ever, both are found to converge to the exact solution
with increase in number of elements.

3) For the fixed plate example, both lumped and consis-
tent mass matrix solutions for frequency are found to
converge to the exact solution from the upper side.

4) DIFM is meant for the displacement based eigen value
analysis which provides displacement mode animation,
whereas dynamic analysis through IFM gives stress
mode animation. The stress mode animation technique
is helpful for the structures which are subjected to un-
certain loading having number of critical failure zones.

5) Both Integrated and Dual Integrated Force Methods can
be readily extended to steady state, transient and random
vibration problems by making minor modifications in
the formulation.
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